弁護士法人ITJ法律事務所

裁判例


戻る

平成22年3月29日判決言渡
平成21年(行ケ)第10042号審決取消請求事件
口頭弁論終結日平成22年3月15日
判決
原告X
被告特許庁長官
指定代理人早野公惠
同中川隆司
同金澤俊郎
同黒瀬雅一
同田村正明
主文
1原告の請求を棄却する。
2訴訟費用は原告の負担とする。
事実及び理由
第1請求
特許庁が不服2006−23649号事件について平成21年1月20日に
した審決を取り消す。
第2事案の概要
1本件は,原告が名称を「高効率熱サイクル装置」とする後記発明につき国際
出願の方法により日本国特許庁に特許出願をしたところ,拒絶査定を受けたの
で,これを不服として審判請求をしたが,同庁が請求不成立の審決をしたこと
から,その取消しを求めた事案である。
2争点は,上記特許出願に係る明細書の発明の詳細な説明の記載が「その発,
明の属する技術の分野における通常の知識を有する者がその実施をすることが
できる程度に明確かつ十分に記載したものである(実施可能要件,特許法3」
6条4項1号)か,である。
第3当事者の主張
1請求の原因
(1)特許庁における手続の経緯
原告は,平成16年(2004年)6月1日,名称を「高効率熱サイクル
装置」とする発明について日本国特許庁に国際特許出願(PCT/JP20
04/007516,日本国における出願番号は特願2006−51403
0号。再公表特許公報〔WO2005/119016号〕は甲1。以下「本
願」という)をし,その後,平成17年2月25日付け,平成18年6月。
23日付け及び平成18年7月4日付けで各補正をしたが,平成18年9月
14日付けで拒絶査定を受けたので,平成18年10月19日これに対する
不服の審判請求をした。
特許庁は,同請求を不服2006−23649号事件として審理し,その
中で原告は平成20年11月4日付けで特許請求の範囲の記載を変更する補
正(旧請求項5を削除し,以後の請求項番号を繰り上げたもの。以下「本件
補正」という)をしたが,特許庁は平成21年1月20日,上記補正を認。
めた上「本件審判の請求は,成り立たない」との審決をし,その謄本は平,
成21年1月30日原告に送達された。
(2)発明の内容
本件補正後の特許請求の範囲は,請求項10から成るが,その請求項1に
記載された発明(以下「本願発明」という)は,次のとおりである。。
・請求項1】【
圧縮機,タービン,熱交換器及びポンプを含む熱サイクル装置であっ
て,圧縮機(C)で圧縮された作動ガスが,タービン(S)を駆動し仕
事(W)を出力した後,第1の熱交換器(7)の放熱側を通り冷却さ1
れ,その後にポンプ(P)により昇圧されて高圧作動液とされ,該高圧
作動液が反動水車(K)を駆動し仕事(W)を出力すると共に膨張さ2
れ蒸発し作動ガスとされ,該作動ガスが,第1の熱交換器(7)及び第
2の熱交換器(8)を通り加熱された後,圧縮機(C)へ導入される熱
サイクル装置。
(3)審決の内容
審決の内容は,別添審決写しのとおりである。その理由の要点は,本願明
細書の発明の詳細な説明及び図面の記載は,当業者が本願発明を実施するこ
とができる程度に明確に記載されているものであるとは認められない,とい
うものである。
(4)審決の取消事由
ア取消事由1(特許法36条4項1号適用上の違法)
(ア)特許法1条が定める特許の目的には発明の利用があるが,ここでの
利用には実施上の利用のほかに,文献的利用がある。そして,特許法3
6条4項1号は,文献的利用に関しては,当業者が上記のような文献的
利用を図ることができる程度に明確な記載を求めるものであると解すべ
きである。利用度の大きい文献的利用について特許法36条4項1号該
当性を判断することなく,利用度の小さい実施上の利用についてのみ特
許法36条4項1号を適用して特許不成立とすることは,特許法1条の
定める発明の利用という法の目的を減殺ないし無効ならしめるものであ
り,同条に反するというべきである。
この点,本願発明は熱をすべて動力に変換することの提案である。現
在の技術では,理論上,カルノーサイクルの変換効率を上限とした変換
効率でしか動力変換できず,熱を100%の効率で動力変換するものは
永久機関といわれ,現実にはない。そこで,熱がすべて動力に変換でき
,,る方策を実施できれば熱を動力変換を介して電力に変換している現在
熱利用が飛躍的に良くなり,地球温暖化対策の決め手になる。本願発明
は,カルノーサイクルの変換効率を満足した上でこれを実現するもので
,,。ありその技術的構成要素はタービンと冷凍機を結合したものである
このような本願発明は,特許法1条が定める2つの「利用」のうち文
,。献的利用の方が利用面での価値が大であり利用度が大きいものである
すなわち,本願発明の実現可能性を示し,設計上の指針となるものが,
タービンの効率,冷凍機の成績係数を用いた数値化・数式化である。前
者の数値化が本願明細書(再公表特許公報,ただし,平成17年2月2
5日付け補正後のもの,甲1)の図5,図6における「W=1.7」1
等の数値であり,後者の数式化が,この数値の導出過程である本願明細
書の式34∼39である。
このように,本願発明における上記数式化・数値化は文献的利用が可
能であるところ,このような本願明細書における数式化・数値化につい
ての説明は当業者が理解できないものではないから,これにより改良発
明の創作が促進され,技術の累積的進歩による産業の発展を図ることが
可能となる。
それにもかかわらず,本願発明が特許法36条4項1号の要件を充た
さないとして特許不成立とした審決の判断は,特許法1条に違反する。
(イ)また,特許法2条も同法1条と同様に特許法の通則的性格を有する
ものであるが,同法2条1項の「高度」とは,同法29条1項,2項の
いわゆる新規性・進歩性を合わせたものであり,発明としての利用度の
小さいものはこの高度性が小さく,利用度が大きいものは高度性が大き
いという関係にある。
この点,本願発明は,熱を100%の変換効率で動力に変換すること
を骨子とするものであり,これ自体は画期的なことである。また,本願
発明のもう1つの骨子として,冷凍機の成績係数とタービンの効率を一
体化して,数式化・数値化した点がある。これは,後の発明にとって大
いに利用できる技術的思想の創作である。
特許法2条1項でいう技術的思想の創作の中で部分的に瑕疵があって
も,高度性が高ければ,技術的思想の骨組みには影響がないものといえ
る。この場合も同項に該当するものである。このような発明について,
新規性・進歩性の要件のごとく特許法36条4項1号の文言を厳格に解
,。してこれを適用して特許不成立とすることは同法2条1項に違反する
イ取消事由2(適用違憲)
特許審判,特許審決のいずれも行政処分といえ,これを不服として現在
係争中の本訴訟がある。この行政処分について,適用違憲の主張をする。
日本国憲法76条2項後段で,司法裁判所における裁判を受ける権利が
保障されている。また,日本国憲法14条1項の法の下の平等を実現する
ため具体化したものが日本国憲法32条であり,ここでも裁判を受ける権
利が制度上保障されている。
原告は,この裁判を受ける権利が保障されない具体例があると本願発明
で主張し,本訴訟で違憲を主張する。
上記ア(取消事由1)のとおり,本願に係る特許審判,特許審決とも,
特許法1条の「利用」という文言に含まれる発明の文献的利用という面で
審査・審判がなされていないし,発明の文献的利用と発明の実施上の利用
の両者の衡平という観点から審査・審判がされていない。
本願発明では原告の創作が発明の文献的利用と発明の実施上の利用の両
者を含むものである。それゆえ,発明の文献的利用と発明の実施上の利用
についての衡平の問題は生じない。しかし,この衡平を論じ係争できるよ
うにすることこそが,日本国憲法32条の裁判を受ける権利の保障といえ
る。
この衡平の問題について具体化して論ずると,本発明では,発明の文献
的利用と発明の実施上の利用とも同一人の創作であるが,これが別人の創
,。作ならば発明の文献的利用と発明の実施上の利用の衡平の問題が生じる
ここでは,発明の実施上の利用より発明の文献的利用の方が高度性(ない
し利用度)の価値があっても,裁判上争う道はない。発明の実施上の利用
が発明の文献的利用に基づいたものであればなお更,不衡平感が増せど,
どうしようもない。
原告は,発明の文献的利用の面から本発明の再審査を求め,衡平問題の
面から条件付与を要求する。将来の発明の実施上の利用に対して本発明の
文献的利用の方が高度性(特許法でいう新規性と進歩性を合わせたもの)
があるとはいえないと断定できる程度のものでなければ,特許として認め
るという条件の付与を求める。
この条件付与で特許が認められれば,将来の発明の実施上の利用との衡
平問題での裁判上の争いの機会は保障される。
2請求原因に対する認否
請求原因(1)ないし(3)の各事実は認めるが,(4)は争う。
3被告の反論
(1)実施可能要件につき
ア特許法36条4項1号の定める要件の趣旨は,特許制度は発明を公開し
た者にその代償として一定期間一定の条件で独占権を付与するものである
が,発明の詳細な説明の記載が明確になされていないときには,発明の公
開の意義も失われ,ひいては特許制度の目的も失われることによるもので
ある。そのため同項には,発明の詳細な説明には,その発明の属する技術
分野における通常の知識を有する者(当業者)が,その発明について「実
施をすることができる程度に明確かつ十分に,記載しなければならない」
と規定されている。
すなわち,同項は,明細書に記載された内容及びその発明の属する技術
分野における出願時点の技術常識に基づいて,当業者が,特許を受けよう
とする発明について,実施(例えば,実際に再現すること)ができなくて
はならないと規定するものであり,明細書をそのように記載してこそ発明
を公開したこととなり,特許制度の趣旨に合致した明細書といえるのであ
る。
イこの点,審決は,本願の明細書又は図面の記載が特許法36条4項を満
たさない理由として,次の4点を指摘した。
(ア)熱クロス(Q/Q)を大きくすることについて31
本願明細書(甲1,ただし平成17年2月25日付け補正後のもの。
以下同じ)には「熱クロスQ/Q」を大きくすると,熱効率ηが向。,31
(【】【】,【】上する旨記載されている段落0011∼00150021
等。)
この点,明細書の図3に記載された実施例について検討すると,熱量
Qを大きくすることは,タービンSの下流にある熱交換器7の放熱側3
を通過する作動流体が保有する熱量Qを大きくすることとなると考え2
られる。
また,熱サイクル装置において,投入されるエネルギー(投入される
),,熱量及びコンプレッサCの仕事等には上限が存在し上限がある以上
ガスタービンSの出力Wは,上限熱量(Q)の範囲内で熱量Qと相112
反する量とならざるを得ない。そうすると,熱量Qを大きくすること3
はQ≦Qの関係にあるQを大きくすることとなり,その結果タービ322
ン出力Wを小さくせざるを得なくなる。1
ここで,タービン出力Wは熱サイクル装置に関する熱効率の式にお1
いて分子となるものであり(η=W/Q,上記のとおりタービンS11)
の出力Wが小さくなると,熱サイクル装置の熱効率は低くなるものと1
考えられる。
したがって,本願明細書における熱クロスを大きくすると熱効率が向
上する旨の上記記載は,以上のような,従前の熱力学的分析とは異なる
ものであり,それにもかかわらず熱効率が向上する理由が本願明細書又
は図面の記載からは明らかでなく,また,熱力学の常識を参酌しても依
然として不明である。
(イ)成績係数の使用について
熱効率ηは,熱サイクルにおいて投入された熱量と放出された熱量と
から熱機関が出力可能な(最大)値を比として表したものであり,カル
ノーサイクルの場合には,本願明細書の段落【0003】に(式4)と
して記載されているとおり,
hbhη=(T−T)/T
(ただし,T;高温(吸熱)側の温度であり,T;低温側の温度)hb
と表される。
これに対し,成績係数ε(φ,COPともいわれる)は,冷凍機にお
いて,ポンプのなした仕事に対し冷凍機において吸収された熱量を比で
表したものであり,逆カルノーサイクルの場合には,本願明細書の段落
【0005】に(式9)として記載されているとおり,
ε=T/(T−T)bhb
(,(),())式中Tは低温吸熱側の温度でTは高温放熱側の温度bh
と表される。
熱効率ηおよび成績係数εは,熱サイクルの効率に関する指標である
点では類似するが,上の式から分かるとおり,熱効率ηは1以上とはな
り得ないのに対し,成績係数εは1以上の値となり得る(ヒートポンプ
サイクルでは,基本的に1以上の値である)こと,また,熱効率ηは,
高温側の温度と低温側の温度との差が大きいほど高い値となるものであ
るのに対し,成績係数εは高温側の温度と低温側の温度との差が小さい
ほど高い値を示すものである点,相反する性質を有することからもわか
るように,その値の性質を異にするものである。
,,,一方本願明細書は成績係数εを熱効率ηと同等のものとして扱い
これらの積を求めることによりタービン出力Wを算出する(式36。1)
しかし,上記のとおり,同等の内容を有するものとはいえない熱効率
ηと成績係数εに基づいて,なぜ明細書に記載されたような算出方法に
よりタービン出力を算出できるのか熱力学的にみて明らかでなく,この
ような計算方法及び計算値について,熱力学の技術常識に適合した適切
なものであると解されるに足るだけの説明が本願明細書に記載されてい
るとはいえない。
(ウ)熱効率の算出について
タービン出力を算出する場合,通常は,タービンSの出力Wについ1
て投入される熱量(Q)を基礎に算出される(η=W/Q。111)
,()【】「,一方本願明細書甲1の段落0029には…熱交換器7は
タービンSの排気を冷却することによりタービンSの入口と出口の作動
流体の温度差を大きくし,タービン出力を大きくする。…」と記載され
ているが,熱交換器7での作動流体の温度差を大きくすることにより,
直接タービンSの出力を大きくすることができるものとは考え難い。例
えば,前記(ア)で指摘したように,熱交換器7での作動流体の温度差を
大きくすることはQを大きくすることであるから,タービン出力Wは21
むしろ小さくなるものと解されるにもかかわらず,熱交換器7で作動流
体の温度差を大きくすることによりタービンSの出力を大きくすること
ができるとする理由が,本願の明細書又は図面の記載からは明らかでは
ない。
この点,段落【0032】に記載された実施例において「…タービ,
ンSの排気が凝縮器(熱交換器)7において−10°C(T)の冷媒2
蒸気により,0°C(T)に冷却され…」と記載されていることから4
すれば,タービン効率ηの算出に使用されている温度「Tは熱交換4」
器7の下流側の温度であると解されるが,このように熱交換器7の下流
側の温度を使用するということは,ここで算出される熱効率は出力され
るエネルギーとして熱交換器7における放熱量をも合わせて算出する,
すなわち,η=(W+Q)/Qを算出しているものであり,タービ121
ンSの出力について熱効率を算出したものとはいえない。
,【】,,また段落0039に記載された実施例においても式46では
,復水温度として10°Cなる値を使用して熱効率ηを算出しているがs
当該「10°C」なる値は,図9において熱交換器7の下流側の温度で
あり,上記段落【0032】に記載された実施例と同様の算出方法によ
り熱効率を算出するものである。これについても上記の実施例と同様,
なぜこのような算出方法により熱効率ηを算出できるものか明らかでs
はない。
(エ)成績係数に基づく熱効率の算出について
まず,本願明細書(甲1)の段落【0033】の記載によれば,図5
に示される実施例(以下「図5実施例」という)において,冷凍成績。
係数は「ε=5.4+1=6.4…(式35」とされている。図5実h)
施例について当該「ε」を使用することについて特に説明はない。しh
,【】(),かし同様の値は段落0006に式11として記載されており
図5実施例について図1に記載された冷凍機(以下「図1冷凍機」とい
う)について算出した値を使用しているものと推測される。。
しかし,図5実施例において図1冷凍機が組み込まれているものとは
考えにくく,なぜ,図1冷凍機について算出した成績係数の値を図5実
施例について適用できるのか明らかでない。
すなわち,図5実施例も熱交換器を2つ(熱交換器7及び8)備える
ものである点では図1冷凍機と類似するが,図1冷凍機は膨張弁Vの上
流側と下流側にそれぞれ動作温度の異なる2つの熱交換器(高温側で熱
を放出する熱交換器7及び低温側で熱を吸収する熱交換器8)を備える
ものであるのに対し,図5実施例においては,膨張弁Vを代替すると解
される「水車K」の上流側と下流側とを,各々一つの動作温度におかれ
ていると考えられる熱交換器7の放熱側と吸熱側とに接続され,さらに
熱交換器7を出た作動流体は,その後熱交換器8に導かれ外部から熱を
吸収するものとされている。
図5実施例において「水車K」の上流側と下流側とが熱交換器7の,
放熱側と吸熱側に接続されているものであるから,これを通過する作動
流体は,右側の流体通路では「放熱」し,左側の流体通路では「吸熱」
。,,するものとされているこれに対し図1冷凍機の備える熱交換器7は
高温の作動流体が外部に対し熱量を「放熱」のみ行うものであり,図5
実施例の備える熱交換器7とは熱移動の状態が異なるものである。
このような図5実施例における作動流体の流通経路及び流通経路にお
ける動作温度や熱移動の状態の相違を考慮すると,熱交換器7の役割が
図1冷凍機と図5実施例とにおいて同列に論ずることができるものとは
考え難く,図1冷凍機について算出した成績係数の値をそのまま図5実
施例の出力等の算出に適用できる理由が明らかでない。
また,段落【0033】では「W=ε×η=6.4×0.28≒1.1hS
7…(式36」としてタービン出力を算出しているが,この点につい)
ては,前記(イ)のとおり,このような計算によりタービンSの出力を算
出することができるとする根拠が明らかでない。
以上のようにタービンSの出力の根拠が明らかでないので,当該ター
ビンSの出力に基づいて算出されている熱クロス量Q及び外部よりの3
熱吸収量Qについても,その算出根拠が明らかとはいえない。4
したがって,図5実施例における出力,熱効率等の算出方法及び算出
,。値については熱力学的にみて合理的な根拠を有するものとはいえない
ウ以上のとおり,本願明細書及び図面の記載からは,本願各請求項に係る
発明が,いかにして効率100%というような高効率の熱サイクル装置と
なるものか,明細書に記載された数式・数値等を含め理解ができないもの
であり,本願明細書及び図面は,当業者が本願各請求項に係る発明を実施
ができる程度に記載されているものとはいえないから,本件出願は特許法
36条4項1号に規定する要件を満たしていない。
(2)本願明細書の文献的利用につき
,,原告は本願の発明の詳細な説明に記載された数式化・数値化については
画期的な理念を提案するものであり,文献的な利用価値が高いので特許され
るべきであると主張しているようであるが,特許法36条4項1号の趣旨は
前記のとおりであり,原告の主張するようなことを規定するものではないの
で,原告の主張は理由がない。
第4当裁判所の判断
1請求原因(1)(特許庁における手続の経緯,(2)(発明の内容,(3)(審決))
の内容)の各事実は,当事者間に争いがない。
2本件特許出願は特許法36条4項1号の要件(実施可能要件)を具備してい
るか
(1)本件補正後の特許請求の範囲請求項1本願発明は前記第31(2)【】(),,
のとおりである。
(2)また,上記補正後の【発明の詳細な説明】には,次の記載がある(引用
は甲1〔平成17年2月25日付け補正〕による。。)
ア技術分野
・「本発明は,タービンにより動力を取出す熱機関並びに熱機関と冷凍機を組合せ
た熱サイクル装置に関する。特に本発明は,熱機関及び冷凍機を組合せタービン出
口蒸気の廃熱をタービン入口側の作動流体へ移動(熱クロス)させ熱サイクル装置
の熱効率を向上させる技術に関する(段落【0001)。」】
イ背景技術
蒸気タービンを含む熱サイクル装置の効率を向上させるため、従来、廃熱を・「
利用する多数の発明がなされてきた。例えば、特許文献1は、高温排気ガスの熱エ
ネルギーを回収する発電設備を開示する。この発電設備は、高温排ガス流路の上流
側に廃熱ボイラ、下流側に流体予熱器をそれぞれ配置する。廃熱ボイラで発生され
た蒸気で蒸気タービンを駆動する。流体予熱器により予熱された低沸点特殊流体が
蒸気タービンの排気を利用する流体蒸発器により加熱蒸発され特殊流体タービンを
駆動する。蒸気タービンの出力及び特殊流体タービンの出力が合成され、発電機を
駆動し電力を発生する。低沸点特殊流体は、特殊流体タービンから排出された後、
熱交換器で凝縮液体とされポンプにより加圧され、熱交換器で予熱され、その後、
流体予熱器へ循環される。
【特許文献1】特開昭54−27640号公報(段落【0002)」】
・「図1は,従来の冷凍機Jの構成要素を示す配置図であり,圧縮機Cで昇圧され
た冷媒ガスFgが熱交換器(凝縮器)7で流体Zに熱Qを与えて凝縮された後,1h
膨張弁Vで膨張され,温度低下すると共に熱交換器8で流体Zから熱Qを吸収し2b
て流体Zを冷却し,その後,圧縮機Cへ戻され,循環される。図1の冷凍機にお2
いて,熱計算の検討を,冷媒がアンモニアである冷凍機について行う。簡略化のた
め機械的損失がないとする。冷媒の温度は,圧縮機C出口で110°C(T,凝3

縮器7の出口で,38°C(T,蒸発器V出口で,−10°C(T)である。21

それ故,逆カルノーサイクルでの冷凍機の成績係数(理論的に最大の成績係数)ε
を求めると,εは,
ε=T/(T−T)121
[()][()]()。=273.15+−10/38−−10≒5.4…式10である
図1の冷凍機において,圧縮機Cの入力L(仕事)を1とした場合,ヒートポンプ
の成績係数εは,冷凍機成績係数+1であるから,h
ε=5.4+1=6.4…(式11)である(段落【0006)h
。」】
・【図1(従来の冷凍機の構成要素を示す配置図)】
ウ発明が解決しようとする課題
・「本発明は,熱サイクル装置において,蒸気タービン出口蒸気の廃熱を蒸気ター
ビン入口の作動流体へ移動(熱クロス)させることによりタービン自体の熱効率が
小さい場合にも,熱サイクル装置の熱効率を高い値とすることを目的とする。本発
明は,また蒸気タービン並びに蒸気タービンと冷凍機を組合せた熱サイクル装置の
熱効率を向上させることを目的とする。より詳しくは,本発明は,蒸気タービン出
口蒸気の廃熱を蒸気タービン入口の作動流体へ移動(熱クロス)させ熱サイクル装
置の熱効率を向上させることを目的とする。本発明の他の目的は,熱ポンプを用い
て廃熱又は自然界の熱を作動流体へ移動させ熱サイクル装置の熱効率を向上させる
ことを目的とする。本発明の他の目的は,冷凍機の凝縮器における外部放熱量を抑
制し,熱クロスを行わずに抑制された熱量を動力として取り出すことにある(段。」
落【0010)】
・「本発明の別の目的は,ランキンサイクルの低温廃熱を冷凍機により高温熱出力
に変換することにある。本発明の更に別の目的は,ランキンサイクルにおけるター
ビン出口に設置した凝縮器(冷却器)の冷熱源として冷凍機の冷凍出力を用いると
共に,冷凍機をヒートポンプとして作用させ,凝縮器の放出熱を昇温し外部へ熱出
力として供給可能な熱サイクル装置を提供することである。本発明は,冷凍サイク
ルを用いて熱クロスQ/Qを大きくし,31
η=η/(1−Q/Q)…(式32)において,η=1…(式27)を実現すS31
るか,又はηをできるだけ1に近づけることである。本発明において,冷凍サイク
ルは,冷媒を圧縮機で圧縮する従来の冷凍サイクルにおいて凝縮器の前にタービン
を配置したものであり,凝縮器は,蒸気タービンサイクルの復水器に相当する。本
,。」(【】)発明のその他の目的は以下の説明において明らかにされる段落0011
エ課題を解決するための手段
・「図2の熱サイクル装置において,復水器Yの廃熱Qの一部又は全部Qを給123
水予熱器Yによりボイラ入口の復水へ移動させると共に,ボイラの入熱量を復水2
,(),器Yから移動される熱量Qと同じだけ減少させる即ちQ−Qとする場合1313
図2の熱サイクル装置の熱効率η,即ち熱サイクル装置の入熱量に対するタービン
Sで発生される仕事Wの割合は,仕事Wが
W=Q−Q…(式22)であり,熱サイクル装置の入熱量が(Q−Q)である1213
から,
η=W/(Q−Q)=(Q−Q)/(Q−Q)…(式23)である(段落131213
。」
【0012)】
・【図2(従来のタービンを含む熱機関,すなわちランキンサイクルを行う熱サ】
イクル装置の基礎的な構成要素を示す配置図)
「,,,・図2の熱サイクル装置において復水器Yの廃熱Qを全く利用しない即ち12
Q=0の場合は,上述式23は,3
η=(Q−Q)/Q…(式24)となる。121
0≦Q≦Q…(式18)の場合は,32
η=(Q−Q)/(Q−Q)…(式25)である。式25の場合,分母が−Q1213
だけ小さい分だけηの値は,大きくなる。また,復水器の廃熱の全部Qをポンプ32
Pの前又は後の復水へ移動させる場合は,Q=Q…(式26)であるから,23
η=1…(式27)となる」(段落【0013】)。
・「図2の熱サイクル装置において,0≦Q≦Q…(式18)の場合の熱サイク32
ル装置の熱効率ηは,上記の通り,
η=(Q−Q)/(Q−Q)…(式28)であり,分母及び分子をQで割る12131
と,
η=[(Q−Q)/Q]/[Q−Q)/Q]…(式29)となる。これを変121131

形すると,
η=[Q−Q)/Q]/[1−(Q/Q]…(式30)であり,これに()12131
η=(Q−Q)/Q…(式21)を挿入すると,S121
η=η/(1−Q/Q)…(式32)となる。本発明は,廃熱等の利用価値のS31
低い熱をも熱ポンプを用いて熱サイクル装置内に取り入れ,熱サイクル装置内のタ
ービンにより動力出力を取り出す。本発明の熱サイクル装置は,タービンにより高
効率で動力を取り出すため,熱クロスを用いる。復水器Yの廃熱Qを全部利用す12
る場合,式27によりη=1である」(段落【0014】)。
・「上記式32からわかるように,タービンSの熱効率η,及びポンプPの前又S
は後の復水へ復水器Yの廃熱から移動させる熱量Qが決まれば,熱サイクル装置13
の熱効率ηが決まる。Qが大きくなりQに近づくに伴い,式30の分母の(1−31
Q/Q)は小さくなるから,ηは,大きくなる。冷凍サイクル以外の熱サイクル31
では,熱クロス率Q/Qを大きくすることは困難である。熱移動(熱クロス)さ31
せる為の高熱源と低熱源の温度差を大きくとれないからである。また冷凍サイクル
以外の熱サイクルでは式27を実現できない」(段落【0015】)。
・「本発明の第1の特徴の熱サイクル装置は,圧縮機,タービン,熱交換器及びポ
ンプを含むこの熱サイクル装置において圧縮機Cで圧縮された作動ガス冷。,()(
媒ガス)が,タービン(S)を駆動し仕事(W)を出力した後,第1の熱交換器1
(7)の放熱側を通り冷却され,その後にポンプ(P)により昇圧されて高圧作動
液とされ,この高圧作動液が反動水車(K)を駆動し仕事(W)を出力すると共2
に膨張され,一部が蒸発する。残余の液は,第1の熱交換器(7)の吸熱側及び第
2の熱交換器(8)を通り加熱され蒸発した後,少々過熱気味で圧縮機Cへ導入さ
れる(図3」(段落【0016】))。
・「好適には,反動水車(K)の仕事(W)とポンプ(P)の消費動力(L)が22
ほぼ相殺する大きさであり,圧縮機の駆動モータ(M,タービン発電機(G,11
))
ポンプ駆動モータ(M,水車駆動発電機(G)が電気的に結合される(図3,22

図5。また第2の熱交換器(8)は,ランキンサイクルのタービン排出蒸気の廃)
熱を作動ガスへ移動させる復水器とすることができる(図6。また第2の熱交換)
器(8)は,燃料電池の廃熱を前記作動ガスへ移動させる熱交換器とすることがで
きる(図14」(段落【0017】))。
・「本発明の第1の特徴の熱サイクル装置において,反動水車(K)を単に膨張弁
(V)とすることができる(図4。この場合,ポンプ(P)により昇圧された高)
圧作動液は膨張弁(V)を通り膨張され,一部が蒸発し作動ガスとされる。残余の
,()(),液は第1の熱交換器7及び第2の熱交換器8を通り加熱され蒸発した後
少々過熱気味で圧縮機Cへ導入される(図4。図3及び図4の装置の熱サイクル)
が本発明の基本サイクルであり,図4の熱サイクルは図3の熱サイクルを簡略化し
たものである」(段落【0018】)。
S1
・「本発明の第1の特徴の熱サイクル装置において,ηをタービンの熱効率,Q
をタービン入口側の作動流体へ伝達される入熱量,Qをタービン出口側の作動流2
体よりの出熱量,Qをタービン出口側の作動流体からタービン入口側の作動流体3
へ移動(熱クロス)される熱量であるとすると,
熱サイクル装置の熱効率ηが,
η=(Q−Q)/(Q−Q)…(式28)1213
=η/(1−Q/Q)…(式32)であり,S31
Q=(1∼0.5)Qである。Qが大きくなればなるほど式28又は式32に323
,。」(【】)おいて分母が小さくなり熱サイクル装置の熱効率ηが大きい段落0019
・「図3は,本発明の第1実施例の熱サイクル装置の配置図であり,この熱サイク
ル装置は,圧縮機C,凝縮器を含む冷凍機にタービンSその他を挿入した構成を
有する。圧縮機Cで圧縮された作動流体(冷媒ガス)は,タービンSを駆動し仕
事Wを出力した後,熱交換器7(放熱側)において冷却液化される。熱交換器1
7の出口に接続されるポンプPは,作動液を吸引し,タービンSの背圧を下げ,
タービン出力Wを増大させると共に作動液の圧力を上昇させる(段落【001
。」
27)】
・【図3(本発明の第1実施例の熱サイクル装置の配置図)】
・「昇圧された作動液は,反動水車Kを駆動し仕事Wを出力すると共に,膨張弁2
の作用を行う反動水車Kのノズルにより膨張され蒸発し作動ガス(冷媒ガス)と
なる。作動ガスは,熱交換器7(吸熱側)において加熱され,更に熱交換器8で
加熱された後,圧縮機Cへ導入される(段落【0028)。」】
・「図3の熱サイクル装置において,熱交換器7は,タービンSの排気の熱を放出
させ,水車K出口の作動ガスを加熱する作用を行う。熱交換器7において,ター
ビンSの排気は冷却され凝縮液化する。図3の熱交換器7は,タービンSの排気
を冷却することによりタービンSの入口と出口の作動流体の温度差を大きくし,
タービン出力を大きくする。タービンの排気からの廃熱Qは,反動水車Kの下1
流の作動流体に移動(熱クロス)される(段落【0029)。」】
・「図3の熱サイクル装置において,熱交換器7における移動熱量をQ,熱交換3
器8における外部からの吸熱量をQとすると,熱サイクル装置の出力(タービ4
ンSの出力)は(L+Q)…(式33)となる。熱量Qは,タービンS出口,143
側の作動流体から圧縮機C入口側の作動流体へ移動され,熱クロスされる熱量で
ある(段落【0031)。」】
・「図5は,本発明の第1実施例の熱サイクル装置における熱量の例を示す説明図
,,であり圧縮機Cの入力Lを1単位投入した(L=1)場合のタービン出力W111
熱交換器7出口における熱クロスQ,熱交換器8における外部からの取入れ熱3
量Qを表示する。ヒートポンプの成績係数εは,冷凍機成績係数+1であるか4h
ら,
ε=54+1=64…(式35)である。タービンSの出力Wは,h1
..
W=ε×η=64×028≒17…(式36)である。熱交換器7出口にお1hS
...
ける熱クロス量Qは,3
Q=64−17=47…(式37)である。熱交換器8における外部よりの熱3
...
吸収量Qは,4
Q=冷凍機の成績係数−Q…(式38)であるから,43
Q=54−47=07…(式39)である(段落【0033)4
...。」】
・【図5(本発明の第1実施例の熱サイクル装置の熱量の例を示す説明図)】
(3)以上によれば,本願発明は,①蒸気タービン及び蒸気タービンと冷凍機
を組合せた熱サイクル装置において,蒸気タービン出口蒸気の廃熱を蒸気タ
ービン入口の作動流体へ移動(熱クロス)させることによりタービン自体の
熱効率が小さい場合にも,熱サイクル装置の熱効率を高い値とすること,②
熱ポンプを用いて廃熱又は自然界の熱を作動流体へ移動させ熱サイクル装置
の熱効率を向上させること,③ランキンサイクルの低温廃熱を冷凍機により
高温熱出力に変換すること,④冷凍サイクルを用いて熱クロスQ/Qを大31
きくし,η=η/(1−Q/Q)…(式32)において,η=1…(式S31
27)を実現するか,又はηをできるだけ1に近づけること,を目的とする
ものである。
Sこのうち上記④の目的についてみると,ηは熱サイクル装置の熱効率,η
はタービンの熱効率をそれぞれ表すものであり,段落【0019】の式28
によれば,ηは外部から熱サイクル装置に入力される熱(Q−Q)に対す13
るタービンの仕事(Q−Q)の割合を示すものであると理解することがで12
きるから,上記熱サイクル装置の熱効率η=1とは,
・熱サイクル装置に入力される熱(Q−Q)をすべてタービンの仕事13
に変換すること
・Q=Q,すなわち,Qのすべてをタービン入口側の作動流体へ移232
動(熱クロス)すること
を意味することになり,熱サイクル装置の外部に熱を排出することなく,外
部から入力される熱(Q−Q)をすべて仕事に変換することを意味するも13
のである。
そうすると,本願発明における上記④における「η=1…(式27)を実
現するか,又はηをできるだけ1に近づけること」との目的とは,熱サイク
ル装置の外部に熱を排出することなく,入力される熱をすべて又はこれに準
じる程度の高効率で仕事に変換することを意図するものであると解される。
そして,本願の請求項1に記載された熱サイクル装置の構成は「圧縮機,
(C)で圧縮された作動ガスが,タービン(S)を駆動し仕事(W)を出1
力した後,第1の熱交換器(7)の放熱側を通り冷却され,その後にポンプ
(P)により昇圧されて高圧作動液とされ,該高圧作動液が反動水車(K)
を駆動し仕事(W)を出力すると共に膨張され蒸発し作動ガスとされ,該2
作動ガスが,第1の熱交換器(7)及び第2の熱交換器(8)を通り加熱さ
,()」,れた後圧縮機Cへ導入される熱サイクル装置というものであるから
本願発明は,要するに,上記構成により特定される熱サイクル装置により,
熱効率を高い値にすること,より具体的には,タービン出口側の作動流体か
(),らの出熱量Qのすべてをタービン入口側の作動流体へ移動熱クロスし2
熱サイクル装置の外部に熱を排出することなく外部からの入力される熱Q,(
−Q)をすべて,又はこれに準じる程度の高効率で仕事に変換する,とい13
うものである。
(4)原告の主張に対する判断
ア取消事由1(特許法36条4項1号適用上の違法)の有無
(ア)本願発明の目的は,前記のとおり,一定の構成を有する熱サイクル装
置をもって外部から入力される熱をすべて又はこれに準じる程度の高効
率で仕事に変換しようというものである。
ところで,熱をすべて動力に変換することは不可能であり(これを実
現する機関はいわゆる第2種の永久機関である,技術常識である(い)
わゆる熱力学の第2法則。なお,原告が,本願発明はカルノーサイク)
ルの変換効率を満足した上でこれを実現するものである旨主張するの
も,この技術常識を論理的前提とするものである。
したがって,このような技術常識に照らせば,一般的な熱サイクル装
置をもってしては,当業者(その発明の属する技術の分野における通常
の知識を有する者)において熱をすべて動力に変換することが不可能で
あることは明らかである。
(イ)そこで,本願発明における熱サイクル装置がいかなる特殊な方法によ
り熱をすべて又はこれに準じる程度の高効率で動力に変換することを可
能としているのか,本願明細書の記載を基に検討する。
a前記に摘示した本願明細書の段落【0016【0019【00】,】,
27】∼【0029【0031】の記載によれば,本願発明は,圧】,
,,,縮機タービン熱交換器及びポンプを含む熱サイクル装置であって
圧縮機(C)で圧縮された作動ガス(冷媒ガス)が,タービン(S)
を駆動し仕事(W)を出力した後,第1の熱交換器(7)の放熱側1
を通り冷却され,その後にポンプ(P)により昇圧されて高圧作動液
とされ,この高圧作動液が反動水車(K)を駆動し仕事(W)を出2
力すると共に膨張され,一部が蒸発し,残余の液は,第1の熱交換器
()(),7の吸熱側及び第2の熱交換器8を通り加熱され蒸発した後
少々過熱気味で圧縮機Cへ導入されるもので,第1の熱交換器(7)
において,タービンS出口側の作動流体の熱量Qを圧縮機C入口側2
の作動流体へ熱移動(熱クロス)することで,入力される熱を仕事に
変換するものである,と説明されている。
ここで,上記装置において熱をすべて又はこれに準じる程度の高効
率で動力に変換することの可否についてみると,現実には,熱力学の
第2法則により,入力される熱をすべて仕事に変換することはできな
いから,何らかの特殊な手段を講じなければ,タービンS出口側の作
()動流体の熱量を圧縮機C入口側の作動流体へすべて熱移動熱クロス
した上で(熱サイクル装置の外部に熱を排出しないで)動作させるこ
とはできない。それにもかかわらず,本願明細書には,単に作動流体
の熱量Qを圧縮機C入口側の作動流体へ熱移動(熱クロス)するも2
のとして,熱サイクル装置外への排熱を予定しておらず,また上記の
ような特殊な手段に関する記載も認められないから,上記装置は,熱
をすべて又は一定の効率で動力に変換する以前に,そもそも作動しな
いといわざるを得ない。
そうすると,本願発明の構成によりいかにして熱サイクル装置の外
部に熱を排出することなく,外部からの入力される熱(Q−Q)を13
すべて又はこれに準じる程度の高効率で仕事に変換するのかについ
て,具体的な説明がなされていないということになる。
また,本願明細書の段落【0033】の記載及び図5によれば,第
1の熱交換器7において,タービンS出口側の作動流体の熱量を圧縮
機C入口側の作動流体へすべて熱移動(熱クロス・Q=Q)してお23
り,これにより熱サイクル装置に外部から入力される熱(Q)をす4
。べて仕事Wに変換しようとするものであると理解することができる1
しかし,これらの記載は,タービンS出口側の作動流体の熱量を圧
縮機C入口側の作動流体へすべて熱移動(熱クロス)するとの仮定の
下,入力される熱量,出力される熱量,移動する熱量について当ては
めたものにすぎない。上記のとおり,現実には,熱力学の第2法則に
より,何らかの特殊な手段を講じなければ,タービンS出口側の作動
流体の熱量を圧縮機C入口側の作動流体へすべて熱移動(熱クロス)
した上で動作させることはできないと考えられるにもかかわらず,図
5に開示された熱サイクル装置にそれを実現し得るような特殊な手段
は認められない。
なお,段落【0033】の式36は,タービン効率ηとヒートポS
ンプの成績係数εの積を用いることにより,タービン出力Wを導きh1
出しているものと解されるところ,およそ性質の異なる指標であるヒ
ートポンプの成績係数εを,タービン効率ηに単に乗ずることによhS
,,りなぜタービン出力を導出できるのか熱力学的に明らかでないから
本願明細書の発明の詳細な説明の記載上,このような計算方法が熱力
学の技術常識に適合した適切なものであると当業者が理解できる程度
の説明がなされているとはいえない。
以上によれば,本願明細書の発明の詳細な説明において,入力され
る熱をすべて又はこれに準じる程度の高効率で仕事に変換する原理に
ついて当業者が理解できる程度に理論的に説明されているとは認めら
れない。
bまた,実験的観点から本願発明の原理が説明されているかについて
みると,本願明細書の段落【0033】では,式36に基づき,圧縮
(),機Cに入力Lを1単位投入した場合L=1のタービン出力W111
第1の熱交換器7出口における熱クロスQ,第2の熱交換器8にお3
ける外部からの取入れ熱量Qを導出する。4
この点,本願明細書の段落【0006】における「…ヒートポン,
プの成績係数εは,冷凍機成績係数+1であるから,ε=5.4+hh
1=6.4…(式11)である」との記載に鑑みれば,式36に導入。
したヒートポンプの成績係数の具体的数値は,図5に係る装置を実際
に作動させたときの具体的数値ではなく,図1に係る冷凍サイクル装
置における具体的数値と理解することができる。
しかし,図5に係る実施例も熱交換器を2つ(熱交換器7及び8)
備えるものである点で図1に係る冷凍サイクル装置と類似するが図1,
に係る冷凍サイクル装置は膨張弁Vの上流側と下流側にそれぞれ動作
温度の異なる2つの熱交換器(高温側で熱を放出する熱交換器7及び
低温側で熱を吸収する熱交換器8)を備えるものであるのに対し,図
,「」5に係る実施例においては膨張弁Vを代替すると解される水車K
の上流側と下流側とを熱交換器7の放熱側と吸熱側とに接続され,さ
らに熱交換器7を出た作動流体は,その後熱交換器8に導かれ外部か
ら熱を吸収するものである。図5に係る実施例において「水車K」,
の上流側と下流側とが熱交換器7の放熱側と吸熱側に接続されている
ものであるからこれを通過する作動流体は右側の流体通路では放,,「
熱」し,左側の流体通路では「吸熱」するものである。これに対し,
図1に係る冷凍サイクル装置の備える熱交換器7は,高温の作動流体
が外部に対し熱量を「放熱」のみ行うものであり,図5に係る実施例
の備える熱交換器7とは熱移動の状態が異なるものであり,両者を同
列に論じることはできない。
そうすると,上記式36は,前提の異なる装置における具体的数値
をそのまま利用する点において妥当ではなく,実験的にみても本願発
明の原理が説明されているということはできない。
c以上によれば,本願明細書の発明の詳細な説明は,外部から入力さ
れる熱をすべて又はこれに準じる程度の高効率で仕事に変換する原理
に関し,理論的にも実験的にも,当業者が実施をすることができる程
度に明確かつ十分に記載されたものであるとはいえない。
(ウ)a以上に対し原告は,本願発明は,熱を100%の変換効率で動力に
変換すること,タービン効率と冷凍機の成績係数により熱効率を数式
化・数値化したこと等に技術的特徴があり,これらの点において文献
的な利用価値が高く,高度な技術的思想であるから,これにより改良
発明の創作が促進され,技術の累積的進歩による産業の発展を図るこ
とが可能となるにもかかわらず,審決が,相対的に利用価値が低い本
願発明の実施上の利用に関する記載にのみ36条4項を適用して特許
,「」()性を否定したことは…技術的思想のうち高度のもの特許法2条
である発明の「…保護及び利用を図ることにより,発明を奨励し,も
」(),って産業の発達に寄与する同1条ことを目的とする特許法1条
2条に違反する旨主張する。
しかし,特許法等の定める日本の特許制度は,発明をした者にその
実施につき独占的権利を付与する代わりにその内容を社会に公開する
というものであるから,その制度の趣旨に照らして考えると,その技
術内容は,当該の技術分野における通常の知識を有する者(当業者)
が反復実施して目的とする技術効果を挙げることができる程度にまで
具体的・客観的なものとして構成されていなければならないものと解
されるところ(最高裁昭和52年10月13日第一小法廷判決・民集
31巻6号805頁参照,前記のとおり,本願発明は技術常識に照)
らして実現不可能とされる事項を内容とするにもかかわらず,本願明
細書の発明の詳細な説明は,理論的・実験的に,当業者がこれを実施
することができる程度に明確かつ十分に記載されたものであるといえ
ないのであるから,当業者が本願発明を理論的又は実験的基礎として
新たな発明をすることもまた,不可能というべきである。
したがって,これを前提とする原告の上記主張は採用することがで
きない。
bまた原告は,本願発明を基礎に他者によって発明がなされた場合,
当該発明は本願発明の技術思想を実用化した点で本願発明を実施上利
用したものに当たるところ,文献的に利用価値が高く高度な本願発明
が特許を受けることができないのに本願発明の実施上の利用に当たる
後の発明が特許を受けることは衡平を欠くとも主張する。
しかし,いかなる技術思想に特許権を付与するかは特許法等による
立法政策の問題であるところ,日本特許法の解釈として上記のとおり
原告の技術思想を特許権として保護することはできないのであるか
ら,仮に上記技術思想の範囲内で形式的には本願発明に類する発明が
将来なされたとしても,その理由をもって本願発明につき特許権を付
与しなければならない理由となるものではない。したがって,原告の
上記主張も採用することができない。
イ取消事由2(適用違憲)の有無
原告の主張は,要するに,本願発明の文献的な利用度の大きさないし高
度性に鑑みれば,将来本願発明を基礎に第三者が発明をした場合,これを
原告が争えないことは原告の裁判を受ける権利を害することになるから,
このような争訟を可能とするため,将来あり得る発明との関係で本願発明
に高度性が認められる限度で特許査定をする旨の条件を付すべきであっ
,,。てそのような条件を付さないことは憲法に違反するというものである
しかし,上記のとおり原告が主張する文献的な利用価値ないし高度性自
体,これを肯定することができないのであるから,原告主張の憲法問題が
生ずる余地はなく,原告の上記主張は前提を欠くというべきである。
その他,本件記録を精査しても,審決に原告の裁判を受ける権利の侵害
その他の憲法違反があったことを認めるべき事情は存しない。
したがって,原告の上記主張は採用することができない。
3結論
以上によれば,原告主張の取消事由はすべて理由がない。
よって,原告の請求を棄却することとして,主文のとおり判決する。
知的財産高等裁判所第2部
裁判長裁判官中野哲弘
裁判官森義之
裁判官澁谷勝海

戻る



採用情報


弁護士 求人 採用
弁護士募集(経験者 司法修習生)
激動の時代に
今後の弁護士業界はどうなっていくのでしょうか。 もはや、東京では弁護士が過剰であり、すでに仕事がない弁護士が多数います。
ベテランで優秀な弁護士も、営業が苦手な先生は食べていけない、そういう時代が既に到来しています。
「コツコツ真面目に仕事をすれば、お客が来る。」といった考え方は残念ながら通用しません。
仕事がない弁護士は無力です。
弁護士は仕事がなければ経験もできず、能力も発揮できないからです。
ではどうしたらよいのでしょうか。
答えは、弁護士業もサービス業であるという原点に立ち返ることです。
我々は、クライアントの信頼に応えることが最重要と考え、そのために努力していきたいと思います。 弁護士数の増加、市民のニーズの多様化に応えるべく、従来の法律事務所と違ったアプローチを模索しております。
今まで培ったノウハウを共有し、さらなる発展をともに目指したいと思います。
興味がおありの弁護士の方、司法修習生の方、お気軽にご連絡下さい。 事務所を見学頂き、ゆっくりお話ししましょう。

応募資格
司法修習生
すでに経験を有する弁護士
なお、地方での勤務を希望する先生も歓迎します。
また、勤務弁護士ではなく、経費共同も可能です。

学歴、年齢、性別、成績等で評価はしません。
従いまして、司法試験での成績、司法研修所での成績等の書類は不要です。

詳細は、面談の上、決定させてください。

独立支援
独立を考えている弁護士を支援します。
条件は以下のとおりです。
お気軽にお問い合わせ下さい。
◎1年目の経費無料(場所代、コピー代、ファックス代等)
◎秘書等の支援可能
◎事務所の名称は自由に選択可能
◎業務に関する質問等可能
◎事務所事件の共同受任可

応募方法
メールまたはお電話でご連絡ください。
残り応募人数(2019年5月1日現在)
採用は2名
独立支援は3名

連絡先
〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
ITJ法律事務所 採用担当宛
email:[email protected]

71期修習生 72期修習生 求人
修習生の事務所訪問歓迎しております。

ITJではアルバイトを募集しております。
職種 事務職
時給 当社規定による
勤務地 〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
その他 明るく楽しい職場です。
シフトは週40時間以上
ロースクール生歓迎
経験不問です。

応募方法
写真付きの履歴書を以下の住所までお送り下さい。
履歴書の返送はいたしませんのであしからずご了承下さい。
〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
ITJ法律事務所
[email protected]
採用担当宛