弁護士法人ITJ法律事務所

裁判例


戻る

平成21年3月26日判決言渡
平成20年(行ケ)第10253号審決取消請求事件
口頭弁論終結日平成21年3月19日
判決
原告サイマー,インコーポレーテッド
訴訟代理人弁護士松尾和子
訴訟代理人弁理士大塚文昭
同須田洋之
同谷口信行
訴訟代理人弁護士奥村直樹
同水沼淳
被告特許庁長官
指定代理人岩本勉
同服部秀男
同岩崎伸二
同酒井福造
主文
1原告の請求を棄却する。
2訴訟費用は原告の負担とする。
3この判決に対する上告及び上告受理申立てのための付加期間を30
日と定める。
事実及び理由
第1請求
特許庁が不服2006−6182号事件について平成20年2月25日にし
た審決を取り消す。
第2事案の概要
1本件は,原告が,名称を「超狭帯域2室式高反復率のガス放電型レーザシス
テム」とする発明につき特許出願をしたところ,拒絶査定を受けたので,これ
を不服として審判請求をしたが,特許庁から請求不成立の審決を受けたことか
ら,その取消しを求めた事案である。
2争点は,上記本願が,下記引用発明との関係で進歩性を有するか(特許法2
9条2項,である。)

特開2000−58944号公報(発明の名称「高信頼性・モジュラ製
造高品質狭帯域高繰り返しレ―トF2レ―ザ,出願人サイマーインコー」
ポレイテッド,公開日平成12年2月25日。以下,この刊行物を「引用
刊行物」といい,そこに記載された発明を「引用発明」という,甲3)
第3当事者の主張
1請求原因
()特許庁における手続の経緯1
,〔〕〔〕原告は2000年平成12年10月6日・2001年平成13年
1月23日・同年1月29日・同年2月27日・同年4月13日・同年5月
3日・同年5月11日・同年8月29日の優先権(いずれも米国)を主張し
て,平成13年10月9日,名称を「超狭帯域2室式高反復率のガス放電型
レーザシステム」とする発明について特許出願(特願2001−31198
2号,請求項の数51,以下「本願」という。公開公報〔特開2002−1
98604号〕は甲1)をし,平成17年1月12日付けで特許請求の範囲
の記載を変更することを内容とする手続補正(以下「本件補正」という。請
求項の数50。甲2)をしたが,拒絶査定を受けたので,不服の審判請求を
した。
特許庁は,同請求を不服2006−6182号事件として審理した上,平
成20年2月25日「本件審判の請求は,成り立たない」との審決(出訴,。
期間として90日を附加)をし,その謄本は平成20年3月10日原告に送
達された。
()発明の内容2
本件補正後の請求項は,前記のとおり1ないし50から成るが,そのうち
請求項1に係る発明(以下「本願発明」という)の内容は,以下のとおり。
である(下線は判決で付記,理由は後述。。)
「超狭帯域2室式高反復率のガス放電型レーザシステムであって,
A)1)a)第1のレーザガスと,
b)第1の放電領域を形成する,各々細長形状で間隔を空け
て設けられた第1の電極対とを備える第1の放電室,
2)毎秒4000パルス又はそれ以上の範囲の反復率で動作する
時に,各パルスの直後に,放電によって生成されたイオンの実
質的に全てを,次のパルスに先立ち前記第1の放電領域から除
去し得る前記第1の放電領域における前記第1のレーザガスの
ガス速度を作り出す第1のファン,
3)前記第1のレーザガスから,少なくとも16kwの熱エネル
ギーを除去することができる第1の熱交換装置,
4)前記第1の放電室で生成された光パルスのスペクトル帯域幅
を狭小化するための線幅狭小化ユニットを備える第1のレーザ
ユニットと,
B)1)a)第2のレーザガスと,
b)第2の放電領域を形成する,各々細長形状で間隔を空け
て設けられた第2の電極対とを備える第2の放電室,
2)毎秒4000パルス又はそれ以上の範囲の反復率で動作する
時に,各パルスの直後に,放電によって生成されたイオンの実
質的に全てを,次のパルスに先立ち前記第2の放電領域から除
去し得る前記第2の放電領域における前記第2のレーザガスの
ガス速度を作り出す第2のファン,及び
3)前記第2のレーザガスから,少なくとも16kwの熱エネル
ギーを除去することができる第2の熱交換装置とを備える第2
のレーザユニットと,
C)約4,000パルスの反復率で約5mJの範囲内に正確に制御さ
れたパルスエネルギーを持つレーザパルスを生成し得る電気パルス
を,前記第1の電極対と前記第2の電極対に供給するようにしたパ
ルス電力装置と,
D)前記2室式のレーザシステムによって生成されたレーザ出力パル
スのパルスエネルギー,波長,及び帯域幅を測定するとともに,フ
ィードバック制御方式で前記レーザ出力パルスを制御するための
レーザビーム測定・制御装置とを備え,
前記第1のレーザユニットは,主発振器として構成されるととも
に,前記第2のレーザユニットは,電力増幅器として構成されるこ
とを特徴とするレーザシステム」。
()審決の内容3
ア審決の内容は,別添審決写しのとおりである。
その理由の要点は,本願発明は前記引用発明及び周知技術に基づき容易
に発明をすることができたから,特許法29条2項により特許を受けるこ
とができない,としたものである。
イなお審決は,上記判断をするに当たり,本願発明の下線部分(電力増「
幅器)を「パワー増幅器」と認定するとともに引用発明の内容を以下の」
とおり認定し,本願発明と引用発明との一致点及び相違点を次のとおりと
した。
[引用発明の内容]
「非常に狭帯域の2室式の高繰り返し数エキシマレーザであって,
第1のレーザガスと,第1の放電領域を形成する,2つの細長い電
極を間隔を空けて設けた第1の電極対とを備える第1のレーザチャン
バと,
1000乃至4000Hzの範囲の繰り返し数でレーザパルスを生
成する時に,前記第1の電極対の電極間に第1のレーザガスのガスフ
ローを形成し,第1のレーザチャンバ内で第1のレーザガスを循環さ
せる第1のブロワと,
第1のレーザガスから不要な熱を除去する,第1のレーザチャンバ
に配置された第1の熱交換器と,第1のレーザチャンバの外側に取り
付けられた第1の冷却プレートと,
第1のレーザチャンバで生成されたレーザパルスのバンド幅を狭帯
域化する線狭帯域化モジュールと,
を備えるマスター発振器と,
第2のレーザガスと,第2の放電領域を形成する,2つの細長い電
極を間隔を空けて設けた第2の電極対とを備える第1のレーザチャン
バと,
1000乃至4000Hzの範囲の繰り返し数でレーザパルスを生
成する時に,前記第2の電極対の電極間に第2のレーザガスのガスフ
ローを形成し,第2のレーザチャンバ内で第2のレーザガスを循環さ
せる第2のブロワと,
第2のレーザガスから不要な熱を除去する,第2のレーザチャンバ
に配置された第2の熱交換器と,第2のレーザチャンバの外側に取り
付けられた第2の冷却プレートと,
を備えるパワー発振器と,
電源と,パルス圧縮及び増幅回路と,1000乃至4000Hzの
範囲の繰り返し数で作動し,10乃至5mJの範囲におけるパルスエ
ネルギを持つレーザパルスを生成し得る高電圧電気パルスを作り出す
パルスパワー制御とを含み,前記高電圧電気パルスを前記第1の電極
対及び前記第2の電極対に供給するパルスパワーシステムと,
2室式のレーザによって生成されたレーザパルスを測定するウェー
ブメータと,前記パルスパワーシステムによって供給される電圧を制
御するために,前記レーザパルスのエネルギを測定し,次のパルスの
エネルギが所望のエネルギに近くなるように電源電圧を調節するフ
ィードバック制御システムとを備え,
1000Hzの繰り返し数でレーザパルスを生成する時,第1のブ
ロワ及び第2のブロワは,次のパルスに関して丁度良く電極間で新鮮
なレーザガスを提供するのに十分であるガスフローを形成する,
レーザ」。
[一致点]
両者は,
「超狭帯域2室式高反復率のガス放電型レーザシステムであって,
A)1)a)第1のレーザガスと,
b)第1の放電領域を形成する,各々細長形状で間隔を空
けて設けられた第1の電極対とを備える第1の放電室,
2)毎秒4000パルス又はそれ以上の範囲の反復率で動作す
る時に,各パルスの直後に,放電によって生成されたイオン
を,前記第1の放電領域から除去し得る前記第1の放電領域
における前記第1のレーザガスのガス速度を作り出す第1の
ファン,
3)前記第1のレーザガスから,熱エネルギーを除去すること
ができる第1の熱交換装置,
4)前記第1の放電室で生成された光パルスのスペクトル帯域
幅を狭小化するための線幅狭小化ユニットを備える第1の
レーザユニットと,
B)1)a)第2のレーザガスと,
b)第2の放電領域を形成する,各々細長形状で間隔を空
けて設けられた第2の電極対とを備える第2の放電室,
2)毎秒4000パルス又はそれ以上の範囲の反復率で動作す
る時に,各パルスの直後に,放電によって生成されたイオン
を,前記第2の放電領域から除去し得る前記第2の放電領域
における前記第2のレーザガスのガス速度を作り出す第2の
ファン,及び
3)前記第2のレーザガスから,熱エネルギーを除去すること
ができる第2の熱交換装置とを備える第2のレーザユニット
と,
C)約4,000パルスの反復率で約5mJの範囲内に正確に制御
されたパルスエネルギーを持つレーザパルスを生成し得る電気パ
ルスを,前記第1の電極対と前記第2の電極対に供給するように
したパルス電力装置と,
D)前記2室式のレーザシステムによって生成されたレーザ出力パ
ルスのパルスエネルギーを測定するとともに,フィードバック制
御方式で前記レーザ出力パルスを制御するためのレーザビーム測
定・制御装置とを備え,
前記第1のレーザユニットは,主発振器として構成されるとと
もに,前記第2のレーザユニットは,パワー増幅器として構成さ
れることを特徴とするレーザシステム」である点。。
[相違点1]
本願発明では「第1(第2)のレーザガスのガス速度」が,毎秒,
4000パルス又はそれ以上の範囲の反復率で動作する時に,放電に
よって生成されたイオンの「実質的に全てを,次のパルスに先立ち」
第1第2の放電領域から除去し得るのに対し引用発明では1(),,「
000Hzの繰り返し数でレーザパルスを生成する時,第1のブロワ
及び第2のブロワは,次のパルスに関して丁度良く電極間で新鮮な
レーザガスを提供するのに十分であるガスフローを形成する」から,
少なくとも1000Hzの繰り返し数でレーザパルスを生成する時に
は「第1(第2)のブロワ」が,放電によって生成されたイオンの,
「実質的に全てを,次のパルスに先立ち」第1(第2)の放電領域か
ら除去し得るガス速度を作り出すものといえるが,4000Hzの繰
り返し数でレーザパルスを生成する時のガス速度については明らかで
ない点。
[相違点2]
本願発明では「第1(第2)の熱交換装置」が,第1(第2)の,
レーザガスから「少なくとも16kw」の熱エネルギーを除去する,
のに対し引用発明では第1第2の熱交換器及び第1第,,「()」「(
2)の冷却プレート」が除去する熱エネルギー量については明らかで
ない点。
[相違点3]
本願発明では「レーザビーム測定・制御装置」がレーザ出力パル,
スの「波長,及び帯域幅」を測定するのに対し,引用発明では「フ,
ィードバック制御システム」がレーザパルスの波長及びバンド幅を測
定することについては明らかでない点。
()審決の取消事由4
審決が,本願発明の認定に当たり,請求項1の記載である「電力増幅器」
をパワー増幅器と読み替えたことは争わない以下電力増幅器をパ「」(「」「
ワー増幅器」という場合がある。)
しかしながら,審決は,以下のとおり本願発明と引用発明との相違点を看
過し,その結果進歩性についての判断を誤ったものであるから,違法として
取消しを免れない。
ア審決が看過した相違点は,以下の2点である。
①本願発明の第2のレーザユニットは「増幅器」として構成されてい
るのに対し,引用発明の第2のレーザユニットは「発振器」で構成さ
れている点。
②本願発明は,4000Hz以上という極めて高い繰り返し周波数を
,,対象としたシステムでありかかる繰り返し周波数を実現するために
従来には存在し得なかった非常に高いガス流速を設定して,放電領域
内から実質的に全ての残存ガスを除去するものである点。
イ上記①の相違点に関し
(ア)「発振器」と「増幅器」とは機能上区別されること
「増幅器」は,正帰還部(正帰還とは,増幅部からの出力波の一部を
増幅部の入力端に戻すこと)を具備せず発振のための発振条件を満た
すことができないものであり「発振器」とは明確に区別されなければ,
ならない。
「発振器」とは,<ア>外部入力信号なしに,<イ>特定の周波数の波形
を,<ウ>持続的に発生するものをいう(甲20〔物理学辞典・平成「」
8年10月15日改訂第3版発行・株式会社培風館・1621頁,甲〕
21〔理化学辞典・平成15年11月10日第5版第7刷発行・株「」
式会社岩波書店・1052頁。ここで,上記<ア><イ><ウ>の状態を〕)
発振と呼ぶ発振器は発振状態になれば<ア>のように外「」。「」「」,「
部入力信号」がなくても「発振」が持続することに特徴がある「発振。
器」は,入力される波を増幅する増幅部と,増幅部からの出力波の一
部を増幅部の入力端に戻す正帰還(ポジティブ・フィードバック)部
から構成される。この発振器の構成において「発振」状態が生成され
るためには,
・出力の一部が正帰還部を通して増幅部の入力端に戻される過程に
,,おいて正帰還部から増幅部の入力端へ戻ってきた帰還波の振幅が
初めの入力波又は1ループ前の帰還波の振幅より大きいか,または
等しいこと(利得条件。。)
・帰還波と初めの入力波又は1ループ前の帰還波の位相が同じ(正
帰還)であること(位相条件。)
という発振条件を満たす必要がある。
この点を詳述すると,まず,出力波が時間と共に減衰しないために
は,正帰還部から増幅部の入力端へ戻ってきた帰還波の振幅が,初め
の入力波又は1ループ前の帰還波の振幅より大きいか,または等しく
なければならない。すなわち増幅部で得られる利得が「発振器」から
失われる損失(発振器外に漏れ出る損失だけでなく,正帰還部を通し
,)て帰還されず発振器の外部出力として取り出される出力部分も含む
を上回らなければならないため,利得条件が必要とされる。また,帰
還波と初めの入力波又は1ループ前の帰還波の山と山,谷と谷が一致
して互いに強め合うために,帰還波と初めの入力波又は1ループ前の
帰還波の位相が同じでなければならず,位相条件が必要とされる。一
旦,発振状態に到達すると,その後は,帰還波が振幅を大きくさせな
がら「発振器」内部を自律的に循環(ループ)するか,又は同じ振幅
の帰還波が「発振器」内部を自律的に循環し続け,外部からの入力が
なくても発振状態が持続する。
このように,増幅部による利得を得るだけでは,発振条件を満たさ
ず「発振器」としては作用しない。増幅部による利得を得ることに加,
えて,出力波の一部を「発振器」内に閉じ込めて「発振器」内部を循
,,環させるための正帰還部を付加し上記の発振条件を満たすようして
はじめて「発振器」となる。つまり,正帰還部のない単なる増幅部だ
けでは上記の発振条件を満たさないために発振することができず発,「
振器」たり得えないものである。これに対し「増幅器」においては,,
正帰還部が具備されておらず,発振のための発振条件を満たすことが
できないのであるから「増幅器」は「発振器」とは明確に区別される,
ものである。
これをレーザについてみると,発振条件は,上記利得条件と位相条
件とからなるところ,このうち利得条件は,光が共振器内を1往復し
た後の光の波の振幅が,元の光の波の振幅より大きいか,または等し
いこと,すなわち,光が,増幅器部たるレーザ媒質内を1往復したと
きのレーザ発振器内の利得が損失レーザ発振器外へ出力されるレー,(
ザ光を含む)以上であることを意味する。また位相条件は,共振器長
が光の半波長の整数倍であること,すなわち,共振器内を1往復して
元の位置に戻ってきた光の位相が元の光の位相と同じであることを意
味する。
このように,増幅部における利得を得るだけでは,発振条件を満た
さず「レーザ発振器」としては作用しない。増幅部に加えて,増幅光,
「」,の一部をレーザ発振器内に閉じ込めて循環させるための正帰還部
すなわち「共振器(一対の平行な鏡」を付加することにより,発振条)
件を満たすようにして,はじめて「レーザ発振器」となる。これに対
し「増幅器」は,正帰還部すなわち「共振器(一対の平行な鏡」を,)
備えておらず,上記の発振条件を満たすことができないから「レーザ,
発振器」たり得ないのである。
(イ)本願発明の「パワー『増幅器」は「発振器」を含まないこと』
平成17年1月12日付け本件補正後の明細書(甲1,2。以下「本
願明細書」という)の発明の詳細な説明の記載からも,本願発明におけ
る「パワー増幅器」は「発振器」を含まないことが明らかである。
その前提として,本願明細書には,発明が解決しようとする課題の一
つとして「…このようなシステムの1つでは,種ビームを生成する『主
発振器』と呼ばれるレーザは,第1の利得媒体において非常に狭い帯域
幅即ち超狭帯域幅のビームを作り出すように設計され,このビームが第
2の利得媒体において種ビームとして使用される。第2利得媒体が電力
増幅器として機能する場合,このシステムを,主発振器電力増幅器(M
OPA)システムという。第2利得媒体自体が共振空洞を有する場合,
このシステムを,種注入発振器(ISO)システム又は主発振器電力発
振器(MOPO)システムといい,この場合,種レーザを主発振器と呼
び,下流側のシステムを電力発振器と呼ぶ。…(甲1,段落【000」
8)との記載がある。】
この記載から明らかなとおり,第2のレーザユニットが「増幅器」で
ある主発振器電力増幅器(MOPA)システムと,第2のレーザユニッ
「」()トが共振空洞を有する発振器である主発振器電力発振器MOPO
システムとは,文言上のみならず技術思想の上でも明確に区別されてい
るところ,以下のとおり本願発明はMOPAシステムに該当するもので
ある。
本願明細書には,本願発明の実施例中の増幅器の説明として「電力,
増幅器は,電力増幅器放電室の放電領域を通る2つのビーム経路用に構
成される。図3A及び図3Bは,主発振器及び電力増幅器を通るビーム
経路を示す。図3Aに示すように,数回発振されたビームは,MO10
の放電室10A及びLNP10Cを通過し,LNP10Cを通過時に大
幅に線幅狭小化される。線幅狭小化された種ビームは,ミラー14Aに
よって上方に反射され,ミラー14Bによって(電極の向きに対して)
僅かなスキュー角を持って水平に反射され放電室12Aを通過する。2
つのミラー12C及び12Dは,電力増幅器の後端部にて,図3Bに示
す電極の向きに一致して水平方向にPA放電室12Aを貫通する第2経
路に対して上記線幅狭小化種ビームを反射する(段落【0019)。」】
との記載があり,またガス圧に関して「…動作時において,MOにおけ
るガス圧はPAのガス圧より実質的に低い。…(段落【0018)」】
との記載がある。
以上の発明の詳細な説明の記載,及び本願明細書の図面【図3A・】
【図3B】の記載から明らかなとおり【図3A】の下側に記載された,
主発振器第1のレーザユニットにおいては数回発振される上(),「」(
記【0019)ことが開示されているのに対し【図3A】の上側及び】,
【図3B】に記載された電力増幅器(第2のレーザユニット)において
,(【】),は発振器よりも高いガス圧が用いられる上記0018と共に
数回発振されることなくミラー14Bによって…僅かなスキュー「」,「
角を持って水平に反射され放電室12Aを通過する。2つのミラー12
C及び12Dは,電力増幅器の後端部にて,図3Bに示す電極の向きに
一致して水平方向にPA放電室12Aを貫通する第2経路に対して上記
線幅狭小化種ビームを反射する」こと(上記【0019)が開示され】
ている。
すなわち,ビームはミラー12C,12D及び14Bの間を何度も往
復することはなく,ビームは1往復だけ電力増幅器を通過するのみで
あって,ミラー12C,12D及び14Bは発振器に必須の構成要素で
ある共振器を構成しないことが本願明細書には開示されており,これに
反する開示や示唆は一切ない。
この記載からも,本願発明は,第2レーザユニットが「増幅器」であ
る主発振器電力増幅器(MOPA)システムに関する発明であり,下記
(ウ)記載のとおり引用発明の第2レーザユニットが「発振器」である主
発振器電力発振器(MOPO)システムとは,明確に異なることが容易
に理解されるものである。
(ウ)引用発明の第2のレーザユニットは「発振器」で構成されること
引用発明の記載された明細書(甲3)には【図11B】に1ヶ所だ,
け2つのレーザユニットによってレーザシステムを構成することが開示
されているところ【図11B,及び段落【0084】の記載からも明,】
らかなとおり【図11B】においては,第1のレーザユニットと第2,
のレーザユニットが,共に「発振器」として構成されていることが明確
に開示されており,第2のレーザユニットについて「増幅器」を採用,
することは,一切開示も示唆もされていない。
以上のとおり,本願発明の第2レーザユニットは「増幅器」で構成さ
,「」れているのに対し引用発明においては第2レーザユニットが発振器
で構成されており,両者は根本的に相違するものである。
(エ)作用効果の相違
本件発明と引用発明は,上記「増幅器(本願発明)と「発振器(引」」
用発明)の機能上及び構成上の相違に基づき,作用効果の上でも,以下
の3点で異なる。すなわち,
a「パワー発振器」においては,MOで狭帯域化されたビームのスペ
クトル幅が大きく広がってしまうのに対し「パワー増幅器」におい,
ては,MOで狭帯域化されたビームのスペクトル幅の広がりは小さい
ので,本願発明は,狭帯域化されたビームのスペクトル幅を狭帯域化
されたまま維持しやすいこと。
b「パワー発振器」を採用する引用発明のレーザシステムに比して,
「パワー増幅器」を採用する本願発明のレーザシステムの方が耐故障
性に優れていること。
c「パワー発振器」において,レーザ光のコヒーレンス(可干渉性)
が高くなるのに対し「パワー増幅器」においては,コヒーレンスが,
それほど高くならないので,本願発明は,スペックルの影響を抑える
ことができること。
(オ)上記(エ)のaないしcの内容を説明すると,以下のとおりである。
aについては,レーザユニットのチャンバ内には,自然放出増幅光
(,以下「ASE」という)が発生ASE:AmplifiedSpontaneousEmission
するが,このASEは,レーザ光と同じ中心波長をもった広域なスペク
トル幅をもつため,ASEが発生すると,MOで狭帯域化されたビーム
にノイズとして加わり,出力されるビームのスペクトル幅が広がる結果
となるため,ASEの発生及び増加は,本願発明の作用効果であるビー
ムの線狭帯域化を阻害する要因となる引用発明においては第2のレー。,
「」,「」,ザユニットがPOすなわちパワー発振器として構成されるが
ASEが発生すると「パワー発振器」の共振器によりASEまでもが,
,。,共振しASEが非常に大きくなってしまう結果となるこれに対して
本願発明においては,第2のレーザユニットが「PA,すなわち「パ」
ワー増幅器」として構成されているので,共振器はなく,わずかな経路
分実施例では1往復分の増幅作用を有するのみであるからパワー(),「
発振器」に比して,ASEの増加の割合が極めて小さく,ASEの影響
をわずかなものとすることができる。すなわち,本願発明により,引用
発明に比して,より線狭帯域化されたビームの出力を実現することが可
能かつ容易となるという優れた作用効果を奏することができる。
bについては,本願発明や引用発明がその適用対象とする露光装置で
,()は1つの露光領域に対して複数のレーザパルス例えば100パルス
を照射して露光する。このとき,MOからの種ビームの1パルスが何ら
かの理由(例えば,種ビームの不出力,ミスタイミング等)により第2
のレーザユニットに入射されなかった場合,第2レーザユニットで発生
したASEのみが1パルス分として,露光光学系に出力されることとな
る。このとき「パワー発振器」においては,その発振作用によってA,
SEが発振するために,非常にエネルギーが大きく,スペクトル幅の広
いASEのパルスが出力されてしまい,回復不可能な影響を当該露光領
域に与えてしまう。
これに対して,本願発明においては「パワー増幅器」に発振作用は,
なく,わずかな経路分(実施例では1往復分)の増幅作用を有するのみ
,,であるからASEが当該露光領域に与える影響は軽微なのものであり
後に続くパルス連のエネルギーをわずかに大きくすれば,欠落したパル
スの影響を回復することができるという優れた作用効果を奏することが
できる。
cについては,引用発明の「パワー発振器」においては,入射したM
Oからの種レーザ光が共振器により共振するためにレーザ光のコヒー,,
レンス(可干渉性;光の干渉のしやすさを示す度合)が非常に高くなっ
てしまう。これに対して「パワー増幅器」においては,共振器がない,
ので,コヒーレンスはそれほど高くならない。
レーザ光は,コヒーレンスの高い光ビームであるが,コヒーレンスの
高さゆえに,同じ位相を有する光が干渉し,不要な光のむら(スペック
ル)が生じてしまうことが従来から問題となっていた(甲18〔特開平
9−148658号公報,甲19〔特開2000−121836号公〕
報。例えば,エキシマレーザを光源とする露光装置においては,この〕)
スペックルがウエハー面上で点在して現れるため,部分的な露光量の大
小を発生させてしまう,という弊害が生じることとなる。
したがって「パワー発振器」に比して,レーザ光のコヒーレンスを,
低く抑えることができる「パワー増幅器」から構成される本願発明は,
スペックル等の影響を低く抑えることができるという優れた作用効果を
奏することができる。
(カ)以上のとおり,本願発明と引用発明とでは,機能及び構成の相違に
基づいて,作用効果上も大きく相違する。
したがって,引用発明の「パワー発振器」が本願発明の「パワー増幅
器」に相当するとした審決の認定(審決11頁34行∼12頁2行)は
誤りであり審決は両者の相違点を看過したものであるそしてパワー,。「
増幅器」の採用とは思想的に異なる「パワー発振器」を採用する引用発
明の開示から,本願発明のような「パワー増幅器」を想到することは不
可能であり,本願発明が引用発明に対して進歩性を有することも明らか
である。
(キ)被告の主張に対する反論
被告は「パワー増幅器」とは,レーザ光のパワー(出力)を増幅す,
る機能を有する機器として一義的に明確に理解できると主張するが,本
願発明の特許請求の範囲に記載された「パワー増幅器」については,そ
の記載の技術的意義を一義的に明確に理解することができない。すなわ
ち,レーザー光のパワー(出力)を増幅すると言っても,その方法は様
々であり,単なる「パワー増幅器」との文言では,どのような方法によ
り増幅を行うのか,その技術的意義が全く明らかでない。
この点「パワー増幅器」については,本願明細書に用語定義がなさ,
れている。すなわち,本願明細書の段落【0008】には「…第2利,
得媒体が電力増幅器として機能する場合,このシステムを,主発振器電
力増幅器(MOPA)システムという。第2利得媒体自体が共振空洞を
有する場合,このシステムを,種注入発振器(ISO)システム又は主
発振器電力発振器(MOPO)システムといい,この場合,種レーザを
主発振器と呼び,下流側のシステムを電力発振器と呼ぶ」と記載され。
ており「電力増幅器」という文言を「共振空洞を有する場合」すなわ,,
ち「電力発振器」とは明確に区別して定義している。
以上のとおりであり,本願明細書において「電力増幅器」すなわち,
「パワー増幅器」は,共振空洞を有せず,発振作用によらずにレーザー
光のパワー(出力)を増幅する機器をいうものとして,明確な用語定義
,「」,がなされているのであるから本願明細書におけるパワー増幅器は
発振機能を有しないものとして解釈されなければならない(特許法70
条2項。)
また,本願明細書においては,一貫して「増幅器」と「発振器」と,
。,,が異なるものとして記載されているすなわち発振作用の有無により
「増幅器」と「発振器」とを明確に区別している上記段落【0008】
に続き,段落【0011】では「従来型パターン転写レーザと比較し,
,,,て本実施形態において例証される本発明の主要改良点は種注入及び
特に,2つの個別放電室を有する主発振器電力増幅器(MOPA)構成
を利用した点にある」と記載されており,従来型のMOPO構成,す。
なわち,主発振器電力発振器の構成における課題を解決するため,本願
発明においてはMOPA構成,すなわち,主発振器電力増幅器の構成が
採用されたことが明確に記載されている。主発振器電力増幅器(MOP
A)の構成について説明した段落【0018・0019【図3A】】【】,
並びに【図3B】をみても「増幅器(PA」は,共振空洞を有せず,,)
正帰還機構を伴わないものとしてしか開示されておらず,これが発振機
能を有する旨の開示や示唆は一切ない。
そもそも,本願発明の「パワー増幅器」が,発振機能を有するものま
で含むと解釈すると,上記の本願明細書の記載と矛盾が生じる。すなわ
ち,本願明細書の段落【0008】においては「2つの個別システム,
で構成されるレーザシステム」として「主発振器電力発振器(MOP,
O)システム」と「主発振器電力増幅器(MOPA)システム」の2,
つの互いに異なる構成が明確に区別して開示され,段落【0011】に
おいて,上記2つのシステムのうち,本願発明においては「主発振器電
力増幅器(MOPA)システム」を採用することが明確に記載されてい
る。ここで「増幅器(PA」に,発振機能を有するものまで含まれる,)
と解釈すると「増幅器(PA」は「発振器(PO」の上位概念とい,))
うことになってしまい,本願明細書に記載された本願発明の技術思想,
すなわち「2つの個別システムで構成されるレーザシステム」におい,
て「下流側のシステム」を「発振器(PO」ではなく「増幅器(P,,),
A」として構成することに矛盾することとなる。)
ウ上記相違点②に関し
(ア)本願発明と引用発明とでは,対象とする繰り返し周波数が全く異な
る。すなわち,本願発明は,特許請求の範囲の記載,及び段落【001
】,()0の記載からも明らかなとおり毎秒4000パルス4000Hz
以上の高い繰り返し周波数でレーザパルスを生成するものであり,かか
る繰り返し周波数を実現するために,従来には存在し得なかった非常に
高いガス流速を設定して,放電領域内から実質的に全ての残存ガスを除
,。去するものであるという点において引用発明とは相違するものである
引用発明は,その特許請求の範囲に「少なくとも1000Hzの周波
数」と記載されているに過ぎず,どの程度の繰り返し周波数が対象とさ
,。,れているか特許請求の範囲の記載からは一義的に明確でないそこで
引用発明の記載された甲3の発明の詳細な説明を参酌すると,繰り返し
周波数として開示されているのは「1000乃至2000Hz(段落」
【0006,3頁4欄49行∼50行)である。わずかに「好ましい】
実施形態」として「1000乃至4000Hzの範囲」の繰り返し周波
数が言及されているが(段落【0006,4頁5欄7行,そもそも,】)
本願明細書の段落【0006】にも記載されているとおり,引用発明が
公開された2000年〔平成12年〕当時を含む「1989年から20
01年…(の)…一般的なパターン転写レーザモデルの動作パラメータ
としては,…2500パルス/秒のパルス率…が挙げられる」にすぎな
い。
引用発明が公開された当時の技術としては,高くとも2500パルス
/秒(2500Hz)程度の繰り返し周波数しか用いられていなかった
ものであり,それゆえ実施例において実際に開示されているのも,高々
(【】2000Hzの繰り返し周波数にとどまるのであって段落0038
等,引用発明において,4000Hzという極めて高い繰り返し周波)
数が対象とされていると考えることは不可能である。
この点,審決は,引用刊行物(甲3)の段落【0006】において,
「」,繰り返し周波数として4000Hzとの記載がある点を強調するが
かかる繰り返し周波数については発明の詳細な説明の記載をみても,実
施例において,これを技術的に裏付ける記載が一切なされていない。さ
らに,少なくとも,引用発明において4000Hzよりも大きい繰り返
し周波数については,一切開示も示唆もされていない。
(イ)また,審決が周知技術として挙げた下記甲4,5にも,4000H
zもの高い繰り返し周波数は開示も示唆もされていない。すなわち特開
平8−191163号公報(発明の名称「ガスレーザ装置,出願人株」
式会社東芝公開日平成8年7月23日甲4には100pps=,,)「」(
100Hz)の繰り返し周波数のものしか開示されておらず(段落【0
010,2頁右欄末行,特開平9−228986号公報(発明の名称】)
「タイミングを調整できる送風機モータ,出願人サイマーインコー」
ポレイテッド,公開日平成9年9月2日,甲5)にも「約1000な
いし2000Hzの繰り返し率が開示されているにすぎない段落0」(【
004,4頁左欄7行∼8行。したがって,これらは「4000H】),
」。z以上の繰り返し周波数を用いる本願発明の周知技術とはなり得ない
これに対して本願明細書及び図面には後述するように電源やレー,,,,
ザガス循環のためのブロア,その他のシステム構成について,高周波数
に必要とされる構造及び作用が明確に開示されている。
以上のとおり,審決が指摘する引用発明及び周知技術において,40
00Hz以上という極めて高い繰り返し周波数を用いることは開示され
,。ていないことはもちろんその旨の示唆があると解することもできない
(ウ)この点,1000Hzから2000Hzまでのシステム開発におい
ては,従来の技術の延長線上で開発が可能であったが,2000Hz程
度のシステムから,それ以上のシステム,具体的には本願発明が対象と
する4000Hz以上のシステムを開発するためには,技術的な壁が
あった。その技術的な壁の1つが残存ガスの除去という問題であり,2
000Hz程度を超える繰り返し周波数,特に4000Hz以上でのシ
ステムにおいて,安定した放電を生じさせるためには,次の放電に差し
。,支えない程度のガス速度を設定したのでは不十分であった本願発明は
次の放電に差し支えない程度を超え,それ以上のガス速度を設定し,放
電領域内から実質的に全ての残存ガスを除去することにより,技術的課
題を解決したのである。
すなわち,本願発明及び引用発明のようなエキシマレーザの供給装置
においては,放電により,レーザチャンバ内のガス中の原子,分子を励
起(エネルギーを与えること)し,励起されたエキシマ(励起状態のみ
で結合する希ガス元素とハロゲン元素からなる分子)が基底状態に落ち
るときに放出される光を利用して,レーザ発振させ,レーザパルスを生
成する。したがって,放電パルスの繰り返し周波数が上がると,それだ
け,レーザチャンバにおける単位時間当たりのレーザパルス生成回数が
多くなり,トータルとしてより大きなレーザ出力の供給が可能となるた
め,生産効率の上昇を実現することができる。
しかし,いかに繰り返し周波数を上げても,放電パルスが励起する対
象となる原子,分子が不足していれば,実際には高い繰り返し周波数に
よるメリットを活かせない。そこで,繰り返し周波数を上げる場合,そ
れに併せて,励起の対象となる原子,分子の供給を行うことが不可欠で
あり,同原子,分子を含有するレーザガスの供給速度を上げることが不
可欠である。
本願発明における「第1のファン」及び「第2のファン」は,特許請
求の範囲の記載からも明らかなとおり各パルスの直後に放電によっ,「,
て生成されたイオンの実質的に全てを,次のパルスに先立ち…放電領域
から除去し得る…レーザガスのガス速度」を作り出す。本願発明におい
ては,4000Hz以上という,極めて高い繰り返し周波数が用いられ
るため,各パルスの直後に,次のパルスに先立ち,放電後の分子を実質
的に全て放電領域から除去した後,励起可能な分子をすぐに供給するこ
,。とが必要となりそのために高いガス速度を設定することが必要となる
他方,引用発明の特許請求の範囲からは,どのようなガス速度を採用
しているかは一義的に明確でない。そこで,発明の詳細な説明を参酌す
ると「次のパルスに関して丁度良く電極間で新鮮なレーザガスを提供,
する」ことが開示されているにすぎない(段落【0003。】)
すなわち,本願発明は,高い繰り返し周波数を採用したため,放電領
域内から実質的に全ての残存ガスを除去し,生成されたイオンの実質的
に全てを除去しようとするものであるのに対し,引用発明は,高々20
00Hz程度の繰り返し周波数しか想定されていないため,パルス毎に
放電領域内のガスを実質的に全て入れ替えるまでの必要は一切なく次,「
のパルスに関して丁度良(い」程度,すなわち次の放電に差し支えな)
い程度の残存ガスの除去を図るにすぎない。
このことは,本願明細書の段落【0117】に「最大約67m/s,
のガス流が必要である」と,極めて高いガス速度が記載され,放電領域
内から実質的に全ての残存ガスを除去するとの技術思想が開示されてい
るのに対し,審決が周知技術として指摘する特開平8−191163号
公報(甲4)の段落【0009】には「動作可能なパルス繰り返し数」
と記載され,また,特開平9−228986号公報(甲5)の段落【0
004】には「一般に安定した放電を得るには,クリア比は,3で充分
であると考えられる」と記載されていることからも明らかである。すな
わち,引用発明が公開された当時の技術常識では,高々2000Hz程
度のシステムしかなかったために,放電領域内から実質的に全ての残存
ガスを除去する必要は全くないと共に,そのような技術思想も全く存在
しておらず,単に,次の放電に差し支えない程度のガス流速を設定しよ
うとする技術思想しか存在しなかったものである。
以上のとおり,引用発明には,本願発明の構成である「放電によって
生成されたイオンの実質的に全てを,…除去し得る…ガス速度を作り出
す(第1及び第2の)ファン」は,一切開示も示唆もされていない。
したがって,引用発明の「第1(第2)のブロワ」は本願発明の「第
1(第2)のファン」に相当するものではなく,引用発明の「第1(第
2)のブロワ」が本願発明の「第1(第2)のファン」に相当するとの
審決の認定(審決11頁10行∼11行,15行)は誤りである。
(エ)以上のとおり,本願発明においては,非常に高い繰り返し周波数を
用い,かつ,単に次の放電に差し支えない程度の残存ガスの除去を図る
だけではなく,各パルスの直後に,放電によって生成されたイオンの実
質的に全てを,次のパルスに先だって放電領域から除去する構成を採用
している。このような構成を採ることによって,必要な高いガス流速を
実現するための電源及びファンを採用すること,及び,高いガス流速を
設定することから生じる諸問題,特に衝撃波に耐えうるチャンバの強度
の実現,高い電力消費に耐えうる電気システムの実現等を克服すること
には,当然に技術的な困難が伴う。
,,【】【】,一例を挙げれば本願発明においては段落0022・0025
【図5・図5A・図5B】に記載されているとおり,電源として,】【】【
放電パルス生成において高電圧を加えるためのコンデンサを超高速充電
するために,共振電源を採用している。このような共振電源を採用する
ことで,4000Hz以上という高速での繰り返し周波数(1秒間に4
000回以上のスピード)で,パルスを生成することを初めて可能とし
たのである。他方,引用発明においては,共振電源のような4000H
z以上という高速動作を可能とするための電源を備えることについては
開示も示唆もされておらず,引用発明の実施例に記載された電源を用い
たのでは,4000Hzの繰り返し周波数を実現することは不可能であ
る。
審決は,引用発明の本質的な技術的特徴を把握することなく,明細書
の末節の記載を捉えて,引用発明の認定を誤ったものである。
そして,かかる本願発明の構成については,審決が指摘する引用発明
及び周知技術には一切開示も示唆もされておらず,また,4000Hz
以上の繰り返し周波数を実現することができる電源をそもそも備えてい
ない,高々2500Hzの繰り返し周波数を対象とした引用発明を,本
願発明のような4000Hz以上の繰り返し周波数を目標とするシステ
ムを発明するためのベースとするはずもなく,当業者が引用発明及び周
知技術に基づいて容易に想到しうるものでもない。
(オ)被告の主張に対する反論
被告が証拠として提出した乙6(後述)には「5000Hz程度ま,
たはそれ以上」という高い繰り返し周波数に耐えうるような構成は開示
。,,も示唆もされていないしたがって乙6の出願当時の技術水準として
繰り返し周波数を,5000Hz程度またはそれ以上とする技術思想が
既に存在していたことはない。
被告は,引用発明における「ファンブレード構造が16の個々に加工
されたもので形成され,若しくは,23のブレードを備える各セグメン
トを有するカートセグメントである図14Bに示したような変形実施形
°×°態は360/1523だけ又は隣接するセグメントに対して約1,(),,
だけ各セグメントを回転」したもの及び「図14Aに示したような非対
称ブレード配置」したものが,それぞれ本願明細書における「斜視図を
図18Aに示す。ブレード構造は5インチ径を有し,中実アルミニウム
製合金6061−T6棒材から機械加工される。各部の個々のブレード
は,図18Aに示すように,隣接部と若干オフセットされている。この
オフセットは,圧力波面の生成を防止するように予め不均一にされてい
る」もの及び「個々のブレードを,ブレード軸に対して若干角度を付。
け」たものに相当する旨主張する。
しかし,本願発明において,本願明細書の段落【0121】に記載さ
れているとおり,ファンブレードは「圧力波面の生成を防止するように
予め不均一にされている他方引用発明においては引用刊行物甲」。,,(
3の段落0024に記載されているとおりファンブレードは3)【】,「
60/(1523)だけ,又は,隣接するセグメントに対して約1だけ°×°
各セグメントを回転する」ようにされているにすぎない。
本願発明におけるファンブレードは,圧力波面の生成を防止するよう
に,予め不均一にされているのに対し,引用発明のファンブレードは,
隣接するセグメントに対して約1のみ各セグメントを回転しているに°
すぎず,ほぼ均一にされているのであり,引用発明においては,圧力波
面の生成を防止するように,ファンブレードが予め不均一にされている
ことはない。
したがって,引用発明におけるファンブレードは,本願発明における
ファンブレードとは,根本的にその構成を異にするのであって,引用発
「()」,「()」明の第1第2のブロアが本願発明の第1第2のファン
に相当する旨判断した審決は誤りであり,被告の主張には理由がない。
2請求原因に対する認否
請求の原因()・()・()の各事実はいずれも認めるが,同()は争う。1234
3被告の反論
審決の判断は正当であり,原告主張の誤りはない。
()原告主張の相違点①に対し1
ア原告は,本願発明における「パワー増幅器」が「発振器」を含まないこ
とは,本願明細書の記載から明らかであると主張し,これを前提として,
引用発明には「第2のレーザユニットをパワー増幅器として構成する」,
という点について,一切開示も示唆もされていないと主張するが,以下の
とおり,失当である。
審決が11頁下2行∼12頁2行で認定したとおり,本願発明は「第,
2のレーザユニットは,パワー増幅器として構成される」ものであるとこ
ろ「パワー増幅器」とは,その文言から,レーザ光のパワー(出力)を,
増幅する機能を有する機器であることが一義的に明確に理解できるから,
発明の詳細な説明の記載を参酌すべき特段の事情はない。
,,「」そして本願明細書の特許請求の範囲の請求項1にはパワー増幅器
について発振機能の有無を特定する記載はないから本願発明におけるパ,「
ワー増幅器に該当するというためには発振機能の有無に拘わらずレー」,,
ザ光のパワー(出力)を増幅する機能を有する機器であれば足りるものと
理解すべきであるしたがって本願発明におけるパワー増幅器が発。,「」「
振器」を含まないとの原告の主張は,特許請求の範囲に基づくものではな
く,原告の上記主張は,前提において失当であり,これを前提とする,引
用発明には「第2のレーザユニットをパワー増幅器として構成する」とい
,。う点について一切開示も示唆もされていないとの主張もまた失当である
他方,引用発明の「パワー発振器」が,レーザ光のパワーを増幅する機
能を有することは技術常識上明らかであるから,本願発明の「パワー増幅
器」に相当する。
したがって審決が引用発明のパワー発振器が本願発明のパワー,,「」「
増幅器」に相当するとし「第2のレーザユニットは,パワー増幅器とし,
て構成される」点を両者の一致点として認定したことに,誤りはない。
イ(ア)なお,下記のとおり,本願発明について上記のとおり理解すべきこ
とは,本願明細書の記載及び本願の優先日当時における当業者の技術常
識とも符合するものであるから,本願発明の「パワー増幅器」が「発振
器」を含まないものであると解する余地はないものといわなければなら
ない。
すなわち,本願明細書には「電力増幅器(パワー増幅器)が発振機,」
能を有しないものに限定されるものであることを明示する記載はない。
そして,本願明細書には,以下の記載がある。
・「0008】種注入【
(エキシマレーザシステムを含む)ガス放電型レーザシステムの
帯域幅を狭めるための公知手法には,狭帯域「種」ビームを利得
媒体に注入するものがある。このようなシステムの1つでは,種
ビームを生成する「主発振器」と呼ばれるレーザは,第1の利得
媒体において非常に狭い帯域幅即ち超狭帯域幅のビームを作り出
すように設計され,このビームが第2の利得媒体において種ビー
ムとして使用される。第2利得媒体が電力増幅器として機能する
場合,このシステムを,主発振器電力増幅器(MOPA)システ
ムという。第2利得媒体自体が共振空洞を有する場合,このシス
テムを,種注入発振器(ISO)システム又は主発振器電力発振
器(MOPO)システムといい,この場合,種レーザを主発振器
と呼び,下流側のシステムを電力発振器と呼ぶ。2つの個別シス
テムで構成されるレーザシステムは,同等の単一室レーザシステ
ムに比較してかなり高価であり,更により大きく複雑になる傾向
がある。そのために,2室レーザの商業的用途は制約されたもの
となっている」。
・「0010】【
【課題を解決するための手段】本発明は,約4,000Hz又は
それ以上のパルス率及び約5mJから10mJ又はそれ以上のパ
ルスエネルギーで,高品質のパルスレーザビームを生成すること
ができる種注入モジュール式のガス放電型レーザシステムを提供
する。2つの個別放電室が設けられ,それらの一方の放電室は,
超狭帯域種ビームを生成する主発振器の一部となり,生成された
超狭帯域種ビームが第2の放電室において増幅される。各放電室
は,主発振器における波長のパラメータ及び増幅室におけるパル
スエネルギーのパラメータの双方を最適化できるように個々に制
御することができる。好適な実施形態では,MOPAとして構成
されるとともに,特に集積回路パターン転写用の光源として使用
するために設計されたArFエキシマレーザシステムとされる。
MOPAの好適な実施形態においては各放電室は単一の横流ファ,
ンを備え,この横流ファンは,各パルス間で約0.25ミリ秒未
満の時間内に放電領域から残存物を除去することによって400
0Hz又はそれ以上のパルス率で動作できるのにするためのガス
。,,流を作り出す主発振器には線幅狭小化パッケージが設けられ
この線幅狭小化パッケージは,4000Hz又はそれ以上の反復
率でパルス対パルスに基づいて中心線の波長を制御するとともに
0.2pm(FWHM)未満の帯域幅を作り出すことができる超
高速調整ミラーを備える」。
・「0011】【
【発明の実施の形態】第1実施形態
全体レイアウト−3波長対応プラットホーム
図1は,本発明による第1の好適な実施形態の斜視図である。本
実施形態は,MOPAレーザシステムとして構成された種注入狭
帯域エキシマレーザシステムである。このシステムは,特に,集
積回路パターン転写用の光源としての使用するために設計されて
いる。従来型パターン転写レーザと比較して本実施形態において
例証される本発明の主要改良点は,種注入,及び,特に,2つの
個別放電室を有する主発振器電力増幅器(MOPA)構成を利用
した点にある」。
・「0012】【
本第1実施形態は,アルゴン−弗化物(ArF)エキシマレーザ
,,(),システムであるが本システムはクリプトン−弗化物KrF
ArF,又はフッ素(F2)レーザ部品のいずれにも適応するよ
。うに設計されたモジュール型プラットホーム構成を使用している
このプラットホーム設計によって,これら3種類のレーザのいず
れに対しても,同一の基本キャビネット及び多くのレーザシステ
ムモジュールや部品を使用することができるこれら3種類のレー。
ザ設計が,KrFについて約248nm,ArFについて約19
3nm,そして,F2について約157.63nmの波長を持つ
レーザビームを生成することから,出願人は,このプラットホー
ムを3波長対応プラットホームと呼ぶまた本プラットホー「」。,
ムは,3つの波長の各々において上記装置の大手メーカ全ての最
新パターン転写装置にこのレーザシステムを適合させるための接
続部品を備えるように設計される」。
・「0013】図1は,この好適なレーザシステム2の主要部品を【
示す。主要部品としては以下のものが含まれる。
(1)AD/DC電源モジュールを除くレーザの全モジュールを
収納するように設計されたレーザシステムフレーム4(2)AC,
/DC高電圧電源モジュール6(3)4000充電パルス/秒の,
繰返し数で約1000ボルトに2つの充電コンデンサ列を充電す
るための共振充電器モジュール7(4)各々が上記充電コンデン,
サ列の1つを備えるとともに,各々が充電コンデンサ列に蓄積さ
れたエネルギーによって約16,000ボルトの非常に短い高電
圧電気的パルス及び約1μsの持続時間を形成する整流子を備え
る2つの整流子モジュール8A及び8B(5)フレーム4内に上,
下配置で取り付けられ,主発振器モジュール10及び電力増幅器
モジュール12から成る2つの放電室モジュール。各モジュール
は,放電室10A及び12Aと各放電室の上面に取り付けられた
圧縮ヘッド10B及びと12Bを備える。各圧縮ヘッドは,整流
子モジュールからの電気パルスを,それに対応して電流増加させ
()。()ながら約1μsから約50nmに時間に関して圧縮する6
線幅狭小化パッケージ10C及び出力カプラユニット10Dを含
む主発振器光学部品(7)種ビームを整形して電力増幅器に導く,
とともに,MO出力電力をモニタする光学部品及び計器を備えた
波面操作ボックス14(8)波長モニタ,帯域幅モニタ,及びエ,
ネルギーモニタを備えたビーム安定器モジュール169シャッ,()
タモジュール18(10)ガス制御モジュール20,冷却水配送,
モジュール22,及び,換気モジュール24が設置される補助キ
ャビネット(11)関連機器接続モジュール26(12)レー,,
ザ制御モジュール28,及び(13)状態ランプ30」。
・「0014】本明細書において詳細に説明するこの好適な実施形【
態は,上述したArF・MOPA構成である。この特定構成を他
,。の構成に変えるために必要な変更点の一部は以下のものである
MOPA設計は,第2放電室の周辺に共振空洞を作ることによっ
てMOPO設計に変更することができる。これを行うために数多
くの手法を利用することができるが,その一部は,本明細書に参
考文献として記載した関連特許出願で論じられているKrFレー。
ザ設計は,ArF設計と極めて類似したものとなる傾向があるの
で,本明細書に記載された構成の大部分はKrFレーザに直接適
用することができる。実際,両レーザの波長が回折格子の列間隔
の整数倍数に相当することから,ArFレーザ動作に使用される
好適な回折格子は,KrFレーザでも正常に機能する」。
(イ)上記によれば,本願明細書には,以下の事項が記載されているとい
える。
a狭帯域「種」ビームを利得媒体に注入するガス放電型レーザシ
ステムの公知手法の1つでは,種ビームを生成する「主発振器」
と呼ばれるレーザは,第1の利得媒体において非常に狭い帯域幅
即ち超狭帯域幅のビームを作り出すように設計され,このビーム
が第2の利得媒体において種ビームとして使用され,第2利得媒
体が「電力増幅器(パワー増幅器)として機能する場合,このシ」
ステムを,主発振器電力増幅器(MOPA)システムといい,第
2利得媒体自体が共振空洞を有する場合,このシステムを,主発
振器電力発振器(MOPO)システムといい,この場合,種レー
ザを主発振器と呼び,下流側のシステムを「電力発振器(パワー」
発振器)と呼ぶこと(段落【0008。】)
b本願発明の好適な実施形態では,MOPAとして構成されるこ
と(段落【0010。】)
c本願明細書において詳細に説明する好適な実施形態は段落0,【
011】∼【0013】に記述したArF・MOPA構成である
ところ,MOPA設計は,第2放電室の周辺に共振空洞を作るこ
とによってMOPO設計に変更することができ,これを行うため
に数多くの手法を利用することができるが,その一部が本願明細
書に参考文献として記載した関連特許出願で論じられていること
(段落【0011】∼【0014。】)
上記のとおり,本願明細書においては,MOPA設計は,第2放電室
,「」()の周辺に共振空洞を作ることすなわち電力発振器パワー発振器
とすることによってMOPO設計に変更できる旨が記載されているとこ
,「」()ろこの設計変更により第2利得媒体が電力増幅器パワー増幅器
としての機能を喪失するものではないから,本願明細書の上記記載に接
した当業者は,本願発明において,下流側のシステムを,上記aでいう
「電力発振器(パワー発振器)とすることも容易に認識し得ることで」
ある。
また,本願明細書には「電力増幅器(パワー増幅器)自体の技術的,」
意味について詳細に説明する記載はなく,まして「発振器」を含まな,
い点についても記載も示唆もないのであるから,上記aのとおり,本願
明細書においては,第2利得媒体が電力増幅器(パワー増幅器)として
機能する場合,このシステムを,主発振器電力増幅器(MOPA)シス
テムということに照らすと「電力増幅器(パワー増幅器)として機能,」
するものであれば「電力増幅器(パワー増幅器)といい得るものと解,」
すべきである。
そして,かかる解釈は,当業者の認識とも整合するものである。
すなわち,上記aのとおり,本願明細書には,第2利得媒体自体が共
振空洞を有する場合に,下流側のシステムを「電力発振器(パワー発」
振器)と呼ぶことの記載があるが,かかる記載からは,共振空洞を有す
るものを「電力発振器(パワー発振器)と呼ぶ,ということが理解で」
きるにとどまるのであって,共振空洞を有しないもののみを「電力増幅
器(パワー増幅器)と呼ぶものではないから,上記の解釈を妨げるも」
のではなく,かかる記載を根拠にして,本願発明の「パワー増幅器」が
「発振器」を含まないものであるとすることはできない。
,【】,【】【】また本願明細書の段落0019図面図3A及び図3B
に示されるものが「発振器」を構成しないものであるとしても,この,
ものは,単に「好適な実施形態」にすぎず(段落【0011・001】【
4,本願明細書に,かかる実施形態の記載があることをもって,本願】)
発明の「パワー増幅器」について「発振器」を含まないものに限定さ,
れるということもできない。
したがって,本願発明について,上記のように理解すべきことは,本
願明細書の記載とも符合するものであって,本願発明における「パワー
増幅器」が「発振器」を含まないことは,本願明細書の記載から明らか
であるとの原告の主張は失当である。
ウ加えて,乙1∼5には,それぞれ,以下の記載がある(下線は判決で付
記。)
(ア)乙1(特開平9−8389号公報。発明の名称「狭帯域化エキシマ
レーザー発振器,出願人三菱重工業株式会社,公開日平成9年1月」
10日)
「0002】【
【従来の技術】エキシマレーザー発振器は,エキシマ(二つの原子が
付着したゆるやかな結合状態の分子)状態から基底状態へ,紫外域の
誘導放出光を出して遷移することを利用したものである。このエキシ
マレーザー発振器は,一般には,放電により励起している。つまり,
レーザー管には希ガスとハロゲン元素とでなるレーザー媒質(混合ガ
ス)が封入されており,放電を均一化し効率を上げるため予備放電電
極により予備放電をした後,主放電電極がグロー放電して,レーザー
発振が行なわれる。
【0003】ここで従来のエキシマレーザー発振器の一例を,図4を
基に説明する。図4に示すようにこのエキシマレーザー発振器は,主
に発振器10と増幅器20とで構成されている。
【0004】このうち発振器10では,レーザー媒質(希ガスとハロ
),ゲン元素との混合ガス11が封入されたレーザー管12を間にして
一対のアパーチャ(孔直径が2∼3)13a,13bが配置されmm
ている。更にアパーチャ13aの外側(図中左側)に出力鏡14が備
えられ,アパーチャ13bの外側(図中右側)にビーム拡大素子(プ
リズム)15及び波長分散性光学素子(反射式回折格子)16が備え
られている。
【0005】レーザー管12の放電電極(図示省略)の放電により生
じた光は,出力鏡14と波長分散性光学素子16とで反射され両者の
間で往復する。つまり出力鏡14と波長分散性光学素子16とにより
光共振器が構成されている。3つのプリズムで構成したビーム拡大素
子15は,アパーチャ13bから出力された光を拡大(光断面積を拡
)。,大して波長分散性光学素子16に送る波長分散性光学素子16は
回折現象を利用して入射光を分光し,特定の波長(次数)の光成分の
みを反射する。反射した光は,ビーム拡大素子15により光断面積が
絞られてアパーチャ13bに戻っていく。よって光は特定の波長幅に
絞られて狭帯域化される。また,光はアパーチャ13a,13bを通
過することにより拡がり角が制限されて高次の横モード発振が制限さ
れ,光の質が向上する。結局,波長分散性光学素子16の波長選択機
能と,アパーチャ13a,13bの横モード発振制限機能とが相俟っ
て光が狭帯域化しきれいなスペクトルが得られる更に光はレーザー,。
管12を通過する毎に増幅される。そして光強度が発振しきい値を越
えたら,出力鏡14からレーザー光Lが出力される。
【0006】一方,増幅器20では,レーザー媒質21が封入された
レーザー管22を間にして,孔付き凹面鏡23a及び凸面鏡23bが
相対向して配置されている。この鏡23a,23bにより不安定共振
器23が形成されており,凸面鏡23bの中心部には,レーザー光L
つまり発振波長の光成分を100%反射するコーティングが施こされ
ている。更に,レーザー光Lをレーザー管22に導くミラー24,2
5が備えられている。
0007この増幅器20では発振器10から出力されたレーザー【】,
光Lを,ミラー24,25で導びいてレーザー管21に通過させるこ
とにより,光強度を増幅する。更にレーザー光Lを不安定共振器23
の凸面鏡23a及び凹面鏡23bで反射させることにより,光断面積
の大きな平行光線としている。よって光断面積の大きな平行光線と
なった光強度の高いレーザー光Lが出力(凸面鏡23bから図中右方
に出力)される(2頁2欄13行∼3頁3欄21行)。」
(イ)乙2(特開平2−12980号公報,発明の名称「狭帯域レーザ発
振装置,出願人株式会社東芝,公開日平成2年1月17日)」」
「従来の技術)(
半導体露光用縮小投影露光装置の光源として狭帯域エキシマレーザ
が用いられつつあるが,この場合高出力を得るためにレーザ光発振器
から発振されたレーザ光の出力を増幅する増幅部を使用したインジェ
クションロックの技術が用いられる。第5図に従来のインジェクショ
ンロック型の狭帯域レーザ発振装置を示す。
このレーザ発振装置1は,主発振部2と増幅部3とからなり,双方
2,3ともがエキシマガスレーザ媒質を用いる。主発振部2はエキシ
マガスレーザ媒質を励起してレーザ光を発光させる放電管4を挟んで
対峙する回折格子5および出力ミラー6が設けられている。
上記回折格子5と放電管4との間には上記放電管4側にピンホール
7を有するプレート8と,回折格子5側に設けられ図示しないプリズ
ムまたはエタロン等によって構成された波長選択素子9とが設けられ
安定型のレーザ共振器が形成されている。
そして,上記主発振部2から発振されたレーザ光は第1および第2
の高反射ミラー10,11により光軸が折曲され,増幅部3に入射さ
れる。
この増幅部3は上述のごとくエキシマガスレーザ媒質が封入された
放電管12と,この放電管12を挟むように対峙して凸面ミラー13
および凹面ミラー14とが配設されている。ここで,上記凹面ミラー
14の中央部には約1mmの直径の貫通孔15が穿設されており,上
記貫通孔15に上記主発振部2で発振されたレーザ光が入射されるよ
うになっている。
上述のように構成されたレーザ発振装置1はまず,主発振部2に
よってスペクトル幅0.003nm,平均出力0.01wのレーザ光
。,,を発振するこれは上記放電管4で発光された光を上記回折格子5
波長選択素子9およびプレート8のピンホール7等を通過させること
により,単一光を発振状態とし,所定の出力(0.01w)を上記出
力ミラー6から上記第1の高反射ミラー10に向けてレーザ光を照射
する。そして,第1の高反射ミラー10に反射されたレーザ光は第2
の高反射ミラー11に反射されることで上記増幅部3に入射される。
この増幅部3に入射されるレーザ光は凹面ミラー14の貫通孔15か
ら不安定型共振器13,14間に入射され,この共振器13,14間
でビームを拡大しながら複数回反射されることで,インジェクション
ロックされ狭いスペクトル幅を保ちながら,出力が増幅され,最終的
に凸面ミラー13側から出射する。この増幅作用によりスペクトル幅
は主発振部2から発振されたときと同じ0.003nmで,平均出力
が50wの狭帯域レーザ光を得ることができる(1頁左下欄20行。」
∼2頁右上欄11行)
(ウ)乙3(特開平1−305521号公報,発明の名称「露光装置,」
出願人株式会社ニコン,公開日平成元年12月8日)
「もう一つのタイプのレーザ光源は,インジェクションロック型と呼
ばれるものであり,第8図のように発振器と増幅器に分かれている。
発振器において共振器用ミラー(102a,102b)か配置されて
いる点は前述した安定共振型と同様であるが,このタイプでは発振器
内に所定の領域の波長を選択するためのエタロン,回折格子等の波長
選択素子(106)か備えられているとともに,放電管100の両端
にレーザビームを所定の領域で遮断するアパーチャー(104a,l
04b)か配置されており,発振されるレーザビームのスペクトルの
(.),。半値幅が狭く△λ∼0001nm即ち単色性が向上している
さらに発振されたレーサビームはミラー(108)で曲折されて増幅
器に入射し,第2の放電管(110)の両端に凸状面と凹状面を向き
あわせて配設された不安定共振用ミラー112a112bによっ(,)
て増幅されて出射される。この型のレーサ光源から出射されるレーザ
ビームの特徴の一つは,発振器において単色性が高められており時間
的コヒーレンスが高く,投影レンズ7において色消しの必要がないと
いうことである(5頁左上欄13行∼同右上欄13行)。」
(「」,(エ)乙4特開平1−259533号公報:発明の名称照明光学装置
出願人株式会社ニコン,公開日平成元年10月17日)
「もう一つのタイプのレーザ光源は,インジェクションロック型と呼
ばれるものであり,第7図のように発振器と増幅器に分かれている。
発振器において共振器用ミラー(102a,102b)が配置されて
いる点は前述した安定共振型と同様であるが,このタイプでは発振器
内に所定の領域の波長を選択するためのエタロン,回折格子等の波長
選択素子(106)が備えられているとともに,放電管100の両端
にレーザビームを所定の領域で遮断するアパーチャ(104a,10
4b)が配置されており,発信されるレーザビームのスペクトルの半
値幅が狭く(Δλ≈0.001nm,即ち単色性が向上している。さ)
らに発振されたレーザビームはミラー(108)で曲折されて増幅器
に入射し,第2の放電管(110)の両端に凸状面と凹状面を向きあ
わせて配設された不安定共振器用ミラー112a112bによっ(,)
て増幅されて出射される。この型のレーザ光源から出射されるレーザ
ビームの特徴の一つは,発振器において単色性が高められており時間
的コヒーレンスが高く,投影レンズPLにおいて色消しの必要がない
ということである(5頁左上欄8行∼同右上欄9行)。」
(オ)乙5(特開平11−298083号公報,発明の名称「注入同期型
狭帯域レーザ,出願人株式会社小松製作所,公開日平成11年10」
月29日)
「0028】【
【発明の実施の形態】以下,図面を参照して本発明の実施の形態に
ついて説明する。
【0029】図1は,本発明の第1の実施の形態であるインジェク
ションロック型狭帯域レーザの全体構成を示す図である。
【0030】図1において,このインジェクションロック型狭帯域
レーザはオシレータ段A,波長変換部12,および増幅段Bとから
構成される。
【0031】オシレータ段Aは,ポンピングレーザ11と,これに
よって励起され,基本波光L1を出力するチタンサファイヤレーザ
10とからなる。
【0032】ポンピングレーザ11としては,アルゴンイオンレー
ザ,YAGレーザ,YLFレーザ等が用いられ,アルゴンイオン
レーザの場合は488nm,515nm等のマルチライン,YA
Gレーザの場合は第2高調波(532nm,YLFレーザの場合)
は第2高調波(527nm)がポンピング光として使用される。
【0033】チタンサファイヤレーザ10の詳細構成については後
述するが,ポンピングレーザ11からのポンピング光が増幅媒体
3としてのチタンサファイヤロッドに入射されると,増幅媒体3
は,773.6nmのレーザ光を含む光を発生し,リアミラー1
とフロントミラー4とで構成される共振器とこの共振器内の波長
選択素子2等によって773.6nmの狭帯域のレーザ光を増幅
発振して基本波光L1として波長変換部12に出力する。チタン
サファイヤレーザ10内には,波長制御機能を有し,ビームスプ
リッタ5によって基本波光L1の一部を取り出し,波長モニタ6
によって基本波光L1の波長を検出し,この検出した波長をもと
に,波長コントローラ7がドライバ8を介して波長選択素子2及
びリアミラー1を調整して,狭帯域の773.6nmの基本波光
L1が出射されるようにフィードバック制御される。
【0034】波長変換部12は,入射された基本波光L1を和周波
混合によって4倍の高調波である193.4nmのレーザ光に変
換し,高周波光L2として増幅段Bに入力する。この波長変換部
,。12は非線形光学効果をもつ波長変換素子によって実現される
例えば非線形光学素子を3つ用い最初の非線形光学素子によっ,,
て,入力された波長ωをもつレーザ光は,波長ωと2ωのレーザ
光を生成し,次の非線形光学素子によって波長ωと波長3ω(ω
+2ω)のレーザ光を生成し,さらに次の非線形光学素子によっ
て波長ωと4ω(ω+3ω)のレーザ光を生成し,この波長4ω
のレーザ光を透過させるミラーを用いて出力させるようにする。
この高調波光L2は,全反射ミラー13,14を介して増幅段B
に入力される。
【0035】増幅段Bのチャンバ24内には,193nmのレーザ
光を発生することができるArFガスが充填され,このArFガ
スをエキシマ状態に励起する放電電極23を有する。入力された
高調波光L2は,凹面ミラーのカップリングホールを介してチャ
ンバ24内に入力し,凸面ミラー21を介して反射し,さらに凹
面ミラー22に反射し,出力光L3として出力する。高調波光L
,,2がチャンバ23内を往復する間に誘導放出を行うことにより
高調波光L2が増幅された出力光L3として出力される。この場
合,ポンピングレーザ11,チタンサファイヤレーザ10,及び
増幅段Bの放電電極23の放電タイミングを同期させる必要があ
る(4頁5欄41行∼同6欄49行)。」
(カ)上記(ア)ないし(オ)の記載によれば,レーザ光のパワー(出
力を増幅する機器であって共振器を有するものを増幅器増),「(
幅部,増幅段」と表現することがあることは,本願の優先日当時)
の技術常識であったということができる。
したがって,本願の優先日(平成12年10月6日)当時の技
術常識を踏まえれば,当業者(その発明の属する技術の分野にお
ける通常の知識を有する者)は,本願発明における「パワー増幅
器について発振機能の有無に拘わらずレーザ光のパワー出」,,(
力)を増幅する機能を有する機器であれば足りるものと容易に認
識するものであり,本願発明について,上記ア,イのように理解
すべきことは,本願の優先日当時の技術常識とも符合するもので
ある。
以上のとおり,原告の主張は,本願発明における「パワー増幅
器」が「発振器」を含まないものであるとの前提において失当で
あり審決が引用発明のパワー発振器が本願発明のパワー,,「」「
増幅器」に相当するとし「第2のレーザユニットは,パワー増幅,
器として構成される」点を両者の一致点と認定したことに,誤り
はない。
エ作用効果の相違に対し
原告は,本願発明の「パワー増幅器」は,引用発明の「パワー発振器」
と作用効果で大きく異なると主張するが,以下のとおり,失当である。
上記のとおり,引用発明の「パワー発振器」は本願発明の「パワー増幅
器」に相当し「第2のレーザユニットは,パワー増幅器として構成され,
る」点において両者は一致するから,この点に基づく作用効果の相違もな
い。
原告が主張する本願発明が奏する作用効果は,本願発明の「パワー増幅
器」が「発振器」を含まないことを前提とするものであるところ,かかる
前提が失当であることは,上記のとおりである。のみならず,原告主張に
係る本願発明が奏する作用効果は,本願明細書に記載されておらず,原告
の主張は,明細書の記載に基づかない点においても,失当である。なお,
かかる作用効果が本願明細書に記載されていないことは,本願発明の「パ
ワー増幅器」について「発振器」を含まないものに限定して解すること,
ができないことの証左ともいえる。
()原告主張の相違点②に対し2
ア原告は,引用発明においては,<ア>4000Hz以上の高い繰り返し周
波数が対象とされているとはいえない,<イ>各パルスの直後に次のパルス
に先立ち,放電後の分子を実質的に全て放電領域から除去しようという技
術思想は開示されていない,<ウ>4000Hz以上という高い繰り返し周
波数を実現するための具体的構成が開示されていない,と主張するが,以
下のとおり,失当である。
引用発明の記載された引用刊行物(甲3)には「本発明の好ましい実,
施形態は,10乃至40ワットの範囲におけるパワー出力を備える10乃
至5mJの範囲におけるパルスエネルギを備える1000乃至4000H
zの範囲で作動しうる(段落【0006)と明確に記載されているこ。」】
とから,上記記載に接した当業者は,引用発明にはパルスエネルギを40
00Hzで作動し得るものとする技術思想が記載されていることを容易に
首肯し得るといえる。
原告は,引用発明が公開された当時の技術としても,高くとも2500
パルス/秒2500Hz程度の繰り返し周波数しか用いられていなかっ()
たものであるから,引用発明において,4000Hzという極めて高い繰
り返し周波数が対象とされていると考えることは到底不可能である,と主
張する。
しかし引用発明においてリファレンスとして組み入れるとされた1,,「
998年12月15日に出願された米国特許出願シリアル番号09/21
1825号段,」(HighPulseRatePowerSystemwithResonantPowerSupply
落【0001〔2頁2欄45行∼47行)の特許明細書である米国特許】〕
6028872号公報(発明の名称「共振電源を備えた高パルス割合のパ
ルス電源システム,サイマー,インコーポレイテッド,2000年〔平」
成12年〕2月22日特許公報発行,乙6,7)の12欄7行∼14行に
は,高パルス速度パルス電源システムについて,以下の記載がある。
「当業者は,上記の開示に表された教示に基づいて,本発明の他の多
くの実施例が可能であることを理解するであろう。電圧値およびエネ
ルギー値のようなパラメータの多くは異なったものであってもよい。
リソグラフィーに使用される商業的なエキシマレーザーについては,
少なくとも1000Hzの充電速度が好ましいが,遥かに速い速度,
例えば2000Hzまたは5000Hz程度またはそれ以上が望まし
いことになろう」。
上記記載によれば,引用発明の出願当時の技術水準として,繰り返し周
波数を,5000Hz程度またはそれ以上とする技術思想が既に存在して
いたものといえ,引用発明の記載もかかる技術水準の存在を前提としてな
されているものである。
このことからみても,引用発明において,繰り返し周波数として400
0Hzが対象とされていることは明らかである。原告の主張は,失当であ
る。
イ放電後の分子を実質的に全て放電領域から除去することについて
(ア)引用発明は,レーザガスのガス速度は「次のパルスに関して丁度良
く電極間で新鮮なレーザガスを提供するのに十分である」ものである。
ここで,引用発明は「電極間で新鮮なレーザガスを提供する」もので
あることは,電極間に提供されるレーザガスが新鮮なものであることが
望ましいことを当然の前提としたものであるから,引用発明において,
放電によって生成されたイオンを,次のパルスに先立ち,できる限り除
去することは,当業者が当然考慮する程度のことというべきである。
したがって,引用発明において「第1(第2)のレーザガスのガス,
速度」を「放電によって生成されたイオンの実質的に全てを,次のパ,
ルスに先立ち」第1(第2)の放電領域から除去し得るガス速度に設定
することは,当業者が容易に想到し得る程度のことである。
(イ)しかるところ,審決が繰り返し周波数とガスフローの関係について
の周知技術を示すものとした特開平8−191163号公報(甲4,)
及び特開平9−228986号公報甲5には以下の記載がある下(),(
線は判決で付記。)
a甲4(特開平8−191163号公報,発明の名称「ガスレーザ装
置,出願人株式会社東芝,公開日平成8年7月23日)」
「0002】【
【従来の技術】一般に,ガスレーザ媒質を強制的に循環させるガス
レーザ装置においては,上記ガスレーザ媒質が封入される気密容器
を有する。この気密容器内には上記ガスレーザ媒質を強制的に循環
させるための送風機が配置されているとともに,そのガスレーザ媒
質の循環方向と交差する方向に所定の間隔で離間して一対の主電極
が配設されている。
【0003】上記一対の主電極間には所定のタイミングで主放電が点
弧される。それによって,一対の主電極間の空間部に流入したガス
レーザ媒質はその主放電によって励起されてレーザ光を発生するよ
うになっている。
【0004】主電極間の空間部で発生したレーザ光は,その主放電と
交差する方向に配設された光共振器で反射を繰り返すことで増幅さ
れ,所定の強度に達すると,上記光共振器の出力ミラー側から発振
出力される。また,ガスレーザ媒質は放電励起されることで温度上
昇する。そこで,上記気密容器内には,温度上昇したガスレーザ媒
質を冷却するための熱交換器が配置されている。
0005ところで上記送風機によって強制的に循環するガスレー【】,
ザ媒質は,一対の主電極間の空間部において流速分布が均一になら
ないということがある。図8に一対の主電極1,2間におけるガス
レーザ媒質Gの流速分布を示す。
【0006】すなわち,一対の主電極1,2間の空間部3を通過する
ガスレーザ媒質Gは,上記主電極1,2の離間方向中央部分に比べ
て表面近傍の方が抵抗が大きい。そのため,上記空間部3を流れる
ガスレーザ媒質Gの流速分布は,同図に曲線Xで示すように一対の
主電極1,2の離間方向中央部分が両端部分に比べて速くなること
が避けられない。
【0007】上記放電空間部3におけるガスレーザ媒質Gの流速分布
が一対の主電極1,2の離間方向において上述したごとく不均一と
,,,なるととくにレーザ発振の繰り返し数を高くした場合主電極1
2近傍ではガスレーザ媒質Gが確実に置換されないことがある。つ
まり,前回の主放電に寄与したガスレーザ媒質Gがつぎの主放電時
に空間部3に残留するということがある。
【0008】一度,主放電に使われたガスレーザ媒質Gには放電生成
物などの不純物が含まれる。そのため,その不純物によって一対の
主電極1,2間に点弧される主放電(グロー放電)が不安定となっ
てアーク放電の発生を招き,出力の低下を招いたり,主電極1,2
を早期に損傷させるなどのことがある。
【0009】一方,上記構成のガスレーザ装置において,動作可能な
パルス繰り返し数fは,放電の幅Lとガスレーザ媒質Gの流速vに
対してつぎの関係を有する。
f=v/(CR・L)…(1)式
図中CRはクリアラアンスレシオと呼ばれ,装置固有の値で,通常,
2∼5程度である。したがって,パルス繰り返し数fはガスレーザ
媒質Gの流速vによって決定されることになる。
【0010】ガスレーザ媒質Gの流速を高めるためには,上記送風機
mmとして静圧の大きい軸流型ファンが用いられている。直径60
程度のファン1つでは最大静圧がPa程度であるから,比重量330
がのガスレーザ媒質では流速vは最大で6となり,CR=0.43m/s
,。2のとき放電幅では動作可能な繰り返し数はとなる30mm100pps
【】,,0011したがってこれ以上のパルス繰り返し数を得たいとき
つまりレーザ光の出力を高くしたいときには,2つの軸流ファンを
直列に配置して静圧を増加させ,ガスレーザ媒質の流速を速くする
ことが考えられる(2頁1欄41行∼3頁3欄6行)。」
b甲5(特開平9−228986号公報,発明の名称「タイミングを
」,,調整できる送風機モータ出願人サイマーインコーポレイテッド
公開日平成9年9月2日)
「【】,,。0003エキシマレーザは一般にパルスモードで動作する
放電領域内のガスに,基底即ち初期熱状態に復帰させるに充分な時
間を与えるためにパルス動作が必要とされる。静的なガスシステム
では,ガスがこの状態に到達するのにほぼ1秒の時間を必要とし,
従って,繰り返し率を甚だしく制限する。近代的なレーザシステム
は,通常,ガスを循環するための接線方向送風機ファンを用いて,
ガス放電領域内のガスを能動的に循環することにより,高い繰り返
し率を得ている。
【0004】
【発明が解決しようとする課題】特定の繰り返し率を維持するのに必
要なガスの流量は,次の式を用いて決定することができる。
クリア比=(流量)/〔放電巾(繰り返し率〕())
一般に,安定した放電を得るには,クリア比は,3で充分であると
考えられる。しかしながら,パルス対パルスのエネルギー安定性を
保証するためには,クリア比は,5ないし6であるのが好ましい。
約1000ないし2000Hzの繰り返し率を維持するに必要なク
リア比を得るためには,高いガス流量,ひいては,高い送風機ファ
ン速度が必要とされる(3頁4欄40行∼4頁5欄10行,。」)
「0014】エキシマレーザにおいては,パルス率が通常はかなり【
低い。ガスが静的である場合には,放電領域内のガス体積に,レー
ザパルスとレーザパルスとの間にその初期の熱的状態に復帰させる
に充分な時間を与えねばならない。一般的に,この復帰時間は1秒
程度であり,従って,静的ガスシステムのパルス率は約1パルス/
秒に制限される。ガスが循環される場合には,パルス率を増加する
ことができる。レーザを放電できる繰り返し率は,循環速度と,放
電体積内のガス体積が交換される率とに基づく。従って,循環速度
が高いほど,達成できる繰り返し率が高くなる(4頁6欄40行。」
∼50行)
(ウ)上記のとおり,甲4,5には,電極間の空間(放電領域)に強制的
にレーザガスを循環させながらレーザ光を得る装置においては,繰り返
し周波数に応じてレーザガスのガス速度が設定される技術が開示されて
おり,これによれば,当該技術は,本願の優先日当時の周知技術であっ
たといえる。
そうすると,4000Hzの繰り返し数でパルスレーザを生成する引
用発明において,ガス速度を,繰り返し数である4000Hzに応じた
ものに設定することは,当業者が適宜なし得る程度のことである。
ここで,上記のとおり,引用発明において「第1(第2)のレーザ,
ガス…実質的に全てを…除去し得る」ガス速度に設定することは,当業
,,,者が容易に想到し得る程度のことであるから結局引用発明において
「第1(第2)のレーザガスのガス速度」を「4000Hzの繰り返,
し数でレーザガスを生成する時に…実質的に全てを…除去し得る」もの
に設定し,これにより相違点1に係る本願発明の構成を得ることは,当
業者が容易になし得たものというべきである。
したがって,引用発明において,4000Hzの繰り返し数でレーザ
パルスを生成するに当たり,第1(第2)のレーザガスのガス速度を,
放電によって生成されたイオンの実質的に全てを,次のパルスに先立ち
第1(第2)の放電領域から除去し得るガス速度に設定することは,当
業者が容易に着想できたことであるとした審決(14頁5行∼16行)
の判断に誤りはない。
原告は,本願発明は,高い繰り返し周波数を採用したため,放電領域
から実質的に全ての残存ガスを除去し,生成されたイオンを実質的に除
去しようとするものである,として「次のパルスに関して丁度良い」,
程度に残存ガスの除去を図る引用発明との相違を主張する。
しかし,本願明細書には「MOPAの好適な実施例においては,…,
4000Hz又はそれ以上のパルス率で動作できるのにするためのガス
流を作り出す(段落【0010)との一般的な記載,ガス速度につ。」】
いて「約80m/sの速度のレーザガス流(段落【0017「最」】),
大約67m/sのガス流(段落【0117)及び「67m/秒のガス」】
流(段落【0121)との具体的な値の記載があるにとどまり,高い」】
繰り返し周波数を採用することと,放電領域から実質的に全ての残存ガ
スを除去することとの関係を窺わせる記載は存在しないから,原告の主
張は,本願明細書の記載に基づかないものである。
これをひとまずおくとしても,上記のとおり,引用発明において,放
電によって生成されたイオンを,次のパルスに先立ち,できる限り除去
することは,当業者が当然考慮する程度のことであって,引用発明にお
いて「第1(第2)のレーザガス…実質的に全てを…除去し得る」ガ,
ス速度に設定することは,当業者が容易に想到し得る程度のことである
から,原告の上記主張は,審決(14頁5行∼16行)の判断を左右す
るものではない。
さらに原告は,引用発明には,本願発明の構成である「放電によって
生成されたイオンの実質的に全てを,…除去し得る…ガス速度を作り出
す(第1及び第2の)ファン」は一切記載も示唆もされていないので,
引用発明の第1第2のブロアは本願発明の第1第2のファ「()」「()
ン」に相当するものではないと主張する。
原告の上記主張は,一致点の誤認に基づく相違点の看過をいうものと
解される。
しかし,審決は,引用発明の「第1(第2)のブロア」なる構成が本
願発明の「第1(第2)のファン」なる構成に相当すると判断し(11
頁9行∼18行「放電によって生成されたイオンを,…除去し得る…),
ガス速度を作り出す」限りにおいて両者が一致すると認定した(11頁
25行∼30行)のであって,除去されるイオンが,放電によって生成
されたイオンの「実質的に全て」であることまで一致すると認定してい
ないことは,審決が,本願発明の構成である「第1(第2)のレーザガ
」「『,スのガス速度が放電によって生成されたイオンの実質的に全てを
次のパルスに先立ち』…除去し得る」点を相違点1として認定した(1
3頁17行∼29行)上で,相違点1について判断したものであること
からも明らかである。
したがって,審決が相違点を看過したものということはできない。
そして,審決の相違点1の判断に誤りのないことは,上記のとおりで
ある。原告の主張は,審決を正解しないものであって,失当である。
ウ(ア)加えて「第1(第2)のファン」の構造について,引用発明の記,
載された引用刊行物(甲3)には,図14A及び図14Bとともに以下
の記載がある。
「0021】ファン改良【
本発明のこの好ましい実施形態は,従来技術のガスサーキュレータに
おける大きな改良を含んでおり,レーザの性能を大きく改善する。こ
れらの改良は,鑞付けなしのブロワーブレード構造の構築である。共
鳴の影響を大幅に低減する非対称ブレード配置と,改良されたベアリ
ングである。

【0024】ファン構造設計における改良は,図14Aに示したよう
な非対称ブレード配置を必要とする。ファンブレード構造が16の個
々に加工されたもので形成され,若しくは,23のブレードを備える
各セグメントを有するカートセグメントである図14Bに示したよう
な変形実施形態は,°/(×)だけ,又は,隣接するセグ3601523
メントに対して約1°だけ各セグメントを回転することである(6。」
頁9欄38行∼同10欄39行)
(イ)上記において「ファンブレード構造が16の個々に加工されたも,
ので形成され,若しくは,23のブレードを備える各セグメントを有す
360るカートセグメントである図14Bに示したような変形実施形態は,
°/(×)だけ,又は,隣接するセグメントに対して約1°だけ1523
各セグメントを回転」したもの及び「図14Aに示したような非対称ブ
レード配置」したものは,それぞれ,本願明細書の段落【0121】及
び図面【図18A】に記載の「斜視図を図18Aに示す。ブレード構,
造は5インチ径を有し,中実アルミニウム製合金6061−T6棒材か
ら機械加工される。各部の個々のブレードは,図18Aに示すように,
隣接部と若干オフセットされている」もの及び「個々のブレードを,。
ブレード軸に対して若干角度を付け」たものに相当する。
そうすると,引用発明の「第1(第2)のブロア」のファン構造は,
本願明細書及び図面に記載の「毎秒4000パルスまたはそれ以上の,
範囲」の繰り返し周波数での動作が可能なガス速度を作り出せるファン
と同じ構造のものである。
このことからみても審決11頁9行∼18行が引用発明の第,(),「
1(第2)のブロア」は,本願発明の「第1(第2)のファン」に相当
すると判断したことに誤りはない。
エ4000Hz以上の繰り返し周波数を実現するための具体的構成につい

,,原告は高い流速を設定することから生じる諸問題を克服することには
当然に技術的に困難を伴うと主張し,その一例として,本願発明において
は,共振電源を採用していることを挙げ,引用刊行物(甲3)の実施例に
記載された電源を用いたのでは,4000Hzの繰り返し周波数を実現す
ることは不可能であると主張する。
しかし,上記実施例に記載された電源を用いたのでは4000Hzの繰
り返し周波数を実現することが不可能であるとの原告の主張は,それ自体
根拠を欠くものであって,失当である。そもそも,本願発明は,審決が認
,「」,定したとおりのものであるところ原告が例として挙げる共振電源は
本願発明の要旨とするものではないから,これをもって引用発明との差異
を論じることには意味がない。
しかるところ,上記のとおり,引用刊行物(甲3)の記載に接した当業
者は,引用発明にはパルスエネルギを4000Hzで作動し得るものとす
る技術思想が記載されていることを容易に首肯し得るといえる。
また,引用発明を実施するに当たり,当業者は,引用刊行物に記載され
た実施例に限らず,適宜設計的に当業者が利用可能な手段を採用し得るも
のというべきところ,引用刊行物にレファレンスとして組み入れられ,繰
り返し周波数を5000Hz程度またはそれ以上とする技術思想が明示さ
れている上記乙6の9欄54行∼10欄3行には,以下の記載がある。
「共振充電
本発明の好ましい実施例において,図1および図2に示した第一の
好ましい実施例について説明した二つの整流器,一つのインバータお
よび一つの変圧器を利用する電源モジュールが,規格品の電源および
共振充電回路で置換される。この後者のアプローチは,充電キャパシ
タの遥かに速い充電を提供する。
第一の共振充電器
この好ましい実施例を示す電気回路が図9Aに示されている。この
場合,の入力およびの出力を有す480VAC/40amp1200VDC50amp
る標準のキャパシタ充電電源が使用される。このような電源は,200
,,およびのような供給業者から入手可能でEcgarMaxwellKaiserAle
ある」。
上記によれば,引用発明の出願当時の技術水準として,原告のいう共振電
源を用いる技術が存在していたものといえるから,電源の構成をもって引用
発明が実施不可能であるということはできない。
第4当裁判所の判断
1請求原因()(特許庁における手続の経緯,()(発明の内容,()(審決123))
の内容)の各事実は,いずれも当事者間に争いがない。
2取消事由の有無
()原告は,審決が本願発明と引用発明との相違点を看過したものであると1
し,具体的には,①本願発明の第2のレーザユニットは「増幅器」として構
成されているのに対し,引用発明の第2のレーザユニットは「発振器」で構
成されている点,②引用発明は繰り返し周波数が1000Hzであるのに対
し,本願発明は4000Hz以上という極めて高い繰り返し周波数を対象と
したシステムであり,かかる繰り返し周波数を実現するために,従来には存
在し得なかった非常に高いガス流速を設定して,放電領域内から実質的に全
ての残存ガスを除去するものである点,の2点が看過された相違点である旨
主張するので,以下検討する。
ア本願明細書(甲22〔特許願〕及び甲2〔平成17年1月12日付け手
続補正書)には,以下の記載がある。〕
(ア)特許請求の範囲の請求項1は,前記第3,1()記載のとおりであ2
る。
(イ)発明の詳細な説明の記載
・「本発明は,放電ガスレーザ,特に,超狭帯域・高反復率・種注入
式のガス放電型レーザに関する。…(段落【0001)」】
・「従来の技術】【
放電ガスレーザ
放電ガスレーザは周知のものであり,1960年代にレーザが発
明されて間もない頃から現在まで広く利用されている。2つの電極
間の高電圧放電によりレーザガスが励起されることにより,ガス状
の利得媒体が生成される。この利得媒体の入った共振空洞は,光の
誘導増幅を可能とし増幅された光がレーザビームとして取り出され
るこれら放電ガスレーザの多くはパルスモードで作動される段。。」(
落【0002)】
・「エキシマレーザ
エキシマレーザは,放電ガスレーザの内の特定形式であり,19
70年代半ばから知られている。集積回路パターン転写に有用なエ
キシマレーザの詳細は,1991年6月11日発行の『Compa
ctExcimaLaser』と題する米国特許第5,023,
884号(以下「884特許」という)に記載されている。この特‘
許は出願人の雇用主に譲渡されている。尚,この特許を本明細書の
参考文献として参照されたい。上記‘884特許に記載されている
エキシマレーザは,高反復率(高繰返し率)パルスレーザである。
これらのエキシマレーザが集積回路パターン転写に使用される際に
は,通常『24時間体制で』時間当り何千個もの高価な集積回路を,
生産する集積回路製造ラインで稼動される。従って,その停止時間
は非常に高くつく可能性がある。このため,構成部品の大部分は,
数分以内で交換可能なモジュールで各々構成される。通常,パター
ン転写に使用されるエキシマレーザでは,出力ビームの帯域幅を数
。『』,,ピコメートルまで狭める必要があるこの線幅狭小化は通常
レーザの共振空洞の背面を形成する線幅狭小化モジュール(線幅狭『
』『』)。小化パッケージ又はLNPと呼ばれるにおいて行なわれる
このLNPは,プリズム,ミラー,回折格子等の繊細な光学素子で
構成される。…(段落【0003)」】
・「種注入
(エキシマレーザシステムを含む)ガス放電型レーザシステム
の帯域幅を狭めるための公知手法には,狭帯域『種』ビームを利得
媒体に注入するものがあるこのようなシステムの1つでは種ビー。,
ムを生成する『主発振器』と呼ばれるレーザは,第1の利得媒体に
おいて非常に狭い帯域幅即ち超狭帯域幅のビームを作り出すように
設計され,このビームが第2の利得媒体において種ビームとして使
用される。第2利得媒体が電力増幅器として機能する場合,このシ
ステムを,主発振器電力増幅器(MOPA)システムという。第2
利得媒体自体が共振空洞を有する場合,このシステムを,種注入発
振器(ISO)システム又は主発振器電力発振器(MOPO)シス
テムといい,この場合,種レーザを主発振器と呼び,下流側のシス
テムを電力発振器と呼ぶ。2つの個別システムで構成されるレーザ
システムは,同等の単一室レーザシステムに比較してかなり高価で
あり更により大きく複雑になる傾向があるそのために2室レー,。,
。」(【】)ザの商業的用途は制約されたものとなっている段落0008
・「課題を解決するための手段】【
本発明は,約4,000Hz又はそれ以上のパルス率及び約5m
Jから10mJ又はそれ以上のパルスエネルギーで,高品質のパル
スレーザビームを生成することができる種注入モジュール式のガス
放電型レーザシステムを提供する。2つの個別放電室が設けられ,
それらの一方の放電室は,超狭帯域種ビームを生成する主発振器の
一部となり,生成された超狭帯域種ビームが第2の放電室において
増幅される。各放電室は,主発振器における波長のパラメータ及び
増幅室におけるパルスエネルギーのパラメータの双方を最適化でき
るように個々に制御することができる。好適な実施形態では,MO
PAとして構成されるとともに,特に集積回路パターン転写用の光
源として使用するために設計されたArFエキシマレーザシステム
とされる。MOPAの好適な実施形態においては,各放電室は単一
の横流ファンを備え,この横流ファンは,各パルス間で約0.25
ミリ秒未満の時間内に放電領域から残存物を除去することによって
4000Hz又はそれ以上のパルス率で動作できるのにするための
ガス流を作り出す。主発振器には,線幅狭小化パッケージが設けら
れ,この線幅狭小化パッケージは,4000Hz又はそれ以上の反
復率でパルス対パルスに基づいて中心線の波長を制御するとともに
0.2pm(FWHM)未満の帯域幅を作り出すことができる超高
速調整ミラーを備える(段落【0010)。」】
・「発明の実施の形態】【
第1実施形態
全体レイアウト−3波長対応プラットホーム
図1は,本発明による第1の好適な実施形態の斜視図である。本
実施形態は,MOPAレーザシステムとして構成された種注入狭帯
域エキシマレーザシステムである。このシステムは,特に,集積回
路パターン転写用の光源としての使用するために設計されている。
従来型パターン転写レーザと比較して本実施形態において例証され
る本発明の主要改良点は,種注入,及び,特に,2つの個別放電室
()。」を有する主発振器電力増幅器MOPA構成を利用した点にある
(段落【0011)】
・「本第1実施形態は,アルゴン−弗化物(ArF)エキシマレーザ
システムであるが,本システムは,クリプトン−弗化物(KrF,)
ArF,又はフッ素(F2)レーザ部品のいずれにも適応するよう
に設計されたモジュール型プラットホーム構成を使用している。こ
のプラットホーム設計によって,これら3種類のレーザのいずれに
対しても,同一の基本キャビネット及び多くのレーザシステムモジ
ュールや部品を使用することができる。これら3種類のレーザ設計
が,KrFについて約248nm,ArFについて約193nm,
そして,F2について約157.63nmの波長を持つレーザビー
ムを生成することから,出願人は,このプラットホームを『3波長
対応プラットホーム』と呼ぶ。また,本プラットホームは,3つの
波長の各々において上記装置の大手メーカ全ての最新パターン転写
装置にこのレーザシステムを適合させるための接続部品を備えるよ
うに設計される(段落【0012)。」】
・「図1は,この好適なレーザシステム2の主要部品を示す。主要部
品としては以下のものが含まれる。
(1)AD/DC電源モジュールを除くレーザの全モジュールを収納
するように設計されたレーザシステムフレーム4(2)AC/DC,
高電圧電源モジュール6(3)4000充電パルス/秒の繰返し数,
で約1000ボルトに2つの充電コンデンサ列を充電するための共
振充電器モジュール7(4)各々が上記充電コンデンサ列の1つを,
備えるとともに,各々が充電コンデンサ列に蓄積されたエネルギー
によって約16,000ボルトの非常に短い高電圧電気的パルス及
び約1μsの持続時間を形成する整流子を備える2つの整流子モジ
,(),ュール8A及び8B5フレーム4内に上下配置で取り付けられ
主発振器モジュール10及び電力増幅器モジュール12から成る2
つの放電室モジュール。各モジュールは,放電室10A及び12A
と各放電室の上面に取り付けられた圧縮ヘッド10B及びと12B
。,,を備える各圧縮ヘッドは整流子モジュールからの電気パルスを
それに対応して電流増加させながら約1μsから約50nmに(時
間に関して)圧縮する(6)線幅狭小化パッケージ10C及び出力。
カプラユニット10Dを含む主発振器光学部品(7)種ビームを整,
形して電力増幅器に導くとともに,MO出力電力をモニタする光学
部品及び計器を備えた波面操作ボックス14(8)波長モニタ,帯,
域幅モニタ,及びエネルギーモニタを備えたビーム安定器モジュー
ル16(9)シャッタモジュール18(10)ガス制御モジュー,,
ル20,冷却水配送モジュール22,及び,換気モジュール24が
,(),設置される補助キャビネット11関連機器接続モジュール26
(),()。」12レーザ制御モジュール28及び13状態ランプ30
(段落【0013)】
・「本明細書において詳細に説明するこの好適な実施形態は,上述し
たArF・MOPA構成である。この特定構成を他の構成に変える
,。,ために必要な変更点の一部は以下のものであるMOPA設計は
第2放電室の周辺に共振空洞を作ることによってMOPO設計に変
更することができる。これを行うために数多くの手法を利用するこ
とができるが,その一部は,本明細書に参考文献として記載した関
連特許出願で論じられている。KrFレーザ設計は,ArF設計と
極めて類似したものとなる傾向があるので,本明細書に記載された
構成の大部分はKrFレーザに直接適用することができる。実際,
,両レーザの波長が回折格子の列間隔の整数倍数に相当することから
ArFレーザ動作に使用される好適な回折格子は,KrFレーザで
も正常に機能する(段落【0014)。」】
・「この設計をFレーザに使用する場合,固有F2スペクトルは一2
方が選択されて他方が除外される2つの主要線幅を含むため,MO
PA又はMOPOのいずれか,好ましくは,線幅セレクタユニット
が本明細書に記載されたLNPの代わりに使用される段落0,。」(【
015)】
・「電力増幅器は,電力増幅器放電室の放電領域を通る2つのビーム
経路用に構成される。図3A及び図3Bは,主発振器及び電力増幅
器を通るビーム経路を示す。図3Aに示すように,数回発振された
ビームは,MO10の放電室10A及びLNP10Cを通過し,L
NP10Cを通過時に大幅に線幅狭小化される。線幅狭小化された
種ビームは,ミラー14Aによって上方に反射され,ミラー14B
によって(電極の向きに対して)僅かなスキュー角を持って水平に
反射され放電室12Aを通過する。2つのミラー12C及び12D
は,電力増幅器の後端部にて,図3Bに示す電極の向きに一致して
水平方向にPA放電室12Aを貫通する第2経路に対して上記線幅
狭小化種ビームを反射する(段落【0019)。」】
・「共振充電
出願人は,Cの超高速充電のための2つの形式の共振充電システ0
ムを利用した。これらのシステムは,図5A及び図5Bを参照して
説明することができる。
共振充電器
。,この好適な共振充電器を示す電気回路を図5Aに示すこの場合
交流208V/90amp入力及び直流1500V・50amp出
力を有する標準直流電源200が使用される。電源は,約600V
から1500Vに調整可能な直流電源である。電源は,C−1に直
,。接取り付けられるので電源への電圧フィードバックが不要となる
,。電源がオンされるとC−1コンデンサの電圧が一定に調整される
システムの性能は,C−1の電圧調整とは無関係な面があるので,
電源では,最も基本的な制御ループのみが必要である。第2に,電
源は,C−1の電圧が電圧設定値を下回る場合には常にシステムに
エネルギーを加えるようになっている。これによって,電源つまり
各レーザパルスが初期化される間の時間全体わたって(及び,レー
ザパルス時も,C−1からCへの供給エネルギーを補給すること)0
ができる。これによって,従来のパルス電力システムと比較して,
電源ピーク電流に対する要件は更に緩和される。最も基本的な制御
ループを備えた電源が必要なこと,及びシステムの平均電力要件に
対して電源のピーク電流定格値を最小限に抑えることを組み合わせ
ることによって,電源コストは,推定で50%低減される。更に,
一定電流で一定出力の電圧電源は,複数の供給元から容易に入手可
能であることから,この好適な設計によって販売業者選定に関する
自由度が生まれる。このような電源は,Elgar,Univer
salVoltronics,Kasier及びEMIから販売さ
れている(段落【0022)。」】
・「システム精度
IGBTスイッチ206が開放された後,インダクタ208の磁
場内に蓄積されたエネルギーは,束縛のないダイオード経路215
を介して(MO及びPA用Cの)2つのコンデンサ列42に移送さ0
れる。リアルタイムのエネルギー算出精度によって,コンデンサ列
42の最終電圧に存在する変動ディザー量が決まる。本システムの
高い充電速度により,過大なディザーが存在して±0.05%の目
標とするシステム調整要求量を満足することができない可能性があ
る。その場合は,例えば,以下で説明するデキューイング(De−
Qing)回路又はブリードダウン回路など,追加の回路を利用す
ることができる(段落【0024)。」】
・「第2の共振充電器
第2の共振充電器システムを図5Bに示す。この回路は図5Aに示
すものと類似している。主な回路要素は以下のものである。
I1−定DC電流出力を有する三相電源300,
C−1−既存のCコンデンサ42と同容量又はそれより容量の0
大きいソースコンデンサ302,
Q1,Q2,及びQ3−Cの調整電圧を充電及び維持するため0
の電流を制御するスイッチ類,
D1,D2,及びD3−電流を一方向に流すためのダイオード,
R1及びR2−制御回路に電圧フィードバックするための抵抗,
R3−若干過充電が生じた際,Cの電圧を急速放電させるため0
の抵抗,
L1−電流を制限し電荷移送タイミングを調整するC−1コンデ
ンサ302とCコンデンサ列42間の共振インダクタ,及び0
制御盤304−回路フィードバックパラメータに基づいてQ1,
Q2,及びQ3の開閉を指令する(段落【0025)。」】
・「レーザ室
熱交換器
この実施形態は,4,000パルス/秒のパルス反復率で動作す
るように設計される。パルス間の放電の影響を受けたガスの放電領
域を清掃するには,電極18Aと電極20Aとの間に最大約67m
/sのガス流が必要である。この速度を達成するために,横流ファ
ンユニットの径は5インチ(ブレード構造体の長さは26インチ)
,。に設定されており回転速度は約3500rpmに上げられている
この性能を達成するために,実施形態は,協働して最大4kWの駆
動電力をファンブレード構造体に送る2つモータを利用する。40
00Hzのパルス速度で,放電によって約12kWの熱エネルギー
がレーザガスに付与される。ファンによって付加された熱と共に放
電によって生成された熱を除去するために,4つの個別の水冷式フ
ィン付き熱交換器ユニット58Aが設けられる。以下,モータ及び
熱交換器について詳細に説明する。本発明の好適な実施形態は,図
4に全体的に示す4つの水冷式フィン付き熱交換器58Aを利用す
る。これらの熱交換器の各々は,図1で58に示す単一の熱交換器
に多少類似するが実質的な改良点がある(段落【0117)。」】
・「ブロアモータ及び大型ブロア
本発明のこの第1の好適な実施形態では,レーザガスを循環させ
る2台のモータによって駆動される大型横流ファンが設置される。
,,,図24に示すこの好適な配置によって4000Hzパルス間で
放電領域内の約1.7cmの空間を通過し得る67m/秒のガス流
が電極間に作り出される。ファンのブレード構造の断面を図4に参
照番号64Aで示す。斜視図を図18Aに示す。ブレード構造は5
インチ径を有し,中実アルミニウム製合金6061−T6棒材から
。,,機械加工される各部の個々のブレードは図18Aに示すように
隣接部と若干オフセットされている。このオフセットは,圧力波面
の生成を防止するように予め不均一にされている。代案として(圧,
力波面の生成を防止するように)個々のブレードを,ブレード軸に
対して若干角度を付けることができる(段落【0121)。」】
(ウ)図面(かっこ内は【図面の簡単な説明】の記載である)
・図1(本発明の好適な実施形態の斜視図である)【】。
・図3A(2経路MOPAを示す図である)【】。
・図3B(2経路MOPAを示す図である)【】。
・図5(パルス電力システムの他の構成を示す図である)【】。
・図5A(パルス電力システムの他の構成を示す図である)【】。
・図5B(パルス電力システムの他の構成を示す図である)【】。
・図18A(好適なファンブレ−ドを示す図である)【】。
(エ)本願発明の「電力増幅器」の技術的意義について,本願発明の電力
増幅器がパワー増幅器として構成されることに争いがないところ,被告
は,パワー増幅器とはその文言から「レーザ光のパワー(出力)を増幅
する機能を有する機器であること」が一義的に明確に理解でき,発明の
詳細な説明の記載を参酌すべき特段の事情はないとして請求項1のパ,「
ワー増幅器(電力増幅器」を読み替えたもの)に関し発振機能の有無」「
を特定する記載がないから,本願発明の「パワー増幅器」は,発振機能
の有無に拘わらずレーザ光のパワー(出力)を増幅する機能を有する機
器であれば足りると主張する。
しかし「パワー増幅器」の意味について「レーザ光の出力を増幅す,,
る機能を有する機器であること」については一応理解できるものの,特
許請求の範囲の記載のみからは「パワー増幅器」について,発振機能,
の有無に拘わらずレーザ光の出力を増幅する機能を有すれば足りるも
,,のすなわち発振機能を持たないパワー増幅器に限定されるものでない
と直ちに理解することはできない。
そして上記(ア)ないし(ウ)の記載によれば,本願発明は,以下のとお
りの内容のものであることが認められる。
本願発明は,集積回路パターン転写用のレーザ光源に用いられる放電
ガスレーザ(段落【0003・0011)であり,特に超狭帯域・】【】
高反復率・種注入式のガス放電型レーザに関するものである(段落【0
001。この放電ガスレーザのうちの特定の形式であるエキシマガス】)
レーザは,高反復率パルスレーザとして実用に供されるところ,その装
置は通常24時間体制で稼働するため一部の構成が停止すると工場全体
に大きな影響を及ぼすこととなる。そこでこれら装置は,簡単に一部分
のみの交換が可能なモジュールの集成として構成される(段落【000
3【図1。このようなレーザシステムは,電源を除くレーザの全】,】)
モジュールを収納するレーザシステムフレーム,電源モジュール,共振
,(【】)。電源モジュール放電室モジュール等から構成される段落0013
本願発明は,A)第1のレーザユニット,B)第2のレーザユニット,
C)パルス電力装置,D)レーザビーム測定・制御装置から成り,第1
のレーザユニットは主発振器として構成され,第2のレーザユニットは
()()。電力増幅器パワー増幅器として構成される特許請求の範囲の記載
そして,本願発明の第2のレーザユニットは,上記のとおり電力増幅
()(),器パワー増幅器として構成される特許請求の範囲の記載ところ
従来公知のシステムにおいては,第2利得媒体(第2のレーザユニット
に相当)が電力増幅器として機能する場合,主発振器電力増幅器(MO
PA)システムといい,第2利得媒体が共振空洞を有する場合,主発振
器電力発振器(MOPO)システムという(段落【0008。】)
その上で本願は,好適な実施形態では「MOPA(第2のレーザユ」
ニットが増幅器であるもの)として構成される(段落【0010)と】
するがMOPA設計は第2放電室の周辺に共振空洞を造ることによっ,,
てMOPO設計(第2のレーザユニットが発振器であるもの)に変更す
ることができる(段落【0014)とし,MOPA構成とMOPO構】
成のいずれをも採用しうるレーザについての開示もある(段落【001
5。そして特許請求の範囲には,第2のレーザユニットに関しては電】)
力(パワー)増幅器とのみ記載されており,発振機能を有しないものに
限定する旨の記載はない。
(オ)レーザーに関する文献である甲15∼17には,以下の記載がある
(本願の優先日〔平成12年10月6日〕以後に発行された文献もある
が,本願優先日当時の技術水準を示すものとして争いがない。)
a甲15(黒澤宏「レーザー基礎の基礎・平成18年10月19日」
第1版第3刷発行・株式会社オプトロニクス社・36頁∼38頁)
「…反転分布を生じた媒質中を,その準位間のエネルギー差に相当
する振動数の光が伝搬するとき,誘導放出が起こり,光は増幅され
てレーザー発振に至ることになります。…
この場合,媒質外から光を入射させなくても,媒質中で生じた自
然放出光を”たね”に誘導放出が起こります。ただし,媒質の単位
長さ当たりの増幅度は小さいので,レーザー発振を起こさせるため
には,非常に長い媒質が必要になります。しかしながら,実際にそ
のような長い媒質を作ることは不可能で,また実用的でもないこと
から,短い媒質の両端に反射鏡を置いて,光を何回もこの媒質中を
往復させることによって,媒質との作用長を実質的に長くしていま
す。このように2枚1組の反射鏡によって光を反射往復させる仕組
みを”光共振器”と言います」。
b甲16(潮秀樹「図解入門よくわかる光学とレーザーの基本と仕
組み・2007年〔平成19年〕9月1日第1版第2刷発行・株式」
会社秀和システム・212頁)
「レーザー発振の仕組み
すべてのレーザーは,レーザー媒質と平行な2枚の鏡からでき*
ています。レーザー媒質は,反転分布状態になって誘導放出により
光を放出する物質です。
…最初にレーザー媒質から自然放出された光は鏡で反射され,
レーザー媒質に入射します。誘導放出で増幅された光が再び鏡で反
射されレーザー媒質に入射します。これを繰り返すことにより,ね
ずみ算的に光が増幅され,…」
c甲17(田幸敏治,大井みさほ「光学技術シリーズ12レーザー
入門」1997年〔平成9年〕6月10日初版第6刷発行・共立出版
株式会社・13頁∼14頁)
「…このように,光共振器は,光をその中に閉じ込め,定在波を形
成し出てくるレーザー光の特性を決める作用をするはじめのきっ,。
かけは自然放出光であって,それが誘導放出光を引きだす…軸方向
に進む光は誘導放出光を引きだすことによって増幅されながら反射
鏡間を往復し続け,共振器の共振モードに規定される定在波を形成
し,発振に至るのである」。
(カ)また,発振器に関する技術文献である甲20,21には,以下の記
載がある(本願の優先日以後に発行された文献につき本願優先日当時の
技術水準を示すものとして争いがない。)
a甲20(物理学辞典・1996年〔平成8年〕10月15日改訂「」
第3刷発行・株式会社培風館・1621頁)
「発振器[英…]外部入力信号なしに特定の周波数のoscillator,
波形を定常的に発生するものをいう.増幅器の出力が特定の周波数
に対し十分な利得で正帰還されて発振する.帰還回路を抵抗とコン
デンサーで構成したものがCR発振器で約1MHz以下の低い周波
発生に適している.帰還回路がコイルとコンデンサーからなる共振
回路で構成されたものをLC発振器といい,通常0.1MHz程度
以上の高い周波数に適している.…」
b甲21(理化学辞典・2003年〔平成15年〕11月10日第「」
5版第7刷発行・株式会社岩波書店・1052頁)
「発振器[英…]周期性をもつ信号を持続的に発生すoscillator,
る装置ふつうは電気信号の場合をさし増幅器に正のフィードバッ.,
**
クを組み合わせた反結合型が多く,発振条件はナイキストの定理
で求められる.代表的な正弦波発振器は増幅器に真空管またはトラ
ンジスターを用いており,出力の位相は入力とπだけ違っているの
で,RC回路を組み合わせて位相をさらにずらしてフィードバック
すれば,適当な周波数に対して発振条件がみたされ,超低周波から
10MHz程度までの発振が可能である.…」
(キ)そして,本願の優先日(平成12年10月6日)当時の「発振器」
ないし「増幅器」に関する技術常識を示す証拠として被告が提出する乙
1∼5には,以下の記載がある(下線は判決で付記。)
a乙1(特開平9−8389号公報。発明の名称「狭帯域化エキシマ
レーザー発振器,出願人三菱重工業株式会社,公開日平成9年1」
月10日)の【発明の詳細な説明】
・「従来の技術】エキシマレーザー発振器は,エキシマ(二つ【
の原子が付着したゆるやかな結合状態の分子)状態から基底状
態へ,紫外域の誘導放出光を出して遷移することを利用したも
のである。このエキシマレーザー発振器は,一般には,放電に
より励起している。つまり,レーザー管には希ガスとハロゲン
元素とでなるレーザー媒質(混合ガス)が封入されており,放
電を均一化し効率を上げるため予備放電電極により予備放電を
した後,主放電電極がグロー放電して,レーザー発振が行なわ
れる(段落【0002)。」】
・「ここで従来のエキシマレーザー発振器の一例を,図4を基に
説明する。図4に示すようにこのエキシマレーザー発振器は,
主に発振器10と増幅器20とで構成されている(段落【0。」
003)】
・「このうち発振器10では,レーザー媒質(希ガスとハロゲン
元素との混合ガス)11が封入されたレーザー管12を間にし
て,一対のアパーチャ(孔直径が2∼3)13a,13bmm
が配置されている。更にアパーチャ13aの外側(図中左側)
,()に出力鏡14が備えられアパーチャ13bの外側図中右側
にビーム拡大素子プリズム15及び波長分散性光学素子反()(
射式回折格子)16が備えられている(段落【0004)。」】
・「レーザー管12の放電電極(図示省略)の放電により生じた
光は,出力鏡14と波長分散性光学素子16とで反射され両者
の間で往復する。つまり出力鏡14と波長分散性光学素子16
とにより光共振器が構成されている。3つのプリズムで構成し
たビーム拡大素子15は,アパーチャ13bから出力された光
()。を拡大光断面積を拡大して波長分散性光学素子16に送る
波長分散性光学素子16は,回折現象を利用して入射光を分光
し,特定の波長(次数)の光成分のみを反射する。反射した光
は,ビーム拡大素子15により光断面積が絞られてアパーチャ
13bに戻っていく。よって光は特定の波長幅に絞られて狭帯
域化される。また,光はアパーチャ13a,13bを通過する
ことにより拡がり角が制限されて高次の横モード発振が制限さ
れ,光の質が向上する。結局,波長分散性光学素子16の波長
選択機能と,アパーチャ13a,13bの横モード発振制限機
能とが相俟って,光が狭帯域化しきれいなスペクトルが得られ
る。更に光はレーザー管12を通過する毎に増幅される。そし
て光強度が発振しきい値を越えたら,出力鏡14からレーザー
光Lが出力される(段落【0005)。」】
・「一方,増幅器20では,レーザー媒質21が封入されたレー
ザー管22を間にして,孔付き凹面鏡23a及び凸面鏡23b
が相対向して配置されている。この鏡23a,23bにより不
,,安定共振器23が形成されており凸面鏡23bの中心部には
レーザー光Lつまり発振波長の光成分を100%反射するコー
ティングが施こされている。更に,レーザー光Lをレーザー管
22に導くミラー24,25が備えられている(段落【00。」
06)】
・「この増幅器20では,発振器10から出力されたレーザー光
Lを,ミラー24,25で導びいてレーザー管21に通過させ
ることにより,光強度を増幅する。更にレーザー光Lを不安定
共振器23の凸面鏡23a及び凹面鏡23bで反射させること
により,光断面積の大きな平行光線としている。よって光断面
積の大きな平行光線となった光強度の高いレーザー光Lが出力
(凸面鏡23bから図中右方に出力)される(段落【000。」
7】
・【図4】
b乙2(特開平2−12980号公報,発明の名称「狭帯域レーザ発
振装置,出願人株式会社東芝,公開日平成2年1月17日)」
・「従来の技術)(
半導体露光用縮小投影露光装置の光源として狭帯域エキシマ
レーザが用いられつつあるが,この場合高出力を得るためにレー
ザ光発振器から発振されたレーザ光の出力を増幅する増幅部を使
用したインジェクションロックの技術が用いられる。第5図に従
来のインジェクションロック型の狭帯域レーザ発振装置を示す。
このレーザ発振装置1は,主発振部2と増幅部3とからなり,
双方2,3ともがエキシマガスレーザ媒質を用いる。主発振部2
はエキシマガスレーザ媒質を励起してレーザ光を発光させる放電
管4を挟んで対峙する回折格子5および出力ミラー6が設けられ
ている。
上記回折格子5と放電管4との間には上記放電管4側にピン
ホール7を有するプレート8と,回折格子5側に設けられ図示し
ないプリズムまたはエタロン等によって構成された波長選択素子
9とが設けられ安定型のレーザ共振器が形成されている。
そして,上記主発振部2から発振されたレーザ光は第1および
第2の高反射ミラー10,11により光軸が折曲され,増幅部3
に入射される。
この増幅部3は上述のごとくエキシマガスレーザ媒質が封入さ
れた放電管12と,この放電管12を挟むように対峙して凸面ミ
ラー13および凹面ミラー14とが配設されている。ここで,上
記凹面ミラー14の中央部には約1mmの直径の貫通孔15が穿
設されており上記貫通孔15に上記主発振部2で発振されたレー,
ザ光が入射されるようになっている。
上述のように構成されたレーザ発振装置1はまず,主発振部2
によってスペクトル幅0003nm平均出力001wのレー.,.
ザ光を発振する。これは,上記放電管4で発光された光を上記回
折格子5,波長選択素子9およびプレート8のピンホール7等を
,,(.通過させることにより単一光を発振状態とし所定の出力0
01w)を上記出力ミラー6から上記第1の高反射ミラー10に
向けてレーザ光を照射する。そして,第1の高反射ミラー10に
反射されたレーザ光は第2の高反射ミラー11に反射されること
で上記増幅部3に入射される。この増幅部3に入射されるレーザ
光は凹面ミラー14の貫通孔15から不安定型共振器13,14
間に入射され,この共振器13,14間でビームを拡大しながら
複数回反射されることで,インジェクションロックされ狭いスペ
クトル幅を保ちながら,出力が増幅され,最終的に凸面ミラー1
3側から出射する。この増幅作用によりスペクトル幅は主発振部
2から発振されたときと同じ0.003nmで,平均出力が50
wの狭帯域レーザ光を得ることができる(1頁左下欄20行∼。」
2頁右上欄11行)
・第5図
c乙3(特開平1−305521号公報,発明の名称「露光装置,」
出願人株式会社ニコン,公開日平成元年12月8日)
・「もう一つのタイプのレーザ光源は,インジェクションロック型
と呼ばれるものであり,第8図のように発振器と増幅器に分かれ
ている。発振器において共振器用ミラー(102a,102b)
か配置されている点は前述した安定共振型と同様であるが,この
タイプでは発振器内に所定の領域の波長を選択するためのエタロ
ン,回折格子等の波長選択素子(106)か備えられているとと
もに,放電管100の両端にレーザビームを所定の領域で遮断す
るアパーチャー(104a,l04b)か配置されており,発振
されるレーザビームのスペクトルの半値幅が狭く(△λ∼0.0
01nm,即ち単色性が向上している。さらに発振されたレーサ)
ビームはミラー(108)で曲折されて増幅器に入射し,第2の
放電管(110)の両端に凸状面と凹状面を向きあわせて配設さ
れた不安定共振用ミラー(112a,112b)によって増幅さ
れて出射される。この型のレーサ光源から出射されるレーザビー
ムの特徴の一つは,発振器において単色性が高められており時間
的コヒーレンスが高く,投影レンズ7において色消しの必要がな
いということである(5頁左上欄13行∼同右上欄13行)。」
・第8図
(「」,d乙4特開平1−259533号公報:発明の名称照明光学装置
出願人株式会社ニコン,公開日平成元年10月17日)
「もう一つのタイプのレーザ光源は,インジェクションロック型と
呼ばれるものであり,第7図のように発振器と増幅器に分かれて
いる。発振器において共振器用ミラー(102a,102b)が
配置されている点は前述した安定共振型と同様であるが,このタ
,イプでは発振器内に所定の領域の波長を選択するためのエタロン
(),回折格子等の波長選択素子106が備えられているとともに
放電管100の両端にレーザビームを所定の領域で遮断するア
パーチャ(104a,104b)が配置されており,発信される
(.),レーザビームのスペクトルの半値幅が狭くΔλ≈0001nm
即ち単色性が向上している。さらに発振されたレーザビームはミ
ラー(108)で曲折されて増幅器に入射し,第2の放電管(1
10)の両端に凸状面と凹状面を向きあわせて配設された不安定
共振器用ミラー(112a,112b)によって増幅されて出射
される。この型のレーザ光源から出射されるレーザビームの特徴
の一つは,発振器において単色性が高められており時間的コヒー
レンスが高く,投影レンズPLにおいて色消しの必要がないとい
うことである(5頁左上欄8行∼同右上欄9行)。」
e乙5(特開平11−298083号公報,発明の名称「注入同期型
狭帯域レーザ,出願人株式会社小松製作所,公開日平成11年1」
0月29日)
・「発明の実施の形態】以下,図面を参照して本発明の実施の形【
態について説明する(段落【0028)。」】
・図1は本発明の第1の実施の形態であるインジェクションロッ「,
。」(【】)ク型狭帯域レーザの全体構成を示す図である段落0029
・「図1において,このインジェクションロック型狭帯域レーザは
オシレータ段A,波長変換部12,および増幅段Bとから構成さ
れる(段落【0030)。」】
・「オシレータ段Aは,ポンピングレーザ11と,これによって励
起され,基本波光L1を出力するチタンサファイヤレーザ10と
からなる(段落【0031)。」】
・「ポンピングレーザ11としては,アルゴンイオンレーザ,YA
Gレーザ,YLFレーザ等が用いられ,アルゴンイオンレーザの
場合は488nm,515nm等のマルチライン,YAGレーザ
の場合は第2高調波(532nm,YLFレーザの場合は第2高)
調波527nmがポンピング光として使用される段落0()。」(【
032)】
「,・チタンサファイヤレーザ10の詳細構成については後述するが
ポンピングレーザ11からのポンピング光が増幅媒体3としての
,,.チタンサファイヤロッドに入射されると増幅媒体3は773
6nmのレーザ光を含む光を発生し,リアミラー1とフロントミ
ラー4とで構成される共振器とこの共振器内の波長選択素子2等
によって773.6nmの狭帯域のレーザ光を増幅発振して基本
波光L1として波長変換部12に出力するチタンサファイヤレー。
ザ10内には,波長制御機能を有し,ビームスプリッタ5によっ
て基本波光L1の一部を取り出し,波長モニタ6によって基本波
光L1の波長を検出し,この検出した波長をもとに,波長コント
ローラ7がドライバ8を介して波長選択素子2及びリアミラー1
を調整して,狭帯域の773.6nmの基本波光L1が出射され
るようにフィードバック制御される(段落【0033)。」】
・波長変換部12は入射された基本波光L1を和周波混合によっ「,
て4倍の高調波である193.4nmのレーザ光に変換し,高周
波光L2として増幅段Bに入力する。この波長変換部12は,非
線形光学効果をもつ波長変換素子によって実現される。例えば,
非線形光学素子を3つ用い,最初の非線形光学素子によって,入
力された波長ωをもつレーザ光は,波長ωと2ωのレーザ光を生
,()成し次の非線形光学素子によって波長ωと波長3ωω+2ω
のレーザ光を生成し,さらに次の非線形光学素子によって波長ω
と4ω(ω+3ω)のレーザ光を生成し,この波長4ωのレーザ
光を透過させるミラーを用いて出力させるようにする。この高調
波光L2は,全反射ミラー13,14を介して増幅段Bに入力さ
れる(段落【0034)。」】
・「増幅段Bのチャンバ24内には,193nmのレーザ光を発生
することができるArFガスが充填され,このArFガスをエキ
シマ状態に励起する放電電極23を有する。入力された高調波光
L2は,凹面ミラーのカップリングホールを介してチャンバ24
内に入力し,凸面ミラー21を介して反射し,さらに凹面ミラー
22に反射し,出力光L3として出力する。高調波光L2がチャ
ンバ23内を往復する間に,誘導放出を行うことにより,高調波
光L2が増幅された出力光L3として出力される。この場合,ポ
ンピングレーザ11,チタンサファイヤレーザ10,及び増幅段
Bの放電電極23の放電タイミングを同期させる必要がある段。」(
落【0035)】
・【図1】
(ク)上記(オ)∼(キ)によれば,本願の優先日(平成12年10月6日)
当時のレーザシステムの技術分野において,増幅器とは,レーザ光を増
幅するものであると認められるところ,発振器とは,増幅器の構成に一
対の平行な反射鏡等の共振器を加え,これによる共振機能を備えた増幅
器をいうものと認められる。
そして,前記(エ)記載のとおり,本願明細書には,従来公知のシステ
ムとしてMOPA構成とMOPO構成があるとし,その双方を採用しう
る記載があり,特許請求の範囲には,本願発明のパワー増幅器である第
2のレーザユニットに関し,発振(共振)機能を備えない増幅器に限定
,,されると解すべき記載はないのであるから本願発明のパワー増幅器は
パワー発振器とパワー増幅器のいずれをも含むものであると認められ
る。
イ一方,引用発明の記載された甲3には,以下の記載がある。
(ア)特許請求の範囲の記載
「請求項1】少なくとも約1000Hzの繰り返し数で狭帯域パル【
スレーザビームを生成するための非常に狭帯域の高信頼性・モジュラ
製造高品質高繰り返し数ArFエキシマレーザであって,
A.レーザチャンバを包含する迅速に交換可能なレーザチャンバモジ
ュールとを有し,前記レーザチャンバモジュールが,
1)2つの細長い電極と,
2)a)フッ素と,
b)不活性ガスと,
からなるレーザガスと,
3)少なくとも2cm/ミリ秒の速度で前記電極の間で前記ガスを循
環させるためのガスサーキュレータと,を備え,
B.少なくとも1つの迅速に交換可能なモジュールからなるモジュ
ラーパルスパワーシステムとを有し,前記システムは,電源と,パル
ス圧縮及び増幅回路と,少なくとも約1000Hzの周波数で前記電
極にわたって少なくとも14000ボルトの高電圧電気パルスを作り
出すパルスパワー制御とを含み,
C.前記パルスパワーシステムによって提供される電圧を制御するた
めのレーザパルスエネルギ制御システムとを有し,前記制御システム
は,レーザパルスエネルギモニタと,所望のエネルギ範囲内でパルス
エネルギを有するレーザパルスを生成するのに必要な電気パルスを,
歴史的なパルスエネルギデータに基づいて計算するためのアルゴリズ
ムをプログラムされたコンピュータプロセッサとを含む,レーザ」。
(イ)発明の詳細な説明の記載
・「…本発明は,レーザに関し,特に狭帯域ArFエキシマレーザに
関する(段落【0001)。」】
・「従来の技術】KrFエキシマレーザ【
フッ化クリプトン(KrF)エキシマレーザは,集積回路リソグラ
フィ産業の役に立つ光ソースに現在なっている。…フッ化アルゴン
(ArF)エキシマレーザは,KrFレーザと非常に似ている。主
な違いは,レーザガス混合と,出力ビームのより短い波長である。
基本的に,アルゴンはクリプトンを置換し,その結果,出力ビーム
の波長は193nmである。このことにより,集積回路の寸法が約
120nmまで更に減少する。157nmでのFビームによりパ2
ターン解像度の実質的な改良ができるので,Fレーザは,集積回路2
リソグラフィ産業において長らくKrF及びArFの後継者として
認識されていた。これらのFレーザは,KrF及びArFエキシマ2
レーザと多少の変形を伴い非常に似ており,Fレーザとして作動さ2
せるために従来技術のKrF又はArFレーザと交換することが可
能である。…(段落【0002)」】
・「電極6はカソード6Aとアノード6Bとからなる。アノード6B
は,図3の断面に示したアノード支持バー44によってこの従来技
術の実施形態において支持される。フローは向かって時計回りであ
る。アノード支持バー44の一つの角及び一つの端は,電極6A及
び6Bの間に流すようにブロワー10からの空気を強制するための
ガイド羽根として役立つ。この従来技術のレーザにおける他のガイ
ド羽根を,46,48及び50で示す。穴が開けられた電流リター
ンプレート52は,アノード6Bをチャンバ8の金属構造に接地す
るのを助ける。プレートは,レーザガスフローパスに配置された大
きな穴(図3では図示せず)で穴が開けられており,電流リターン
プレートはガスフローに実質的に影響しない。個々のキャパシタ1
9のアレイからなるピークキャパシタは,パルスパワーシステム2
によって各パルスの前にチャージされる。電圧がピークキャパシタ
にビルドアップする間,2つのプレイオン化装置56は,電極6A
及び6Bの間でレーザガスを弱くイオン化させキャパシタのチャー,
ジは約16,000ボルトに達するとき,電極の放電は,エキシマ
。,レーザパルスを生成するように生成される次の各パルスに関して
ブロワー10によって生成され,約1インチ/ミリ秒の電極間のガ
スフローは,1ミリ秒後に生じる次のパルスに関して丁度良く電極
間で新鮮なレーザガスを提供するのに十分である(段落【000。」
3)】
・「課題を解決するための手段】本発明は,1000乃至2000【
Hz又はそれ以上の範囲における繰り返し数で,約1pm又はそれ
以下の半値幅を備える10mJより大きなパルスエネルギを備える
レーザパルスを作り出すことができる,高信頼性,モジュラ,プロ
ダクション,高品質Fエキシマレーザを提供する。本発明の好ま2
しい実施形態は,10乃至40ワットの範囲におけるパワー出力を
備える10乃至5mJの範囲におけるパルスエネルギを備える10
00乃至4000Hzの範囲で作動しうる。照射源としてこのレー
ザを使用する際,ステッパ又はスキャナ装置は,0.1μm又はそ
れ以下の集積回路解像度を作り出す。交換可能なモジュールには,
レーザチャンバ,モジュラーパルスパワーシステムを含む(段落。」
【0006)】
・「ファン改良
本発明のこの好ましい実施形態は,従来技術のガスサーキュレータ
,。における大きな改良を含んでおりレーザの性能を大きく改善する
,。これらの改良は鑞付けなしのブロワーブレード構造の構築である
共鳴の影響を大幅に低減する非対称ブレード配置と,改良されたベ
アリングである(段落【0021)。」】
・「ファン構造設計における改良は,図14Aに示したような非対称
ブレード配置を必要とする。ファンブレード構造が16の個々に加
工されたもので形成され,若しくは,23のブレードを備える各セ
グメントを有するカートセグメントである図14Bに示したような
変形実施形態は,°/(×)だけ,又は,隣接するセグ3601523
メントに対して約1°だけ各セグメントを回転することである。
ファンブレード構造製造に対する鋳造アプローチ又は加工において
比較的容易にすることができる別の改良は,図14Cの320で示
したようにエアーフォイル内にブレードを形成することである。従
来技術のブレードはスタンプされ,スタンプされたブレードの2つ
の断面を314で比較して示す。318及び330で示された回転
の方向は,ブレード構造円周を表す。従来のブレードが均一の厚さ
であるのに対して,エアーフォイル・ブレードは,周囲リード端,
密集中央部,及び,テーパー跡端を包含するテア形状プロファイル
を有する(段落【0024)。」】
・「パルスエネルギの制御
フォトダイオード92からの信号は,制御ボード100のプロセッ
サ102に転送され,プロセッサは,このエネルギ信号と,次の及
び/又は更なるパルスに関するコマンド電圧を設定するために(パ
ルスエネルギ制御アルゴリズムと名付けられた後の項で議論するよ
)。うな好ましくは他の歴史的なパルスエネルギデータとを使用する
好ましい実施形態では,レーザは(約01秒のデッドタイムで区.
切られ2000Hzで100パルス0.5秒バーストするような)
一連の短いバーストで作動し,制御ボード100のプロセッサ10
2は,パルス間のエネルギ変化を最小にするように,また,バース
ト間のエネルギ変化を最小にするように次のパルスに関して制御電
圧を選択するために他の歴史的パルスプロファイルデータと一緒に
バーストにおける全ての前のパルスのエネルギ信号と一緒に最も近
いパルスエネルギ信号を使用する特定のアルゴリズムでプログラム
される。この計算は,約35μsの間,このアルゴリズムを使用し
て制御ボード100のプロセッサ102によって実行される。レー
ザパルスは,図8F3に示されたIGBTスイッチ46のT発火0
に続く約5μS生じ,約20μsはレーザパルスエネルギデータを
修正するために要求される(スイッチ46の発火の開始をTと呼。0
ぶ)従って,新しい制御電圧値はかくして(2000Hzで発火。,
期間が500μsである)前のパルスに関してIGBTスイッチ4
6の発火の後,約70ミリ秒(図8F1に示したように)準備され
る。エネルギ制御アルゴリズムの特徴を以下に記載し,米国特許出
願第号により詳細が記載されており,ここにリファンレ09/034,870
ンスとして組み入れる(段落【0038)。」】
・「単一ライン及び狭ラインコンフィギュレーション
図11Aは好ましいFレーザシステムに関する好ましい単一ライ2
。,,ンを示すこの構成では2つの大きなF2ラインのうちの1つが
図に示したように簡単なプリズムセレクタで選択される。図11B
は,パワー発振器がマスター発振器によってシードされる好ましい
線狭帯域化システムを示す(段落【0084)。」】
(ウ)図面(かっこ内は【図面の簡単な説明】の記載である)
・【図11B(2つの好ましいFシステムコンフィギュレーション】2
を示す)。
・【図14A(好ましいブロワーブレード構造設計を示す)】。
・【図14B(好ましいブロワーブレード構造設計を示す)】。
(エ)上記(ア)ないし(ウ)の記載によれば,引用発明が記載された甲3に
,(【】,は集積回路リソグラフィに用いるエキシマレーザ段落0001
【0002)に関し,マスター発振器及びパワー発振器の2室からな】
る線狭帯域化システムにおいて,パワー発振器(図11B)に一対のミ
ラーがありマスター発振器から注入されたレーザ光がその間を通過する
構造が示されている。
以上の甲3の記載及び前記ア(オ)∼(キ)によれば,引用発明のパワー
発振器は,一対のミラーによりレーザ光のパワー(振幅)を増加させて
大きいエネルギーの振動とする機能を有する装置であって,その振幅の
()。成長が共振器一対のミラーにより行われるものであると認められる
ウ以上の事実を前提として,まず,原告が審決が看過した相違点①として
主張する,本願発明の第2のレーザユニットは「増幅器」として構成され
ているのに対し,引用発明の第2のレーザユニットは「発振器」で構成さ
れているとの点について判断する。
上記ア,イによれば,本願発明のパワー増幅器と,引用発明のパワー発
振器とは,ともに発振機能を備えたパワー増幅器を含むものである点で一
致する。そうすると,審決が「引用発明の『パワー発振器』は,本願発明
の『第2のレーザユニット』に相当し,また,マスター発振器から出力さ
れたレーザ光を増幅するものであるから,上記パワー発振器が,本願発明
の『パワー増幅器』であることも明らかである(11頁下2行∼12頁。」
2行)であるとして「第2のレーザユニットは,パワー増幅器として構,
成されること(13頁11行∼12行)を一致点と認定したことに誤り」
はないというべきである。
エ次に,原告が,審決が看過した相違点②として主張する,引用発明は繰
り返し周波数が1000Hzであるのに対し,本願発明は4000Hz以
上という極めて高い繰り返し周波数を対象としたシステムであり,かかる
繰り返し周波数を実現するために,従来には存在し得なかった非常に高い
ガス流速を設定して,放電領域内から実質的に全ての残存ガスを除去する
ものであるとの点について検討する。
(ア)上記ア(ア)∼(ウ)に摘示したところによれば,ガス放電型レーザシ
ステムにおいては,パルスの直後に放電によって生成されたイオンの実
質的に全てを除去する必要があるところ,本願発明においては4000
Hzの反復率で放電するために必要な残存ガス除去のためのガス流を設
定する(特許請求の範囲,段落【0010)ものと認められる。】
(イ)一方引用発明は,上記イ(ア)∼(ウ)に摘示したところによれば,繰
り返し周波数1000∼4000Hzの範囲で作動しうるものである
(段落【0006。】)
(ウ)加えて,審決が「ガス放電型レーザシステムの技術分野において,
レーザパルスを生成する反復率(繰り返し数)に応じてレーザガスのガ
ス速度を設定すること(14頁5行∼6行)が周知であることの証拠」
とした挙げた甲4,5には以下の記載がある(下線は判決で付記。)
a甲4(特開平8−191163号公報,発明の名称「ガスレーザ装
置,出願人株式会社東芝,公開日平成8年7月23日)」
「0002】【
【従来の技術】一般に,ガスレーザ媒質を強制的に循環させるガス
レーザ装置においては,上記ガスレーザ媒質が封入される気密容
器を有する。この気密容器内には上記ガスレーザ媒質を強制的に
循環させるための送風機が配置されているとともにそのガスレー,
ザ媒質の循環方向と交差する方向に所定の間隔で離間して一対の
主電極が配設されている。
【0003】上記一対の主電極間には所定のタイミングで主放電が
点弧される。それによって,一対の主電極間の空間部に流入した
ガスレーザ媒質はその主放電によって励起されてレーザ光を発生
するようになっている。
【0004】主電極間の空間部で発生したレーザ光は,その主放電
と交差する方向に配設された光共振器で反射を繰り返すことで増
幅され,所定の強度に達すると,上記光共振器の出力ミラー側か
ら発振出力される。また,ガスレーザ媒質は放電励起されること
で温度上昇する。そこで,上記気密容器内には,温度上昇したガ
スレーザ媒質を冷却するための熱交換器が配置されている。
【0005】ところで,上記送風機によって強制的に循環するガス
レーザ媒質は,一対の主電極間の空間部において流速分布が均一
にならないということがある。図8に一対の主電極1,2間にお
けるガスレーザ媒質Gの流速分布を示す。
【0006】すなわち,一対の主電極1,2間の空間部3を通過す
るガスレーザ媒質Gは,上記主電極1,2の離間方向中央部分に
比べて表面近傍の方が抵抗が大きい。そのため,上記空間部3を
流れるガスレーザ媒質Gの流速分布は,同図に曲線Xで示すよう
に一対の主電極1,2の離間方向中央部分が両端部分に比べて速
くなることが避けられない。
【0007】上記放電空間部3におけるガスレーザ媒質Gの流速分
布が一対の主電極1,2の離間方向において上述したごとく不均
一となると,とくにレーザ発振の繰り返し数を高くした場合,主
電極1,2近傍ではガスレーザ媒質Gが確実に置換されないこと
がある。つまり,前回の主放電に寄与したガスレーザ媒質Gがつ
ぎの主放電時に空間部3に残留するということがある。
【0008】一度,主放電に使われたガスレーザ媒質Gには放電生
成物などの不純物が含まれる。そのため,その不純物によって一
対の主電極1,2間に点弧される主放電(グロー放電)が不安定
となってアーク放電の発生を招き,出力の低下を招いたり,主電
極1,2を早期に損傷させるなどのことがある。
【0009】一方,上記構成のガスレーザ装置において,動作可能
なパルス繰り返し数fは,放電の幅Lとガスレーザ媒質Gの流速
vに対してつぎの関係を有する。
f=v/(CR・L)…(1)式
図中CRはクリアラアンスレシオと呼ばれ,装置固有の値で,通
常,2∼5程度である。したがって,パルス繰り返し数fはガス
レーザ媒質Gの流速vによって決定されることになる。
【0010】ガスレーザ媒質Gの流速を高めるためには,上記送風
機として静圧の大きい軸流型ファンが用いられている。直径60
程度のファン1つでは最大静圧がPa程度であるから,mm330
比重量がのガスレーザ媒質では流速vは最大で6とな0.43m/s
り,CR=2のとき,放電幅では動作可能な繰り返し数は30mm
となる。100pps
【0011】したがって,これ以上のパルス繰り返し数を得たいと
きつまりレーザ光の出力を高くしたいときには2つの軸流ファ,,
ンを直列に配置して静圧を増加させ,ガスレーザ媒質の流速を速
くすることが考えられる。…(2頁1欄41行∼3頁3欄6行)」
【図8(従来の主電極間の空間部におけるガスレーザ媒質の速度分】
布を示す説明図)
b甲5(特開平9−228986号公報,発明の名称「タイミングを
」,,調整できる送風機モータ出願人サイマーインコーポレイテッド
公開日平成9年9月2日)
「【】,,。0003エキシマレーザは一般にパルスモードで動作する
放電領域内のガスに,基底即ち初期熱状態に復帰させるに充分な
時間を与えるためにパルス動作が必要とされる。静的なガスシス
テムでは,ガスがこの状態に到達するのにほぼ1秒の時間を必要
とし,従って,繰り返し率を甚だしく制限する。近代的なレーザ
システムは,通常,ガスを循環するための接線方向送風機ファン
,,を用いてガス放電領域内のガスを能動的に循環することにより
高い繰り返し率を得ている。
【0004】
【発明が解決しようとする課題】特定の繰り返し率を維持するのに
必要なガスの流量は,次の式を用いて決定することができる。
クリア比=(流量)/〔放電巾(繰り返し率〕())
一般に,安定した放電を得るには,クリア比は,3で充分である
と考えられる。しかしながら,パルス対パルスのエネルギー安定
性を保証するためには,クリア比は,5ないし6であるのが好ま
しい。約1000ないし2000Hzの繰り返し率を維持するに
必要なクリア比を得るためには,高いガス流量,ひいては,高い
送風機ファン速度が必要とされる(3頁4欄40行∼4頁5欄。」
10行)
「0014】エキシマレーザにおいては,パルス率が通常はかなり【
低いガスが静的である場合には放電領域内のガス体積にレー。,,
ザパルスとレーザパルスとの間にその初期の熱的状態に復帰させ
るに充分な時間を与えねばならない。一般的に,この復帰時間は
1秒程度であり,従って,静的ガスシステムのパルス率は約1パ
ルス/秒に制限される。ガスが循環される場合には,パルス率を
増加することができる。レーザを放電できる繰り返し率は,循環
速度と,放電体積内のガス体積が交換される率とに基づく。従っ
て循環速度が高いほど達成できる繰り返し率が高くなる4,,。」(
頁6欄40行∼50行)
,,(エ)上記(ウ)によればガス放電型レーザシステムの技術分野において
レーザパルスを生成する反復率に応じた放電によるイオン除去のため必
要なガス速度は,当業者(その発明の属する技術の分野における通常の
知識を有する者)において適宜設定しうるものであると認められるとこ
ろ,上記(イ)のとおり,引用発明においても4000Hzの反復率で作
動するシステムが開示されているのであるから,本願発明と引用発明と
で「両者は『毎秒4000パルス(4000Hz)の『反復率(繰,,』』
り返し数)でレーザパルスを生成する点で一致する(11頁21行∼。」
22行)として,これを一致点とした審決の認定に誤りはない。
その上で審決は「本願発明では『第1(第2)のレーザガスのガス,,
速度』が,毎秒4000パルス又はそれ以上の範囲の反復率で動作する
時に,放電によって生成されたイオンの『実質的に全てを,次のパルス
に先立ち』第1(第2)の放電領域から除去し得るのに対し,引用発明
では『1000Hzの繰り返し数でレーザパルスを生成する時,第1,
のブロワ及び第2のブロワは,次のパルスに関して丁度良く電極間で新
』,鮮なレーザガスを提供するのに十分であるガスフローを形成するから
少なくとも1000Hzの繰り返し数でレーザパルスを生成する時に
は第1第2のブロワが放電によって生成されたイオンの実,『()』,『
質的に全てを,次のパルスに先立ち』第1(第2)の放電領域から除去
し得るガス速度を作り出すものといえるが,4000Hzの繰り返し数
でレーザパルスを生成する時のガス速度については明らかでない点」。
を相違点1として認定し,レーザパルスを生成する反復率に応じてレー
ザのガス速度を設定することは周知であるとした(この認定に誤りがな
いことは上記のとおりである)上で,相違点1の構成は周知技術に基づ
き容易に着想できると判断したものである。したがって,この点につい
ての審決の認定・判断にも誤りはない。
()原告の主張に対する補足的判断2
ア原告は,発振器と増幅器は機能上区別されるところ,本願発明のパワー
増幅器は発振器を含まず,この点について本願明細書の段落【0008】
において明確にしていると主張する。
しかし,上記()ウで検討したとおり,本願発明のパワー増幅器は発振1
器を含まないものとは認められず,また本願明細書の段落【0008】の
記載も,上記()ア(イ)で摘記のとおり「種注入(エキシマレーザシス1
テムを含む)ガス放電型レーザシステムの帯域幅を狭めるための公知手法
には,…このようなシステムの1つでは,…このビームが第2の利得媒体
において種ビームとして使用される。第2利得媒体が電力増幅器として機
能する場合,このシステムを,主発振器電力増幅器(MOPA)システム
という。第2利得媒体自体が共振空洞を有する場合,このシステムを,種
注入発振器(ISO)システム又は主発振器電力発振器(MOPO)シス
テムといい,この場合,種レーザを主発振器と呼び,下流側のシステムを
。」,,電力発振器と呼ぶ…とするものであり従来公知のシステムにおいて
MOPA構成とMOPO構成とが上記内容であることを説明したものにす
ぎず,本願発明がこのうちのMOPA構成であることに限定するものでは
ない。原告の上記主張は採用することができない。
イ次に原告は,本願発明は第2のレーザユニットをパワー増幅器で構成し
たことにより,ビームのスペクトル幅を狭帯域化することができる(原告
主張のa,耐故障性に優れる(同b,スペックル(光のむら)の影響を))
抑えることができる(同c,との3点で引用発明にはない作用効果を奏)
すると主張する。
しかし,原告主張の上記効果(a∼c)は,いずれも本願発明の第2の
レーザユニットが,共振機能を含まない増幅器に限定されることを前提と
するものであって,この前提を採り得ないことについては既に検討したと
おりであるほか,原告主張の上記効果(a∼c)は,いずれも本願明細書
には何らの記載がないものであって,原告の主張は明細書に基づかないも
のである。原告の上記主張は採用することができない。
ウ次に原告は,本願発明の出願前の従来技術におけるパルス周波数は25
00Hz程度であったところ,本願発明はこれを4000Hzという高い
,,周波数で実現しそのための残存ガスを除去するガス流速を設定したほか
共振電源を採用したものであるところ,引用発明の4000Hzとの記載
は技術的に裏付ける記載がないと主張する。
HIGHPULSERATE乙6米国特許6028872号公報発明の名称(,
〔共振電源PULSEPOWERSYSTEMWITHRESONANTPOWERSUPPLY
を備えた高パルス割合のパルス電源システム,発明の譲受人〔出願人〕〕
サイマーインコーポレイテッド,2000年〔平成12年〕2月22日
特許公報発行)には,以下の記載がある。
「当業者は,上記の開示に表された教示に基づいて,本発明の他の多
くの実施例が可能であることを理解するであろう。電圧値およびエ
ネルギー値のようなパラメータの多くは異なったものであってもよ
い。リソグラフィーに使用される商業的なエキシマレーザーについ
ては,少なくとも1000Hzの充電速度が好ましいが,遥かに速
い速度,例えば2000Hzまたは5000Hz程度またはそれ以
上が望ましいことになろう(12欄7行∼14行,訳文による)。」
上記記載によれば,本願出願当時において,エキシマレーザにおいて既
に5000Hz程度のパルス速度を用いる装置が知られていたほか,引用
「」発明の記載された甲3に1000乃至4000Hzの範囲で作動しうる
(段落【0006)と明確に記載されていること,レーザパルスを生成】
する反復率に応じた放電によるイオン除去のため必要なガス速度は,当業
者において適宜設定しうるものであることからして,本願発明のパルス速
度(4000Hz)の点についても特段の意義があるものとはいえず,ま
た本願発明において採用したとする共振電源についても,特許請求の範囲
にはその記載はないから,原告の上記主張は採用することができない。
エさらに原告は,本願発明におけるファンブレード(上記ア(ウ)の図18
A)と引用発明のブロワーブレード(上記イ(ウ)の図14B)をみると,
本願発明のファンブレードは圧力波面の生成を防止するように予め不均一
にされているのに対し,引用発明のブロワーブレードはほぼ均一にされて
いるから,両者は構成を異にする旨主張する。
しかし,本願発明におけるファンブレードの構成については,特許請求
の範囲の記載に特段の記載がないほか,上記()エ(エ)のとおり,レーザ1
パルスを生成する反復率に応じて放電によるイオン除去のため必要なガス
速度は当業者において適宜設定しうるものであり,そこで設定されたガス
速度に応じてファンブレード(ブロワーブレード)の構造を決定すること
は設計的事項であると認められる。原告の上記主張は採用することができ
ない。
3結語
以上のとおりであるから,原告主張の取消事由は全て理由がない。
よって,原告の請求を棄却することとして,主文のとおり判決する。
知的財産高等裁判所第2部
裁判長裁判官中野哲弘
裁判官今井弘晃
裁判官清水知恵子

戻る



採用情報


弁護士 求人 採用
弁護士募集(経験者 司法修習生)
激動の時代に
今後の弁護士業界はどうなっていくのでしょうか。 もはや、東京では弁護士が過剰であり、すでに仕事がない弁護士が多数います。
ベテランで優秀な弁護士も、営業が苦手な先生は食べていけない、そういう時代が既に到来しています。
「コツコツ真面目に仕事をすれば、お客が来る。」といった考え方は残念ながら通用しません。
仕事がない弁護士は無力です。
弁護士は仕事がなければ経験もできず、能力も発揮できないからです。
ではどうしたらよいのでしょうか。
答えは、弁護士業もサービス業であるという原点に立ち返ることです。
我々は、クライアントの信頼に応えることが最重要と考え、そのために努力していきたいと思います。 弁護士数の増加、市民のニーズの多様化に応えるべく、従来の法律事務所と違ったアプローチを模索しております。
今まで培ったノウハウを共有し、さらなる発展をともに目指したいと思います。
興味がおありの弁護士の方、司法修習生の方、お気軽にご連絡下さい。 事務所を見学頂き、ゆっくりお話ししましょう。

応募資格
司法修習生
すでに経験を有する弁護士
なお、地方での勤務を希望する先生も歓迎します。
また、勤務弁護士ではなく、経費共同も可能です。

学歴、年齢、性別、成績等で評価はしません。
従いまして、司法試験での成績、司法研修所での成績等の書類は不要です。

詳細は、面談の上、決定させてください。

独立支援
独立を考えている弁護士を支援します。
条件は以下のとおりです。
お気軽にお問い合わせ下さい。
◎1年目の経費無料(場所代、コピー代、ファックス代等)
◎秘書等の支援可能
◎事務所の名称は自由に選択可能
◎業務に関する質問等可能
◎事務所事件の共同受任可

応募方法
メールまたはお電話でご連絡ください。
残り応募人数(2019年5月1日現在)
採用は2名
独立支援は3名

連絡先
〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
ITJ法律事務所 採用担当宛
email:[email protected]

71期修習生 72期修習生 求人
修習生の事務所訪問歓迎しております。

ITJではアルバイトを募集しております。
職種 事務職
時給 当社規定による
勤務地 〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
その他 明るく楽しい職場です。
シフトは週40時間以上
ロースクール生歓迎
経験不問です。

応募方法
写真付きの履歴書を以下の住所までお送り下さい。
履歴書の返送はいたしませんのであしからずご了承下さい。
〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
ITJ法律事務所
[email protected]
採用担当宛