弁護士法人ITJ法律事務所

裁判例


戻る

       略 語 表(主文及び理由)
 (この判決においては、以下の略語を用いる。ただし、正式の用語を用いること
もある。)
本件原子炉施設   動燃が福井県敦賀市白木に建設中の高速増殖炉
          (高速原型炉)「もんじゅ」、すなわち本件許可処
          分に係る原子炉及びその付属施設
本件許可処分    被告が昭和五八年五月二七日付けで動燃に対して
          した本件原子炉施設の設置許可処分
本件許可申請    動燃が昭和五五年一二月一〇日付けで被告に対し
          てした原子炉許可申請(ただし、昭和五六年一二
          月二八日付け及び昭和五八年三月一四日付けでそ
          れぞれ一部補正されている。)
本件安全審査    被告(所部の機関は科学技術庁)及び原子力安全
          委員会が本件許可申請に対して、規制法二四条一
          項三号及び四号の要件適合性についてした審査
申請者又は動燃   訴外動力炉・核燃料開発事業団(なお、平成一〇
          年一〇月一日に核燃料サイクル開発機構に法人名
          が変更されている。)
安全委員会     原子力安全委員会
安全審査会     原子炉安全専門審査会
行訴法       行政事件訴訟法(昭和三七年法律第一三九号)
基本法       原子力基本法(昭和三〇年法律第一八六号)
設置法       原子力委員会及び原子力安全委員会設置法(昭和
          三〇年法律第一八八号)
規制法       核原料物質、核燃料物質及び原子炉の規制に関す
          る法律(昭和三二年法律第一六六号)
電気事業法     電気事業法(平成九年法律第八八号による改正後
          のもの)
原子炉規則     試験研究の用に共する原子炉等の設置、運転等に
          関する規則(昭和三二年一二月九日総理府令第八
          三号)
立地審査指針    原子炉立地審査指針及びその適用に関する判断の
          めやすについて(昭和三九年五月二七日原子力委
          員会決定)
評価の考え方    高速増殖炉の安全性の評価の考え方について(昭
          和五五年一一月六日原子力委員会決定)
気象指針
      発電用原子炉施設の安全解析に関する気象指針に
          ついて(昭和五七年一月二八日原子力委員会決
          定)
許容被曝線量等を  原子炉の設置、運転等に関する規則等の規定に基
定める件      づき、許容被曝線量等を定める件(昭和三五年九
          月三〇日科学技術庁告示第二一号)
安全設計審査指針  発電用軽水型原子炉施設に関する安全設計審査指
          針について(昭和五二年六月一四日原子力委員会
          決定)
プルトニウムに関  プルトニウムを燃料とする原子炉の立地評価上必
          要
するめやす線量に  なプルトニウムに関するめやす線量について(昭
ついて       和五五年一一月六日原子力安全委員会決定)
安全評価審査指針  発電用軽水型原子炉施設の安全評価に関する審査
          指針(昭和五三年九月二九日原子力委員会決定)
線量評価指針    発電用軽水型原子炉施設周辺の線量目標値に対す
          る評価指針について(昭和五一年九月二八日原子
          力委員会決定)
耐震設計審査指針  発電用原子炉施設に関する耐震設計審査指針につ
          いて(昭和五六年七月二〇日原子力安全委員会決
          定)
本件事故又は本件ナ 平成七年一二月八日に本件原子炉施設において発
トリウム漏えい事故 生した二次冷却材ナトリウム漏えい事故
安全総点検     動燃が本件事故後に、科学技術庁の「もんじゅ安
          全総点検チーム」が策定した「もんじゅ安全総点
          検の基本方針」等を踏まえて取りまとめた「もん
          じゅの安全総点検に関する実施計画」に基づき行
          った本件原子炉施設全般にわたる総合的な点検
もんじゅ最高裁判決 最高裁裁判所平成四年九月二二日第三小法廷判決
          (本件の第一次上告審)
伊方最高裁判決   最高裁判所平成四年一〇月二九日第一小法廷判決
日本原子力発電   日本原子力発電株式会社
関西電力      関西電力株式会社
中部電力      中部電力株式会社
浜岡一号炉     中部電力の浜岡原子力発電所一号炉
常陽        動燃が設置した高速増殖炉(高速実験炉)
ふげん       動燃が設置した新型転
換炉
LMFBR     液体金属冷却高速増殖炉
PWR       加圧水型軽水炉
BWR       沸騰水型軽水炉
RMBK      黒鉛減速沸騰水型原子炉
FPガス      核分裂生成物のうち気体状のもの
ICRP      国際放射線防護委員会
IAEA      国際原子力機関
WHO       世界保健機構
UNSCEAR   国際連合原子放射線の影響に関する科学委員会
OECD/NEA  経済協力開発機構原子力機関
NRC       米国原子力規制委員会
USAEC     米国原子力委員会
NCRP      米国放射線防護測定審議会
チェルノブイリ   ソビエト連邦ウクライナ共和国所在のチェルノブ
四号炉       イリ発電所四号炉
チェルノブイリ事故 昭和六一年四月二六日にチェルノブイリ発電所四
          号炉において発生した事故
PFR       英国のドーンレイ所在の高速増殖炉
エンリコ・フェ   米国ミシガン州所在のエンリコ・フェルミ一号炉
ルミ炉
ERB―I     米国アイダホ州所在の増殖実験炉一号炉
セイラム一号炉   米国ニュージャージ州所在のセイラム原子力発電
          所一号炉
スーパーフェニッ  フランスのクレイマルヒル所在の高速増殖炉
クス
フェニックス    フランスのマルクール所在の高速増殖炉
TMI二号炉    米国ペンシルバニア州所在のスリーマイルアイラ
          ンド原子炉発電所二号炉
TMI事故     昭和五四年三月二八日にTMI二号炉において発
          生した事故
サリー二号炉    米国バージニア州所在のサリー原子力発電所二号
          炉
       主   文
一 原告らの請求をいずれも棄却する。
二 訴訟費用は原告らの負担とする。
       事   実
第一 当事者の求めた裁判
一 原告ら
1 被告が、動力炉・核燃料開発事業団に対して、昭和五八年五月二七日にした、
高速増殖炉「もんじゅ」(以下「本件原子炉施設」という。)にかかる原子炉設置
許可処分は無効であることを確認する。
2 訴訟費用は被告の負担とする。
二 被告
(本案前の答弁)
1 原告らの請求をいずれも却下する。
2 訴訟費用は原告らの負担とする。
(本案の答弁)
主文同旨
第二 事案の概要及び当事者の主張
一 事案の概要
 本件は、訴外動力炉・核燃料開発事業団(以
下「申請者」又は「動燃」という。現核燃料サイクル開発機構)が福井県敦賀市白
木地区に建設中の高速増殖炉(高速原型炉)「もんじゅ」の周辺に居住する住民で
ある原告らが、被告が申請者に対してした本件原子炉施設の設置許可処分には、処
分の手続の違法、処分が規制法二三条一項の定める各要件に適合していないなどの
点で重大かつ明白な瑕疵があるとして、被告に対して、本件許可処分が無効である
ことの確認を求めた事案である。
 ところで、本件は、昭和六〇年九月二六日に福井地方裁判所昭和六〇年(行ウ)
第七号事件として提訴され、福井地方裁判所は、昭和六二年一二月二五日、原告適
格を欠く不適法な訴えであるとして原告ら全員について訴えを却下した。名古屋高
等裁判所金沢支部は、平成元年七月一九日、原告らの控訴に対し、本件原子炉施設
から半径二〇キロメートル以内に居住する原告らについては原告適格を認め、右原
告らについて事件を福井地方裁判所に差し戻し、その余の原告らの控訴を棄却し
た。さらに、最高裁判所は、平成四年九月二二日、半径二〇キロメートル以内に居
住する原告らに対する被告の上告を棄却すると共に、半径二〇キロメートル外に居
住する原告らの上告に対し、これらの原告にも原告適格を認め、右原告らについ
て、事件を福井地方裁判所に差し戻した。このように、結局、原告ら全員につい
て、事件が当裁判所に差し戻された。
二 当事者の主張
 本件の争点は、本件許可処分に無効事由となる重大かつ明白な違法があるか否か
であり、これは大きく、①手続的適法性、②規制法二四条項三号(技術的能力に係
る部分に限る。)の要件適合性、③同項四号の要件適合性に分けられる。
 右争点に関する原告らの主張は、第三分冊「原告らの主張」記載のとおりであ
り、被告の主張は、第四分冊「被告の主張」記載のとおりである。
 なお、争点に関する当事者の主張はほぼ右書面で尽くされていると考えられる
が、その他右書面に表れていない主張を含めて、理由においては、判断の前提とし
て、当事者の主張の要点を適宜摘示する。
 第三証拠本件訴訟記録中の書証目録及び証人等目録の記載を引用する。
       理   由
第一章 当事者
第一 原告ら 
 原告らは、本件原子炉施設からの距離が約一一キロメートルから五八キロメート
ルの範囲に居住する住民である。
第二 被告 
 被告は、規制法二三条一項四号、同法施行令六条の二第
一項一号により、研究開発段階の原子炉について原子炉設置許可処分をする権限を
有する者であり、本件許可処分をした者である。
第三 本件訴えの適法性について
一 行訴法三六条は、無効確認訴訟の原告適格を有する者を「当該処分又は裁決に
続く処分により損害を受けるおそれのある者その他当該処分又は採決の無効等の確
認を求めるにつき法律上の利益を有する者」に限定しているところ、右「法律上の
利益を有する者」は行訴法九条の「法律上の利益を有する者」と同趣旨と解される
から(もんじゅ最高裁判決参照)、当該処分により自己の権利若しくは法律上保護
された利益を侵害され又は必然的に侵害されるおそれのある者をいうと解される。
そして、当該行政法規の趣旨、目的、当該行政法規が当該処分を通して保護しよう
としている利益の内容、性質等を考慮したとき、当該処分を定めた行政法規が、不
特定多数者の具体的利益を専ら一般的公益の中に吸収解消させるにとどめず、それ
が帰属する個々人の個別的利益としてもこれを保護すべきものとする趣旨を含むと
解される場合には、そのような利益も右にいう法律上保護された利益に当たり、当
該処分によりこれを侵害され又は必然的に侵害されるおそれのある者は、当該処分
の取消訴訟における原告適格を有するものというべきである(最高裁第三小法廷昭
和五三年三月一四日判決、最高裁第一小法廷昭和五七年九月九日判決、最高裁第二
小法廷平成元年二月一七日判決参照)。
 そこで、規制法二三条、二四条に基づく原子炉設置許可処分につき、原子炉施設
の周辺に居住する者が、その無効確認を求める法律上の利益を有するか否かを検討
するに、規制法は、原子力基本法の精神にのっとり、核原料物質、核燃料物質及び
原子炉の利用が平和の目的に限られ、かつ、これらの利用が計画的に行われること
を確保すると共に、これらによる災害を防止し、及び核燃料物質を防護して、公共
の安全を図るために、製錬、加工、再処理及び廃棄の事業並びに原子炉の設置及び
運転等に関する必要な規制等を行うことなどを目的として制定されたものである
(規制法一条)。規制法二三条一項に基づく原子炉の設置の許可申請は、同項各号
所定の原子炉の区分に応じ、主務大臣に対して行われるが、主務大臣は、右許可申
請が同法二四条一項各号に適合していると認めるときでなければ許可をしてはなら
ず、また、右許可をする場合においては、あら
かじめ、同項一号、二号及び三号(経理的基礎に係る部分に限る。)に規定する基
準の適用については原子力委員会、同項三号(技術的能力に係る部分に限る。)及
び四号に規定する基準の適用については、核燃料物質及び原子炉に関する安全の確
保のための規制等を所管事項とする原子力安全委員会の意見を聴き、これを十分に
尊重してしなければならないものとされている(同法二四条二項)。同法二四条一
項各号所定の許可基準のうち、三号(技術的能力に係る部分に限る。)は、当該申
請者が原子炉を設置するために必要な技術的能力及びその運転を適確に遂行するに
足りる技術的能力を有するか否かにつき、また、四号は、当該申請に係る原子炉の
位置、構造及び設備が核燃料物質(使用済燃料を含む。)、核燃料物質によって汚
染された物(原子核分裂生成物を含む。)又は原子炉による災害の防止上支障がな
いものであるか否かにつき、審査を行うべきものと定めている。
 原子炉設置許可の要件として、右の三号(技術的能力に係る部分に限る。)及び
四号が設けられた趣旨は、原子炉施設が、原子核分裂の過程において高エネルギー
を放出するウラン等の核燃料物質を燃料として使用する装置であり、その稼働によ
り、内部に多量の人体に有害な放射性物質を発生させるものであって、原子炉施設
を設置しようとする者がその設置、運転につき所定の技術的能力を欠くとき、又は
原子炉施設の安全性が確保されないときは、当該原子炉施設の従業員やその周辺住
民等の生命、身体に重大な危害を及ぼし、周辺の環境を放射能によって汚染するな
ど、深刻な災害を引き起こすおそれがあることにかんがみ、右災害が万が一にも起
こらないようにするため、原子炉設置許可の段階で、原子炉施設を設置しようとす
る者の右技術的能力の有無及び申請に係る原子炉施設の位置、構造及び設備の安全
性につき十分な審査をし、右の者において所定の技術的能力があり、かつ、原子炉
施設の位置、構造及び設備が右災害の防止上支障がないものであると認められる場
合でない限り、主務大臣は原子炉設置許可処分をしてはならないとした点にある。
そして、同法二四条一項三号所定の技術的能力の有無及び四号所定の安全性に関す
る各審査に過誤、欠落があった場合には、重大な原子炉事故が起こる可能性があ
り、事故が起こったときは、原子炉施設に近い住民ほど被害を受ける蓋然性が高
く、しかも、その被害の
程度はより直接的かつ重大なものとなるのであって、特に、原子炉施設の近くに居
住する者はその生命、身体等に直接的かつ重大な被害を受けるものと想定されるの
であり、右各号は、このような原子炉施設の事故等がもたらす災害による被害の性
質を考慮した上で、右技術的能力及び安全性に関する基準を定めているものと解さ
れる。
 そうすると、右の三号(技術的能力に係る部分に限る。)及び四号の設けられた
趣旨、右各号が考慮している被害の性質等にかんがみると、右各号は、単に公衆の
生命、身体の安全、環境上の利益を一般的公益として保護しようとするにとどまら
ず、原子炉施設周辺に居住し、右事故等がもたらす災害により直接的かつ重大な被
害を受けることが想定される範囲の住民の生命、身体の安全等を個々人の個別的利
益としても保護すべきものとする趣旨を含むものと解される。
 そして、当該住民の居住する地域が、前記の原子炉事故等による災害により直接
的かつ重大な被害を受けるものと想定される地域であるか否かについては、当該原
子炉の種類、構造規模等の当該原子炉施設に関する具体的な諸条件を考慮に入れた
上で、当該住民の居住する地域と原子炉施設の位置との距離関係を中心として、社
会通念に照らして合理的に判断すべきところ、原告らは本件原子炉施設から約一一
キロメートルないし約五八キロメートルの範囲内の地域に居住していること、後記
(第二章第一)のとおり、本件原子炉施設は研究開発段階にある原子炉である高速
増殖炉であり(規制法二三条一項四号、同法施行令六条の二第一項一号、動力炉・
核燃料開発事業団法二条一項参照)、その熱出力は七一万四〇〇〇キロワット、電
気出力は約二八万キロワットであって、炉心の燃料としてはウランとプルトニウム
の混合酸化物が用いられ、炉心内において毒性の強いプルトニウムの増殖が行われ
るものであること、これらの事実に照らすと、原告らは、いずれも本件原子炉施設
の設置許可の際に行われる規制法二四条一項三号所定の技術的能力の有無及び四号
所定の安全性に関する各審査に過誤、欠落がある場合に起こり得る事故等による災
害により直接的かつ重大な被害を受けるものと想定される地域内に居住する者とい
うことができるから、本件許可処分の無効確認を求める本件訴えにおいて、行訴法
三六条所定の「法律上の利益を有する者」に該当するものと認められる。
二 そして、同条は、「
処分の無効確認の訴えは、当該処分の効力の有無を前提とする現在の法律関係に関
する訴えによって目的を達することができないものに限り、提起することができ
る。」との要件を定めており、原告らは、本件訴訟と共に本件原子炉施設の設置者
である動燃に対し、本件原子炉の建設及び運転の差止めを求める民事訴訟(福井地
方裁判所昭和六〇年(行ウ)第七号)を提起しているが、右民事訴訟は、右にいう
当該処分の効力の有無を前提とする現在の法律関係に関する訴えに該当するものと
みることはできず、また、本件無効確認訴訟と比較して本件許可処分に起因する本
件紛争を解決するための争訟形態としてより直裁的かつ適切なものであるともいえ
ないから、原告らにおいて右民事訴訟を提起していることは、本件無効確認訴訟が
同条所定の右要件を欠くことにはならない。
三 したがって、原告らは、本件訴えにつき原告適格を有する者ということがで
き、本件訴えは適法である。
第二章 本件原子炉施設の特徴及び本件許可処分について
第一 本件原子炉施設の概要
 争いのない事実並びに乙一ないし三、乙五、乙イニ及び乙イ四によれば、本件原
子炉施設の特徴について、次のとおりと認められる。
一 本件原子炉施設は、被告が、福井県敦賀市白木地区に建設中の、熱出力七一万
四〇〇〇キロワットの高速増殖原型炉であり、電気出力約二八万キロワットの発電
設備を有している。
二 本件原子炉施設は、核分裂反応によって発生したエネルギーを利用する広義の
原子炉施設に属するが、現在、一般的に発電の用に供されている原子炉(軽水炉)
と比べて、次のような特徴を有する。
1 ウラン等の質量数の大きい元素の中には、核分裂を起こしやすいもの(核分裂
性物質という。)があり、例えばウランの同位体であるウラン二三五や、プルトニ
ウムの同位体であるプルトニウム二三九は、エネルギーの低い中性子によって容易
に核分裂し、熱エネルギーを放出する。軽水炉は、この性質を利用し、主としてウ
ラン二三五を使用して核分裂反応を起こさせ、これによって生じた熱をエネルギー
として利用し、発電の用に供する。
 しかし、ウラン二三五は、天然に産出するウランの中の約○・七パーセントを占
めるにすぎず、九九パーセントを占めるウラン二三八は、核分裂しにくい(燃えな
い)ウランであり、そのままでは原子炉の燃料として利用できないものであるが、
ウラン二三八は、中性子を一
個吸収すると、核分裂を起こすプルトニウム二三九に転換する性質を有する。そこ
で、本件原子炉施設においては、炉心燃料部分で核分裂反応を起こさせ、これによ
って生じた熱をエネルギーとして利用し、発電の用に供するのは軽水炉と同様であ
るが、これと同時に、右核分裂反応の際に生じた中性子によって、燃料部分の燃え
ないウランを燃えるプルトニウムに転換し、消費した以上の燃料を生産することを
図り、炉心中央にプルトニウムとウランの混合酸化物からなる炉心燃料を配置し、
その周辺に、ウランの酸化物からなるブランケット燃料を配置している(このこと
から、増殖炉と呼ばれる。)。なお、軽水炉でも、燃料中のウラン二三八の一部が
プルトニウム二三九に転換されるが、その量は消費される燃料に比べて少なく、増
殖は行われない。
2 軽水炉においては、核分裂反応によって生じた直後の高いエネルギー(速度)
を有する中性子(高速中性子という。)ではウラン二三五の新たな核分裂反応を起
こす確率が低いことから、これを減速し、新たな核分裂反応を起こす確率の速度の
遅い中性子(熱中性子という。)にしており、その減速材として、軽水(普通の
水)を用いる(このことから、軽水炉と呼ばれる。)。
 これに対し、本件原子炉施設においては、燃料の増殖を図るためには、中性子を
減速することなく、高いエネルギーを有する高速中性子のまま利用する必要がある
ことから、減速材を用いない(このことから、高速炉と呼ばれる。)。他方で、高
速中性子では核分裂反応が起きる確率が低いことから、燃料中の核分裂性物質の割
合を軽水炉より高めている。
3 軽水炉においては、核分裂によって生じた炉心の熱エネルギーを除去して炉心
の温度を調節すると共に、この熱を外部に取り出すための物質(冷却材)として
も、軽水が用いられる。すなわち、軽水炉においては、軽水が、減速材と冷却材の
役割を兼ねる。
 これに対し、本件原子炉施設は、高速中性子を用いるため、減速効果の大きい軽
水を冷却材として用いることはできず、冷却材としては、中性子を減速する効果が
小さく、かつ、冷却材としての性質上熱伝導度が高い物質を用いることが望まし
い。そこで、本件原子炉施設においては、右性質を有し、かつ、大気圧下において
九八℃から約八八○℃までの広い範囲で液体として存在し、高い温度でも加圧する
必要のない金属ナトリウムを冷却材として用いている。
4 現在発電の用に供されている軽水炉は、規制法上は、「実用発電用原子炉」に
位置づけられ(同法二三条一項一号)、電気事業法上は、「事業用電気工作物」に
当たる(同法三八条三項。平成七年法律第七五号による改正後のもの。以下同
じ。)
 これに対し、本件原子炉施設は、規制法上は、「研究開発段階にある原子炉」に
位置づけられ(同法二三条一項四号)、電気事業の用に供するものではないことか
ら、電気事業法上は、「事業用電気工作物」のうちの「自家用電気工作物」に当た
る(同法三八条四項。同条三項により、「事業用電気工作物」に関する規定が原則
として適用される。)。
第二 本件原子炉施設の原子力開発上の位置づけ
 本件原子炉施設は、高速増殖炉の開発段階としては、実験炉と将来炉(実証炉又
は実用炉)の中間に位置する「原型炉」に当たる。したがって、本件原子炉施設は
「液体金属冷却高速増殖LMFBR」原型炉」である。
第三 本件許可処分の存在
 被告は、昭和五八年五月二七日付けで、申請者に対し、本件原子炉施設につい
て、本件許可処分をした。
第三章 本件訴訟における司法審査の在り方
第一 本件訴訟の審理及び判断の対象となる事項一無効の理由の制限(行訴法一〇
条の類推適用の有無)
1 被告は、無効確認訴訟についても、取消訴訟について、自己の法律上の利益に
関係しない違法を理由として取消しを求めることができないと定める行訴法一〇条
一項の趣旨が類推適用されると主張する。
2(一) そこで検討するに、無効確認訴訟について行訴法一〇条一項を準用する
規定はない。しかし、同項の実質的根拠は、取消訴訟が、行政庁の違法な行政処分
によって自らが被っている権利利益の侵害を排除し、自己の権利利益の救済を図る
ことを目的とする主観訴訟であることから、取消訴訟において原告が自己の法律上
の利益に関係しない主張を許すことは、取消訴訟の性質に反する結果になることに
ある。
 一方、無効確認訴訟は、前記(第一章第三)のとおり、行訴法三六条が、無効確
認訴訟の原告適格を有する者を「当該処分又は裁決に続く処分により損害を受ける
おそれのある者その他当該処分又は採決の無効等の確認を求めるにつき法律上の利
益を有する者」と限定していること、右「法律上の利益を有する者」は同法九条の
「法律上の利益を有する者」と同趣旨と解されることからすれば、取消訴訟と同
様、行政庁の処分によって原告自身
の被っている権利利益の侵害の救済を目的とする主観訴訟と解されるから、自己の
法律上の利益と関係のない違法事由の主張を認める理由はなく、同法一〇条一項は
無効確認訴訟にも類推適用されると解するのが相当である。
(二) また、取消訴訟においては、処分の違法事由として無効事由を主張するこ
とができると解され、このことからして、無効確認訴訟は、取消訴訟の出訴期間を
徒過した場合の例外的、補充的な訴訟形式救済方法ということができるところ、取
消訴訟において無効事由を主張する場合には行訴法一〇条一項の規定が適用される
ことは明らかであるから、無効確認訴訟には同項が準用されないと解すると、出訴
期間の経過の有無により取扱いを異にすることになり、不当な結論となる。
(三) 原告らは、無効は何人との関係においても無効であると主張するが、これ
が直ちに訴訟法上、無効確認訴訟の原告において、自己の法律上の利益に関係しな
い違法事由を主張することができるという結論を導くものではなく、主観訴訟とし
ての性質による制約を受け、自己の法律上の利益に関係のない違法事由を主張する
ことができないと解することは、何ら不合理ではない。
(四) したがって、行訴法一〇条一項は無効確認訴訟にも類推適用されるから、
本件訴訟において、原告らは、自己の法律上の利益に関係しない違法事由を主張す
ることはできない。
3 そして、右の原告らの「法律上の利益」は、行訴法九条の「法律上の利益を有
する者」の「法律上の利益」と同義と解されるところ、前記(第一章第三)のとお
り、規制法二四条一項三号(技術的能力に係る部分に限る。)及び四号は、原子炉
施設周辺に居住し、右事故等がもたらす災害により直接的かつ重大な被害を受ける
ことが想定される範囲の住民の生命、身体の安全等を個々人の個別的利益としても
保護すべきものとする趣旨を含むと解されるから、原告らは、同項三号(技術的能
力に係る部分に限る。)及び四号に係る違法を主張することができる。
 他方、規制法二四条一項一号は、「原子炉が平和の目的外に利用されるおそれが
ないこと」との要件を、及び同項二号は、「その許可をすることによって原子力の
開発及び利用の計画的な遂行に支障を及ぼすおそれのないこと」との要件をそれぞ
れ定めているが、右各要件が定められた趣旨は、専ら、原子力の研究、開発及び利
用を平和の目的に限り、かつ、原子力の開発及び
利用を長期的視野に立って計画的に遂行するとの我が国の原子力に関係する基本政
策に適合せしめ、もって、広く国民全体の公益の増進に資することにあるのであ
り、また、同項三号のうち、経理的基礎があることを要件とした趣旨は、原子炉の
設置には多額の資金を要することにかんがみ、申請者の総合的経理能力及び原子炉
設置のための資金計画を審査することにしたのであって、同法二四条一号、二号及
び三号(経理的基礎に係る部分に限る。)は、原子炉施設の周辺住民等の個人的利
益の保護を目的として内閣総理大臣の許可権限の行使に制約を課したものではな
く、原告らの法律上の利益に関係しないと解されるから、原告らは、右各要件に係
る違法事由を主張することはできない。
4 ただし、許可処分の手続に係る違法事由ついては、規制法二四条一項三号(技
術的能力に係る部分に限る。)及び四号の要件は抽象的、一般的である上、後記三
のとおり、原子炉施設の安全性に関する審査の適合性については、各専門分野の学
識経験者等を擁する原子力委員会の科学的、専門技術的知見に基づく意見を尊重し
て行う内閣総理大臣の合理的な判断に委ねる趣旨と解されるところ、同法二三条、
二四条二項は、右内閣総理大臣の判断が適正にされることを担保するために厳格な
手続を定めたものと解されるから、安全審査手続が適法であって初めて、右の判断
の適正が保障されることになるというべきである。したがって、手続法上の違法が
実体法上の違法をもたらすものである限り、原告らは、手続上の違法を主張するこ
とができると解するのが相当である。
二 重大かつ明白な違法
 無効確認訴訟において、原告らが主張することのできる瑕疵は、重大かつ明白な
ものに限られる(最高裁第三小法廷昭和三六年三月七日判決参照)。
三 原子炉設置許可段階における安全審査の対象
 規制法は、その規制対象を、精錬事業(第二章)、加工事業(第三章)、原子炉
の設置、運転等(第四章)、再処理事業(第五章)、核燃料物質の使用等(第六
章)、国際規制物質の使用(第六章の二)に分け、それぞれについて内閣総理大臣
の指定、許可、認可等を受けるべきものとしているのであるから、第四章所定の原
子炉の設置、運転等に対する規制は、専ら回章所定の事項をその対象とするもので
あって、他の各章において規制することとされている事項をその対象とするもので
はないと解するべきである。
 また
、規制法第四章の原子炉の設置、運転等に関する規制の内容を見ると、原子炉の設
置の許可、変更の許可(二三条ないし二六条の二)のほかに、設計及び工事方法の
認可(二七条)、使用前検査(二八条)、保安規定の認可(三七条)、定期検査
(二九条)、原子炉の解体の届出(三八条)等の各規制が段階的に行われることと
されている(なお、規制法七三条は、本件原子炉のような発電用原子炉施設につい
て、二七条ないし二九条の適用を除外するものとしているが、これは、電気事業法
四一条、四三条及び四七条により、その工事計画の認可、使用前検査及び定期検査
を受けなければならないとされているからであると解される。)。したがって、原
子炉施設の設置許可の段階においては、専ら当該原子炉施設の基本設計ないし基本
的設計方針のみが規制の対象となるのであって、後続の設計及び工事方法の認可
(二七条)の段階で規制の対象とされる当該原子炉施設の具体的な詳細設計及び工
事の方法は規制の対象とはならないと解すべきである。
 右の規制法の規制の構造に照らすと、原子炉施設の設置許可の段階の安全審査に
おいては、当該原子炉施設の安全性に係るすべてをその審査対象とするものではな
く、その基本設計ないし基本的設計方針に係る事項のみをその対象とするものと解
するのが相当である。
四 まとめ
 以上によれば、本件において原告らの主張することのできる違法事由は、本件原
子炉施設の基本設計ないし基本的設計方針に係る本件安全審査の手続上の瑕疵(実
体上の違法をもたらさないことが明白であるものを除く。)並びに規制法二四条一
項三号所定の技術的能力に係る許可要件適合性及び四号所定の安全性に係る許可要
件適合性の審査、判断に係る重大かつ明白な瑕疵に限られることになる。
五 本件において原告らの主張する違法事由のうち、本件訴訟の審理、判断の対象
とならない事項
 そうすると、原告らの主張する違法事由のうち、以下のものは、本件訴訟の審
理、判断の対象とならず、主張自体失当である。
1 原告らの自己の法律上の利益に関係しない事項
 規制法二四条一項一号、二号及び三号(経理的基礎に係る部分に限る。)の各要
件に係る違法事由の主張は、原告らの自己の法律上の利益に関係しない事項であ
る。なお、原告らが当初主張していた労働者被曝に関する主張も、周辺住民である
原告らの法律上の利益と関係がないことが明らかであるが、原
告らは右主張を撤回している。
2 安全審査の対象とならない事項原告らは、本件施設を含む高速増殖炉開発は、
非経済的であり、開発の継続は違法であると主張し、少なくとも本件許可処分の違
法性の重大性の判断においては、高速増殖炉開発の公益性が影響すると主張する。
 しかし、高速増殖炉の公益性が規制法二四条一項三号(技術的能力に係る部分に
限る。)の要件とは関係せず、安全審査の対象とならないことは明らかである。同
項四号の要件と関係するかについては、後に述べる(第六章第一、三、3)。
 なお、原告らが当初主張していた使用済燃料の再処理及び輸送に関する主張、廃
炉に関する主張、固体廃棄物の最終処分に関する主張、プルトニウム社会に関する
主張、温排水に関する主張、原子力発電所の集中立地に関する主張、防災計画に関
する主張については、安全審査の対象とならない事項であるが、この点について
は、原告らは主張を撤回している。
第二 本件訴訟における司法審査の手法
一 本件許可処分の性質
 規制法二四条一項三号(技術的能力に係る部分に限る。)及び四号の規定の趣旨
は、前記(第一章第三、一)のとおり、原子炉が原子核分裂の過程において高エネ
ルギーを放出する核分裂性物質を燃料として使用する装置であり、その稼働によ
り、内部に多量の人体に有害な放射性物質を発生さるものであって、原子炉を設置
しようとする者が原子炉の設置、運転につき所定の技術的能力を欠くとき、又は原
子炉施設の安全性が確保されないときは、当該原子炉施設の従業員やその周辺住民
等の生命、身体に重大な危害を及ぼし、周辺の環境を放射能によって汚染するな
ど、深刻な災害を引き起こすおそれがあることにかんがみ、右災害が万が一にも起
こらないようにするため、原子炉設置許可の段階で、原子炉を設置しようとする者
の右技術的能力と、申請に係る原子炉設置の位置、構造及び設備の安全性につき、
科学的、専門技術的見地から十分な審査を行わせることにある。
 右の技術的能力を含めた原子炉施設の安全性に関する審査は、当該原子炉施設そ
のものの工学的安全性、平常運転時における従業員、周辺住民及び周辺環境への放
射線の影響、事故時における周辺地域への影響等を、原子炉設置予定地の地形、地
質、気象等の自然的条件、人口分布等の社会的条件及び当該原子炉設置者の技術的
能力との関連において、多角的、総合的見地から検討するもので
あり、しかも、事柄の性質上、右審査の対象には、将来の予測に係る事項も含まれ
ているのであって、右審査においては、原子力工学はもとより、多方面にわたる高
度な最新の科学的、専門技術的知見に基づく総合的判断が必要とされるものであ
る。そして、規制法二四条二項が、内閣総理大臣は、原子炉設置の許可をする場合
においては、同条一項三号(技術的能力に係る部分に限る。)及び四号所定の原子
炉設置許可の基準の適合性について、あらかじめ原子力安全委員会(以下「安全委
員会」という。)の意見を聴き、これを尊重しなければならないと定めており、後
記(第四章第一、一)のとおり、安全委員会には、学識経験者及び関係行政機関の
職員で組織される原子炉安全専門審査会(以下「安全審査会」という。)が置か
れ、原子炉施設の安全性に関する事項の調査審議に当たるものとされているが(設
置法一六条)、このような原子炉設置許可処分の手続は、右のような原子炉施設の
安全性に関する審査の特質を考慮し、右各号所定の基準の適合性については、各専
門分野の学識経験者等を擁する安全委員会(安全審査会を含む。以下同じ。)の科
学的、専門技術的知見に基づく意見(調査審議及び判断の結果が答申される。)を
尊重して行う被告内閣総理大臣の合理的な判断に委ねる趣旨と解される(伊方最高
裁判決参照)。
 右に述べた安全審査及び処分の構造に照らせば、原子炉施設の安全性に関する判
断の適否が争われる原子炉設置許可処分の無効確認訴訟における審理及び判断は、
安全委員会の専門技術的な調査審議及び判断を基にしてされた行政庁の判断に重大
かつ明白な瑕疵といえるだけの不合理な点があるかという観点から行われるべきで
ある。
 したがって、裁判所は、本件において、規制法二四条一項三号(技術的能力に係
る部分に限る。)と四号の各要件の適合性について、安全委員会における右各要件
適合性の調査審議に用いられた具体的審査基準に重大かつ明白な瑕疵といえるだけ
の不合理な点があり、あるいは、当該原子炉施設が右の具体的審査基準に適合する
としたその調査審議及び判断の過程に重大かつ明白な瑕疵といえるだけの過誤、欠
落があり、これに依拠してされた被告の判断に重大かつ明白な瑕疵があるといえる
場合に限り、本件許可処分が無効であることを確認することになる。
二 違法判断の基準時
 取消訴訟における違法判断の基準時については、取消訴
訟は行政庁の第一次的判断を前提とし、その適否を審査する抗告訴訟であるから、
原則として処分時の適法性について審査すべきであり(最高裁昭和二七年一月二五
日第二小法廷判決参照)、この理は、前記(第三章第一、一、2、(一))のとお
り取消訴訟と同様に抗告訴訟の性質を有する無効確認訴訟にも当てはまる。
 ただし、規制法二四条一項四号の要件に関する判断のうち、科学技術に係る事項
を判断するに際して用いる科学的知見に関しては、科学的経験則、自然法則又は論
理法則にほかならないのであるから、本件許可処分時の科学水準のものによるので
はなく、現在の科学水準のものに則って判断するべきである。
 したがって、科学的経験則、自然法則又は論理法則を構成する科学的知見につい
て、処分時に用いた知見がその時点で通説的見解であっても、その後誤りが発見さ
れ、従来の指摘が誤りであったことが現在の通説的見解になった場合には、裁判所
が現在の知見を適用して処分の当否を判断すべきである。
 もっとも、本件許可処分後の新知見によって処分時の知見が誤っているとされる
場合であっても、新知見を前提としてもなお当該原子炉の安全性を確保しうると認
められる場合には、「災害の防止上支障がないこと」という規制法二四条一項四号
の要件を満たし、本件許可処分は適法となることはもちろんである。
三 本件訴訟における主張、立証責任
1 無効確認訴訟においては、処分の無効を主張する原告において、行政庁の処分
に重大かつ明白な瑕疵のあることを具体的事実に基づいて主張、立証すべきであり
(最高裁第三小法廷昭和三四年九月二二日判決等参照)、原告が主張、立証責任を
負うというべきである。
 また、前記一のとおり、規制法二四条一項三号(技術的能力に係る部分に限
る。)及び四号の各要件適合性の判断は、多方面における極めて高度な科学的、専
門技術的な知見に基づく総合的な判断を要するものであり、被告内閣総理大臣の裁
量に委ねられた事項であるところ、行政庁の裁量処分について、当該行政庁の裁量
判断に不合理な点のあることの主張、立証責任は、原則としてこれを争う原告が負
うというべきである(最高裁第二小法廷昭和四二年四月七日参照)。
2 もっとも、原子炉設置許可処分の取消訴訟においては、被告行政庁がした右判
断に不合理な点があり、それが重大かつ明白であることの主張、立証責任は、本
来、原告が負うべきもの
と解されるが、当該原子炉施設の安全審査に関する資料をすべて被告行政庁の側が
保持していることなどの点を考慮すると、被告行政庁の側において、まず、その依
拠した具体的審査基準並びに調査審議及び判断の過程等、被告行政庁の判断に重大
かつ明白な不合理な点のないことを相当の根拠、資料に基づき主張、立証する必要
があり、被告行政庁が右主張、立証を尽くさない場合には、被告行政庁がした右判
断に不合理な点があることが事実上推定されると解し、被告に事実上主張、立証の
義務を負わせている(伊方最高裁判決参照)。
 そこで、右法理が本件のような無効確認訴訟にも当てはまるものか否かについて
検討するに、この点、被告は、(1)無効確認訴訟は、処分の通用力の存在が形式
的に確定した後において処分の効力を争うものであって、行訴法上も前記のとおり
例外的、補充的な訴訟形式として位置づけられているものであり、取消訴訟の場合
のように、立証の難易及び公平の観点から被告に事実上主張、立証の義務を負わせ
る必要性は全くない、(2)出訴期間の制限のない無効確認訴訟において被告に事
実上主張、立証の義務を負わせると、時間の経過に伴う資料の散逸のおそれなどか
ら、被告に対して過酷な主張、立証の義務を課することになりかねず、公平にも反
するとして、原子炉設置許可処分の取消訴訟における右法理は本件に当てはまるも
のではないと主張する。
 しかし、右のとおり、原子炉設置許可処分の取消訴訟において、被告に事実上主
張、立証の義務を負わせる根拠は、安全審査に関する資料をすべて被告行政庁の側
が保持しているという、証拠の偏在にある。したがって、右の事情の存在する限り
は、無効確認訴訟であっても、取消訴訟同様に解することは妨げられないし、ま
た、そうすべきこととなる。
 そして、無効確認訴訟は、前記(第一、一、2、(一))のとおり、その性質は
取消訴訟と同様の抗告訴訟であり、また、重大性、明白性の要件は、処分の違法性
の程度の問題であると解されるから、当該原子炉施設の安全審査に関する資料をす
べて被告行政庁の側が保持していることは、無効確認訴訟と取消訴訟という訴訟形
態の違いによって異なるものでないことは明らかである。
 もちろん、無効確認訴訟には、出訴期間の制限がないため、時間の経過に伴う資
料の散逸などにより、証拠の偏在という事情が常に存在するとはいえないが、本件
についてみ
れば、本件訴訟が提起されたのは、本件許可処分がされた昭和五八年五月二七日か
ら約二年四か月後の昭和六〇年九月二六日であり、本件の訴訟経過に照らしてみて
も、本件原子炉施設の安全審査に関する資料はいまだ被告がすべて保管していたも
のと認められるから、時間の経過に伴い被告に資料の散逸があったとは認められな
い。
 したがって、本件無効確認訴訟においても、取消訴訟の場合と同様、当該原子炉
施設の安全審査に関する資料をすべて被告が保持していることなどの点を考慮すれ
ば、被告において、まず、その依拠した具体的審査基準並びに調査審議及び判断の
過程等、被告の判断に重大かつ明白な瑕疵といえるだけの過誤、欠落のないことを
相当の根拠、資料に基づき主張、立証する必要があり、被告が右主張、立証を尽く
さない場合には、被告がした右判断に不合理な点があることが事実上推定されると
解するのが相当であって、無効確認訴訟においては重大性、明白性の要件があるこ
とを、被告に要求される立証の程度において考慮すれば足りるというべきである。
第四章 本件許可処分の手続的適法性
第一 本件許可処分の手続との適法性
一 研究開発段階にある原子炉の設置許可申請から設置許可に至るまでの手続
 本件原子炉施設のような研究開発段階にある原子炉の設置許可申請から設置許可
に至るまでの手続は、当事者間に争いがなく、次のとおりと認められる。
1 研究開発段階にある原子炉を設置しようとする者は、規制法二三条、同法施行
令六条、原子炉規則一条の三に基づき、内閣総理大臣に対し、原子炉の設置許可申
請を行う。
2 内閣総理大臣は、右許可申請が規制法二四条一項各号所定の許可要件に適合し
ているか否かを審査する。審査は、その所部の機関である科学技術庁が行う。
3 科学技術庁は、右審査に当たり、必要に応じ、原子力安全技術顧問(原子力の
安全に関する各専門分野において、高度な専門技術的知見を持つ学識経験者の中か
ら、科学技術庁長官が委嘱した者)から、その専門技術的見地からの意見を徴す
る。科学技術庁は、その意見を求めるに当たって必要があるときは、関係の原子力
安全技術顧問による会合を開催する。
4 内閣総理大臣は、右許可申請につき、規制法二四条一項一号、二号及び三号
(経理的基礎に係る部分に限る。)の各要件適合性については原子力委員会に、同
項三号(技術的能力に係る部分に限る。)及び四号の各要件
適合性については安全委員会にそれぞれ諮問する。右諮問に際しては、科学技術庁
が行った安全審査の内容をまとめた安全審査書案が安全委員会に提出される。
5 原子力委員会は、右許可申請が規制法二四条一項一号、二号及び三号(経理的
基礎に係る部分に限る。)の各要件適合性について審議し、内閣総理大臣に対しそ
の結果を答申する。
6 安全委員会は、右許可申請が規制法二四条一項三号(技術的能力に係る部分に
限る。)及び四号の各要件適合性について審議し、内閣総理大臣に対しその結果を
答申する。
 安全委員会は、四号の要件に関しては、必要に応じ、同委員会に設置されている
安全審査会にその調査審議を指示する(設置法一六条)。
 安全審査会は、原子炉の安全性に関する専門の事項について適切かつ効率的に調
査審議を行うために部会を置くことができ(原子炉安全専門審査会運営規程七
条)、通常は、原子炉設置許可申請ごとに部会が置かれる。部会は、調査審議の方
針等を検討した上、専門分野別にグループ分けを行い、グループ単位あるいは部会
全体で調査審議を行う。部会は、その状況及び結果を適宜安全審査会に報告し、安
全審査会における審議に付する。
 さらに、安全委員会は、四号の要件適合性を審議するに当たり、公開ヒアリング
等を実施して、当該原子炉施設固有の安全性について地元住民の意見を参酌する
(「原子力安全委員会の当面の施策について」昭和五三年一二月二七日原子力安全
委員会決定、昭和五七年一一月二五日一部改正)。
7 内閣総理大臣は、原子力委員会及び安全委員会の各答申を十分に尊重し(規制
法二四条二項)、またあらかじめ通商産業大臣の同意(規制法七一条一項一号)を
得た上、当該設置許可申請の許否について最終的な判断をし、処分を行う。
二 本件許可処分の手続
 乙七ないし一〇、乙一一ないし一四の各一ないし三、乙一六、乙一七、乙二〇、
乙二二及び乙イ六によれば、本件許可処分の手続について、次の事実が認められ
る。
1 申請者は、昭和五五年一二月一〇日、内閣総理大臣に対し、規制法二三条に基
づき、本件許可申請をした(なお、申請者は、昭和五六年一二月二八日と昭和五八
年三月一四日の二回にわたって、右申請書及び同添付書類の一部を補正した。)。
2 被告は、直ちに、科学技術庁に右申請に係る審査を行わせた。
3 科学技術庁は、必要に応じ、原子力安全技術顧問から専門技術的見地からの意
見を聴取するなどした上、本件許可申請は規制法二四条一項各号の許可要件に適合
すると判断した。
4 被告は、昭和五七年五月一四日、科学技術庁の右意見を付して、本件許可申請
について、規制法二四条一項一号、二及び三号(経理的基礎に係る部分に限る。)
の各要件適合性については原子力委員会に、また、同項三号(技術的能力に係る部
分に限る。)及び四号の各要件適合性については安全委員会にそれぞれ諮問した。
安全委員会への諮問に際しては、科学技術庁における安全の内容をまとめた安全審
査書案が安全委員会に提出された(なお、昭和五八年三月にその一部が修正されて
いる。)。
5 原子力委員会は、右諮問を受けて審議した結果、昭和五八年四月二六日、被告
に対し、本件許可申請が右各要件に適合していると認める旨答申した。
6 安全委員会は、右諮問を受けて、昭和五七年五月一四日、安全審査会に対し規
制法二四条一項四号に係る事項について調査審議を指示した。当時、安全委員会
は、原子炉工学、核燃料工学、熱工学、放射線物理学等の原子炉施設に関する専門
的分野を始め、地震学、地質学及び気象学等に及ぶ広範な分野から選ばれた審査委
員四四人により構成されていた。
7 安全委員会は、右指示に係る調査審議を適切かつ効率的に行うため、昭和五七
年五月一八日、二八人の審査委員からなる第一六部会を設置した。
8 第一六部会は、主として原子炉施設に係る事項を担当するAグループ、主とし
て公衆の被曝線量評価等の環境面に係る事項を担当するBグループ、主として地
質、地盤、地震、耐震設計等の自然的立地条件に係る事項を担当するCグループに
分かれ、各グループにおいて詳細な検討をした。また、同部会は、随時、全体の会
合を開いて各グループに関係する事項の検討を行い、現地調査も行った。そして、
同部会は、適宜その審査状況を安全審査会に報告し、安全審査会の審議に付した。
 第一六部会においては、全体会合七回、現地調査八回、Aグループ会合二一回、
Bグループ会合一四回、Cグループ会合一〇回の会合等が開催された。
9 安全委員会は、昭和五七年七月二日、福井県敦賀市において公開ヒアリングを
開催した。右公開ヒアリングにおいて提出された意見等のうち、規制法二四条一項
三号(技術的能力に係る部分に限る。)に係る事項については、これを直接これを
参酌し、同項四号に係る事項については、同年九月二日、安全審
査会にこれを参酌するよう指示した。
10 第一六部会は、昭和五八年四月一二日、それまでの調査審議の結果を安全審
査会に報告した。安全審査会は、右報告を基に調査審議を更に行い、同年四月二〇
日、本件許可申請が規制法二四条一項四号の要件に適合すると判断する旨の調査審
議結果を安全委員会に報告した。
11 安全委員会は、本件許可申請の規制法二四条一項三号(技術的能力に係る部
分に限る。)の要件適合性については自ら審議し、また、同項四号の要件適合性に
ついては安全審査会の右報告を踏まえた上で審議した。その結果、安全委員会は、
昭和五八年四月二五日、被告に対し、本件許可申請が右各要件に適合していると認
める旨答申した。
12 被告は、原子力委員会及び安全委員会の右各答申を受け、また、昭和五八年
四月二八日に通商産業大臣の同意を得た上、本件許可申請は規制法二四条一項各号
の要件に適合していると判断し、同年五月二七日、規制法二三条一項に基づき、本
件許可処分をした。三 当裁判所の判断
 右認定の本件許可処分の手続は、研究開発段階にある原子炉の設置許可申請がさ
れてから許可処分に至るまでの手続に適合しており、適法であるというべきであ
る。
第二 原告らの主張について
一 原子力三原則違反の主張について
 原告らは、安全審査会の審査過程と審査資料が非公開である上、公開ヒアリング
の手続が非民主的であり、自主、民主、公開を規定する原子力基本法二条に違反す
ると主張する。
 しかし、基本法は、原子力の研究、開発及び利用を推進することによって、将来
におけるエネルギー資源を確保し、学術の進歩と産業の振興とを図り、もって人類
社会の福祉と国民生活の水準向上とに寄与することを目的とし(同法一条)、原子
力の研究、開発及び利用は平和の目的に限り、民主的な運営の下に、自主的にこれ
を行うものとし、その成果を公開し、進んで国際協力に資するものとする(同法二
条)ことをその基本方針とするが、同法は、原子力の研究、開発及び利用全般にわ
たり、包括的な法規範として機能しているものの、それぞれの法的規制等の具体的
な内容は、そのほとんどすべてを他の法律に委ねており、基本法が、他の法律を通
さずに、原子力の研究、開発及び利用に関して直接国民の権利義務に影響を及ぼし
たり、国民と国家との間の具体的な法律関係を形成することはないと解される。同
法二条に規定するいわゆる原子力三
原則は、原子力の研究、開発及び利用についての基本的精神を宣言したものであっ
て、個々の発電用原子炉の設置許可手続を直接規制するものと解することはできな
いというべきである。したがって、本件許可申請の審査手続に原子力基本法の適用
があることを前提とする原告らの主張は、その前提において失当である。
二 審査体制の不公正の主張について
 原告らは、本件安全審査における安全委員会、安全審査会の構成は、反対派が存
在しない不公正なものであったため、安全委員会、安全審査会内では原子炉の安全
性についての総合的な議論がされる仕組みにならず、このような構成による右委員
会、審査会のした判断に基づく本件許可処分には重大かつ明白な瑕疵があると主張
する。
 しかし、原告らの主張はいかなる委員の選任をもって安全委員会、安全審査会の
構成が不公正であるというのか不明確であって、具体的な主張とはいえないし、原
子力発電所推進に対する反対派が構成員にいなければ、直ちに真摯な安全審査が行
い得ないということもできないから、原告らの主張は失当である。また、安全委員
会の委員は、両議院の同意を得て、内閣総理大臣が任命するとされ(設置法二二
条、五条一項)、安全審査会の審査委員は、学識経験のある者及び関係行政機関の
職員のうちから、内閣総理大臣が任命するとされている(同法一七条一項)上に
(なお、設置法は、安全委員会の委員の資格については特に定めていないが、同法
は、規制法二四条一項四号に関する事項についての専門技術的観点からする調査審
議は、安全委員会が直接に行うのではなく、安全審査会の専門技術的調査審議に基
づく報告を踏まえて行うことを予定していると解されるので、そのこと自体を不当
とする理由はない。)、後記第五章以下において判断する本件安全審査の具体的な
審査内容に徴しても、安全委員会の委員ないし安全審査会の審査委員が原子力発電
所の建設を積極的に推進することだけを考え、その学問的あるいは専門的知識に基
づいた真摯な安全審査を行わなかったことを窺わせるような証拠は全くない。ま
た、右の事情に加えて、安全委員会の委員については、身分保障(設置法二二条、
六条、七条)があり、被告内閣総理大臣は原子力委員会の決定を尊重しなければな
らない(設置一法二三条、規制法二三条三項)とされていることからすると、安全
委員会が政府の原子力発電所推進の政策の支配を受け、本件原子炉施設の安全性に
ついての総合的な議論ができる仕組みになっていなかったということもできない。
三 審査基準の違法性
 原告らは、本件安全審査の審査基準を定めた規制法二四条一項四号は非常に抽象
的な基準を示しているに留まり、その適合性の判断に当たっては、法律に根拠のな
い安全委員会の内規である各種審査指針の基準を用いて審査したものであり、この
ことは、国会が唯一の立法機関であると定めた憲法四一条、行政への包括的、白紙
的授権を禁じた憲法七三条一項に違反すると主張し、また、審査基準の内容も、審
査基準の名に値しないずさんなものであるから、この審査基準を用いた本件許可処
分の手続は適正手続の保障を定める憲法三一条に違反すると主張する。
 しかし、原子炉施設の安全性に関する審査は、多方面にわたる極めて高度な最新
の科学的、専門的知見に基づいてされる必要がある上、科学技術は不断に進歩、発
展しているのであるから、原子炉施設の安全性に関する基準を具体的かつ詳細に法
律で定めることは困難であるのみならず、最新の科学技術水準への即応性の観点か
らみて適当ではないことにかんがみると、規制法二四条一項四号の規定の仕方も理
解し得るところであり、憲法四一条、七三条一項に違反したものであるとはいえな
い。また、本件許可申請に対する処分については、申請に係る原子炉施設の位置、
構造及び設備の安全性に関する審査の適正を確保するため、各専門分野の学識経験
者等を擁する安全委員会の科学的、専門技術的知見に基づく意見を聞き、これを尊
重するという、慎重な手続が定められているのであって、右規定が憲法三一条に違
反したものであるということはできない。そして、本件安全審査は、本件許可申請
が規制法二四条一項四号の規定に適合するか否かという観点からされたものである
ことは明らかであり、審査基準はこれを判断するに当たって用いられたものにすぎ
ないのであるから、審査基準が法律に基づかないものであるからといって、本件許
可処分が法律の定める手続に基づかないことにはならない(伊方原発最高裁判決参
照)。また、本件安全審査において用いられた審査基準の内容が不合理であること
は、本件許可処分の実体的違法を招くことにはなりうるとしても、それ自体として
本件許可処分の手続的違法を招くものでないことは明らかである。
 したがって、原告らのこの点についての主張は理由がない。
四 審査範囲の限定について
 原告らは、本件安全審査においては、審査の対象事項を本件原子炉施設の基本設
計ないし基本設計方針に限定しているが、右は審査範囲、対象を不当に限定したも
のであるから違法であり、本件許可処分には重大かつ明白な瑕疵がある旨主張す
る。
 しかし、原子炉設置許可における安全審査については、前記(第三章第一、三)
のとおり、当該原子炉施設における基本設計ないし基本的設計方針に係る事項のみ
が審査の対象となるのであるから、原告らの右主張はその前提を欠くものである。
 なお、原告らは、何が基本設計ないし基本設計方針に該当するかについては明確
な判断基準がなく、二次系配管室の床ライナの厚さや二次系配管の温度計の設計も
基本設計に含まれるものであるとして、本件安全審査においては、審査範囲、対象
が懇意的に選択されている旨主張する。
 確かに、証人P1の証言(P1調書一一〇頁)によれば、いかなる設計が基本設
計ないし基本的設計方針に該当するかを定めた法令や審査基準は存在しないことが
認められる。しかし、前記(第三章第二、一)のとおり、規制法二四条一項各号所
定の基準の適合性については、各専門分野の学識経験者等を擁する安全委員会の科
学的、専門技術的知見に基づく意見を尊重して行う被告内閣総理大臣の合理的な判
断に委ねられているところ、いかなる設計を基本設計ないし基本的設計方針に該当
するものとして本件安全審査の対象とするかは、右の裁量的な判断の過程を構成す
るものであるから、同様に被告の合理的な判断に委ねられているものと解するべき
である。したがって、ある事項を基本設計ないし基本的設計方針として扱わず安全
審査の対象としなかったことが、本件安全審査の調査審議及び判断の過程に重大か
つ明白な瑕疵といえるだけの過誤、欠落があり、これに依拠してされた被告の判断
に重大かつ明白な瑕疵があるといえるか否かを判断すれば足りる。
 そして、二次系配管室の床ライナの厚さや二次系配管の温度計の設計について
は、後記(第六章第六、八、3、(一)及び同(二)、(2))のとおり、これを
基本設計ないし基本的設計方針としなかったことが、不合理な点があるとまでは認
められない。また、他に本件安全審査における基本設計ないし基本的設計方針とし
ての審査対象の選択に不合理な点も認められない。したがって、この点において、
本件安全審査の調査審議及び判
断の過程に重大かつ明白な瑕疵といえるだけの過誤、欠落があるということはでき
ない。
第五章 本件許可処分の規制法二四条一項三号(技術的能力に係る
部分に限る。)適合性
第一 当裁判所の判断の手法
 前記(第四章第一、二)のとおり、規制法二四条一項三号適合性の審査について
は、被告は、その所部の機関である科学技術庁で審査した後、安全委員会に諮問
し、安全委員会は、調査審議の結果、本件許可処分申請が同号に適合する旨判断し
てその旨被告に答申し、被告は、右答申を十分尊重して、本件許可処分をした。
 そこで、当裁判所は、本件安全審査の審査方針及び審査事項に不合理な点がある
か否か、本件許可処分申請が右審査方針及び審査事項に照らして本件許可処分申請
が同号に適合するとした安全委員会の調査審議及び判断の過程に重大かつ明白な瑕
疵といえるだけの過誤、欠落があるか否かについて検討することとする。
第二 本件安全審査の内容
 乙一四の三、乙二八及び乙二二によれば、次のとおりと認められる。
一 本件安全審査においては、本件許可申請が、規制法二四条一項三号(技術的能
力に係る部分に限る。)の要件に適合するか否かについて、安全委員会は、原子炉
が高度の技術を集約して設置運転されることにかんがみ、主として原子炉の建設、
運転による災害の防止を図るという観点から、申請者がそれに必要な組織、要因を
確保することになっているか等を中心に、人的、組織的な面から事業者としての適
格性があるか否かを判断することとし、申請者に、申請に係る本件原子炉施設を計
画、建設していく上での十分な要員が確保されていること、原子炉施設の運転開始
までにその運転を適確にしていく上での十分な要員が確保される見通しがあること
等について、「原子炉施設の設置及び運転に関する技術的能力に関する説明書」
(原子炉規則一条の三第二項五号)等を参考とし、審査した。
二 そして、本件安全審査においては、次の各事項を確認した結果、申請者は、本
件原子炉施設の建設、運転に当たって、十分な要員を確保していると共に、業務を
適確に遂行するに十分な人的、組織的体制を準備しており、本件許可処分は規制法
二四条一項三号(技術的能力に係る部分に限る。)の要件に適合すると判断した。
1 申請者は、本件原子炉施設の建設に当たり、法令に基づく諸手続、設計、工事
計画、品質保証及びこれらに付随する対外連絡等の業務を含め
て本社技術者約一五〇人を直接従事あるいは関与させ、また、本件原子炉施設運転
開始時には約一八○人の技術者を確保することとしている。右技術者は、それぞれ
土木建築系、保健物理(放射線物理)系、炉物理系等の知識を有しており、管理者
の約半数は、高速増殖炉の研究、開発、計画等に一〇年以上の経験を有している。
2 申請者は、本件原子炉施設の建設、運転を行うに当たって、建設に必要な組織
(技術者等で組織されるもんじゅ建設事務所)を設置すると共に運転を適確に遂行
する組織体制を設けることとしている。また、技術者の養成については、高速実験
炉「常陽」と新型転換炉「ふげん」発電所の運転保守の実務経験を通じて技術者の
養成を行い、原子力関係機関への研修派遣や本件原子炉施設用のシミユレー夕での
訓練を通じて技術者の養成を行うこととしている。さらに、原子炉主任技術者及び
第一種放射線取扱主任者その他法令上必要な有資格者を確保している。
第三 当裁判所の判断
 右認定の事実によれば、本件安全審査の審査方針及び審査事項に不合理な点があ
るとはいえないし、また、右審査方針及び審査事項に照らして、申請者は本件原子
炉施設の建設、運転に当たって、十分な要員を確保していると共に、業務を適確に
遂行するに十分な人的、組織的体制を準備しており、右技術的能力に係る要件に適
合するものとした本件安全審査における調査審議及び判断の過程に重大かつ明白な
瑕疵といえるだけの過誤、欠落があるとは認められない。
第四 原告らの主張について
一 憲法三一条違反の主張について
 原告らは、規制法二三条一項三号の規定は、抽象的であり、適正手続の保障を定
める憲法一三条に違反すると主張する。
 しかし、同号の規定は、「その者に原子炉を設置するために必要な技術的能力及
び経理的基礎があり、かつ、原子炉の運転を適確に遂行する技術的能力があるこ
と」という具体的なものであり、抽象的な規定であるということはできない。した
がって、原告らの主張は理由がない。
二 申請者の体質について
1 原告らは、次の各事実を指摘して、申請者には規制法二四条一項三号(技術的
能力に係る部分に限る。)の要件が欠ける旨主張する。
(一) 本件ナトリウム漏えい事故の発生
 本件ナトリウム漏えい事故は、二次主冷却系の温度計さや管が破損してナトリウ
ムが漏えいした事故であるが、右破損の原因は、さや管が徐々に細くなる形状の
テーパ状ではなく、段付き構造のさや管を設置したために、配管内を流れるナトリ
ウムの流体力によってさや管の細管部に高サイクル疲労が生じたこと、すなわち温
度計の設計ミスにあった。これは初歩的なミスであり、申請者の品質保証活動、技
術の継承に問題があることが露呈した。
 また、本件事故により、ナトリウムの燃焼温度の想定が誤っていたことが判明し
たが、申請者は、床ライナの損傷防止対策について有効な解決策を打ち出すことが
できず、現在においても運転再開の目処が立っていない。そして、本件事故によ
り、異常時運転手順書を構成する「概要」「フローチャト」「細目」の三文書の内
容が互いに矛盾していたことが判明したが、申請者はこの矛盾を事前にチェックす
ることができなかった。さらに、本件事故においては、本件原子炉施設のナトリウ
ム漏えい検出機能に欠陥があることも判明した。
 これらの事実は、申請者に原子炉を適格に運転遂行する技術的能力が欠如してい
ることを示すものである。
(二) 配管の設計ミス
 平成三年六月、本件原子炉施設において、総合機能試験の準備として予熱用の電
気ヒータで二次主冷却系配管を加熱した際に、配管が熱膨張により設計とは全く逆
方向に変形し、また、同年七月、同じく総合機能試験において蒸気発生器細管の溶
接箇所に定期検査用のプローブがひっかかり、プローブを削るという事件が発生
し、申請者の品質保証活動が不十分であることが露呈した。また、申請者は、これ
らの重大な事実を内部告発によって明らかにされるまで隠し、自らの技術的能力の
欠如を覆い隠していたのであって、これは、申請者に原子炉を適格に運転遂行する
能力が欠如していることを示すものである。
(三) 東海村の再処理工場の事故
 平成九年三月一一日、申請者の東海村再処理工場の放射性廃棄物アスフアルト固
化工程において、TNT火薬に換算して数十キログラム程度と推定される大規模な
爆発事故が発生した。この事故の原因は、運転条件を変更したことにあったが、右
運転条件の変更は現場サイドだけで決められ、申請者の技術者の検討を経ていなか
ったものと解される。これもまた、申請者に原子炉を適格に運転遂行する能力が欠
如していることを示すものである。
(四) 事故情報の秘匿体質
 申請者は本件ナトリウム漏えい事故において、事故を過小なものに仮装するた
め、事故直後に事故現場を撮影したビデオテープを隠
し、事故後二回目に撮影したビデオテープを更に一分間に編集したビデオのみを公
開しており、追及されて二回目に撮影したオリジナルのビデオテープを、更に追及
されてようやく事故直後のビデオテープを公開した。また、申請者は、規制法六七
条に基づいて科学技術庁長官に本件事故を報告するに当たり、虚偽の事実を報告
し、規正法違反(虚偽報告の罪)により、申請者が罰金二〇万円、申請者の職員二
人が各一〇万円の罰金の刑事処分を受けた。
 さらに、申請者は、右東海村再処理工場の事故についても、事故情報を隠匿し、
虚偽報告を行ったことで刑事処分を受けた。
 これらの事実からすれば、申請者の組織をあげての事故隠し体質は明らかであ
り、これは、申請者に原子炉を適格に運転遂行する能力が欠如していることを示す
ものである。
2 しかし、前記(第三章第二、一)のとおり、規制法二四条一項三号(技術的能
力に係る部分に限る。)の要件適合性の判断は、安全委員会の科学的、専門技術的
知見に基づく意見を尊重して行う被告の合理的な判断に委ねる趣旨と解するのが相
当であり、裁判所は右判断に看過し難い過誤、欠落がないか否かを判断すべきであ
る。
 そして、本件安全審査においては、規制法二四条一項三号の技術的能力に係る要
件は、主として原子炉の建設、運転による災害の防止を図るという観点から、申請
者がそれに必要な組織、要員を確保することになっているかどうか等を中心に、人
的、組織的な面から事業者としての適確性があるか否かを判断しており、前記第三
のとおり本件安全審査における調査審議及び判断の過程に重大かつ明白な瑕疵とい
えるだけの過誤、欠落があるとは認められない。
 そうすると、原告らが指摘する具体的な事項は、本件安全審査の対象とはされて
いないものであり、そのことに重大かつ明白な瑕疵といえるだけの過誤、欠落があ
るとは認められないのであるから、原告らの主張は理由がない。
第五 まとめ 
 したがって、本件許可処分に、規制法二四条一項三号(技術的能力に係る部分に
限る。)に違反する点があるとは認められない。
第六章 本件許可処分の規制法二四条一項四号適合性
第一 総論
一 当裁判所の判断の手法前記(第四章第一、二)のとおり、規制法二三条一項四
号適合性の審査について、被告は、その所部の機関である科学技術庁で審査した
後、安全委員会に諮問し、安全委員会は、安全審査会に調査審議を指示
し、安全審査会は調査審議の結果、安全審査会に対し、本件許可処分申請は同号に
適合すると判断する旨の調査審議結果を安全委員会に対し報告し、安全委員会は、
右安全審査会の報告を踏まえて調査審議した結果、本件許可処分申請は同号に適合
すると認め、その旨被告に対して答申し、被告は、右答申を十分尊重して、本件許
可処分をした。
 そこで、当裁判所は、本件安全審査の調査審議に用いられた具体的審査基準に不
合理な点があるか否か、本件許可処分申請が右具体的審査基準に適合するとした安
全審査会及び安全委員会の各調査審議及び判断の過程に重大かつ明白な瑕疵といえ
るだけの過誤、欠落があるか否かについて検討することとするが、その前提とし
て、以下(二項ないし五項)において、本件原子炉施設の施設の概要、原子炉施設
の安全性の意義、本件安全審査の基本的な考え方と審査内容について検討する。
二 本件原子炉施設の概要
 乙一六及び乙二二によれば、本件原子炉施設の概要について、次のとおりと認め
られる
1 原子炉本体
(一) 炉心
 炉心は、原子炉の出力を主に担う炉心燃料集合体一九八体、プルトニウムの増殖
を主に目的とするブランケット燃料集合体一七二体及び原子炉の出力調整や停止等
に用いる制御棒集合体一九体へ中性子遮へい体等から構成され、これらが炉心支持
板の上に配列され、原子炉容器に収納されている。原子炉容器は、ステンレス鋼製
の縦型円筒容器であり、その内径は約七・一メートル、全高は約一七・八メートル
である。
(二) 燃料集合体
 炉心燃料集合体は、内部に一体当たり一六九本の炉心燃料要素を配列し、外側を
ステンレス鋼製のラツパ管で被覆したものであり、長さ約四・二メートルの正六角
柱の形状をしている。炉心燃料要素は、長さ約二・八メートル、外径約六・五ミリ
メートルのステンレス鋼製の燃料被覆管の中に、プルトニウム・ウラン混合酸化物
の粉末又は劣化ウランの粉末を円柱状に焼き固めた燃料ペレツトを詰めたものであ
る。そして、各炉心燃料要素にワイヤスペーサを巻くことによって相互の間隔を保
持して接触を防ぎ、炉心燃料要素の間のナトリウムの流路を確保ずる構造である。
 ブランケット燃料集合体は、外形的には炉心燃料集合体とほぼ同じであるが、内
部には、ウランのペレットを詰めたブランケット燃料要素が一体当たり六一本が収
められる。
(三) 制御棒
 制御棒は、これを炉心に挿入するこ
とによって、中性子を吸収し、核分裂反応を低下させるものであって、調整棒(微
調整棒三体、粗調整棒一〇体)と非常用制御設備としての後備炉停止棒(六体)が
ある。
 原子炉の通常の起動、停止、運転は調整棒の引き抜き、挿入によって行う。ま
た、原子炉を緊急停止する必要が生じた場合には、調整棒及びこれを駆動する機構
等からなる主炉停止系、並びに後備炉停止棒及びこれを駆動する機構からなる後備
炉停止系が独立して同時に作動する(主炉停止系及び後備炉停止系を併せて「原子
炉停止系」という。主炉停止系及び後備炉停止系は、その一方のみの作動によって
も、原子炉を停止することができる。なお、計測制御系統施設のうち、異常状態を
検知し、原子炉の緊急停止を起こさせる系統は「安全保護系」と呼ばれる。)。
2 原子炉冷却系統施設
(一) 一次主冷却系設備
 本件原子炉施設の炉心で発生した熱は、原子炉容器内を流れる一次冷却材(ナト
リウム)によって取り出され、中間熱交換器を介して二次冷却材(ナトリウム)に
伝達される。
 これには、独立した三つの系統(A、B、Cの各ループ)があり、それぞれの系
統は同様に、配管弁、ナトリウムを循環させる循環ポンプ及び中間熱交換器等の同
じ設備を有する。      
 なお、原子炉容器及び一次冷却系設備のうち、一次冷却材を封じ込める障壁を形
成する範囲を原子炉冷却材バウンダリという。また、原子炉冷却材バウンダリを形
成する原子炉容器等については、接続された配管の一部と共に、これらを下に包み
込むようにステンレス鋼製の容器であるガードベッセルを設置する。これは、万
一、原子炉冷却材バウンダリからナトリウムが漏えいした場合であっても、これに
よって原子炉の冷却に必要な冷却材を確保するためのものである。
 また、ナトリウムと空気との接触を防ぐ目的で、原子炉容器内等の一次冷却材の
ナトリウム液面を、不活性ガスであるアルゴンガスのカバーガスで覆うほか、一次
主冷却系の配管等を設置する部屋は、冷却材の漏えいに備え、不活性ガスである窒
素を充填する。
(二)二次主冷却系設備並びにタービン及び付属設備
 中間熱交換器で二次冷却材に伝えられた熱は、蒸気発生器を介して水・蒸気系に
伝達され、蒸気タービンを動かす。
 二次主冷却系も、三系統の一次主冷却系にそれぞれ対応して独立した三つの系統
(A、B、Cの各ループ)があり、それぞれの系統は、同様に、配管、弁、ナトリ
ウムを循環させる循環ポンプ、蒸気発生器等の設備を有している。
 蒸気発生器は、二次冷却材の熱を、蒸気発生器伝熱管を介して水.蒸気系に伝え
る熱交換器であり、水を蒸気(過熱蒸気)に変える蒸発器と、生成された蒸気を更
に過熱する過熱器とからなる。また、蒸気発生器の周りには、蒸気発生器で水が漏
えいした場合にこれを検出する水漏えい検出設備及び圧力上昇等を抑制するナトリ
ウム・水反応生成物収納設備が設けられる。
 一次冷却系と二次冷却系とは中間熱交換器によって分離され、炉心を通るため炉
心の中性子によって放射化される一次冷却材の放射性物質が二次主冷却系に混入す
ることのないようにされる。タービン設備は、過熱蒸気を利用して蒸気タービンを
駆動し発電を行う設備であり、これは、水及び蒸気を利用して発電を行う点で軽水
炉のものと本質的には異ならない。
(三) 補助冷却設備
 二次主冷却系設備から分岐する形で補助冷却設備三系統が設置されており、原子
炉停止時には、これを作動させて炉心を冷却し除熱する。
3 工学的安全施設
 原子炉容器及び一次主冷却系設備等、本件原子炉施設の原子炉の主要部分は、内
径約四九・五メートル、高さ約七九メートルの鋼製の容器である原子炉格納容器に
収納される。また、原子炉格納容器の周囲を取り囲む形で、鉄筋コンクリート構造
物である外部遮へい建物が設置され、原子炉格納容器の胴部と外部遮へい建物との
間の下部空間(アニュラス部)は、アニュラス循環排気装置によって負圧に保たれ
る。
 これらの原子炉格納施設及び前述したガードベッセル、補助冷却設備等は、周辺
環境への放射性物質の異常な放出、拡散を防止するための施設であり、工学的安全
施設と呼ばれる。
4 その他の設備
 本件原子炉施設には、右1ないし3に述べたほか、計測制御系統施設(原子炉計
装、プロセス計装、原子炉制御設備、原子炉保護設備、工学的安全施設作動設備及
び中央制御室)、放射性廃棄物廃棄施設(気体廃棄物処理設備、液体廃棄物処理設
備及び固体廃棄物処理設備)、核燃料物質の取扱施設及び貯蔵施設(燃料取扱及び
貯蔵設備)、放射線管理施設、非常用電源設備を含む電気設備、換気空調設備及び
各種の補助的設備が設けられる。
三 原子炉施設の安全性の意義
1 原子炉施設の潜在的危険性
(一) 規制法の想定する危険性
 規制法二四条一項四号にいう原子炉施設の安全性とは、その
文言上、使用済燃料を含む核燃料物質、原子核分裂生成物を含む核燃料物質によっ
て汚染された物又は原子炉によりもたらされるおそれのある災害を防止し得るもの
であることを意味することが明らかであるから、そこで想定されている原子炉施設
の潜在的危険性は、主として放射性物質による環境の汚染であると解するのが相当
であり、原子炉施設における安全性の確保の問題は、結局は、右の放射性物質の有
する危険性をいかに顕在化させないかという点にあると解される。
 そこで、次に、放射線と人体に及ぼす影響について検討する。
(二) 放射線の種類と人体に及ぼす影響
 争いのない事実並びに乙二及び乙ロ一によれば、次の(1)ないし(5)の事実
が認められる。
(1) 放射性物質、放射能、放射線
 放射性物質とは、放射能を持つ核種を含んだ物質のことをいい、ここで放射能と
は、放射線(正しくは電離放射線であるが、以下単に「放射線」と呼ぶこととす
る。)を放出する性質のことをいう。放射性物質は、天然にも存在するが、人工的
にも生成され、本件原子炉施設を含む全ての原子炉内にも、種々の核種の放射性物
質が存在し、また、運転により生成される。
(2) 放射線の種類と性質
 放射線には、アルファ線、ベータ線、中性子線等の粒子線と、ガンマ線、エック
ス線等の電磁波とがあるが、これらの放射線は、その種類ごとに物質との相互作用
及びその透過力に大きな違いがある。
 アルファ線は、アルファ粒子(陽子、中性子各二個からなるヘリウムの原子核)
の流れであり、アルファ粒子は、質量及び電荷が大きいことから、物質との相互作
用が大きいため、透過力が極めて小さく、空気中でも数センチメートル程度しか透
過できず、薄い紙一枚でも遮へいすることができる。
 ベータ線は、ベータ粒子(荷電粒子線=電子)の流れであり、ベータ粒子はアル
ファ粒子に比べ、質量が約七〇〇〇分の一、電荷が半分であることから、物質との
相互作用がはるかに小さいが、それでも、空気中で数十センチメートルないし数メ
ートルしか透過できず、数ミリメートルの厚さのアルミニウム板で遮へいすること
ができる。
 中性子線は、中性子の流れであり、中性子の速度により物質との相互作用が異な
り、低速度のものは透過力が小さいが、高速度のものは透過力が大きい。しかし、
中性子は、水のように水素を大量に含む物質中では、水素の原子核と衝突すること
によって減速
されるので、水等により遮へいすることができる。
 ガンマ線及びエックス線は、波長の非常に短い電磁波であり、質量も電荷も持た
ないことから、物質との相互作用が極めて小さいため、透過力は非常に大きく、こ
れを遮へいするためには厚い鉛板、鉄板、コンクリート等が必要である。
(3) 人間の放射線による被曝
 人間の放射線による被曝は、体外に存在する放射性物質からの放射による外部被
曝と、体内に取り込んだ放射性物質からの放射線による内部被曝とに分けられる。
このうち、外部被曝の場合には、アルファ線やベータ線のような透過力の小さい放
射線の場合は身体内部の諸器官はほとんど被曝せず、皮膚のみの被曝にとどまる
が、ガンマ線のような透過力の大きい放射線である場合は、身体内部の諸器官も含
め全身がほぼ均等に被曝する。これに対し、内部被曝の場合には、体内に取り込ま
れた放射性物質から放出される放射線のエネルギーが、直接身体内部の諸器官に吸
収されることにより、アルファ線やベータ線は、そのほとんどのエネルギーを周囲
に与えることになる。
 内部被曝の特徴として、①放射線の線量は線源との距離の二乗に反比例するとこ
ろ、内部被曝では線源との距離が近いため被曝線量が増えること、②アルファ線及
びベータ線の影響が重要になること、③よう素やストロンチウムなど特定器官に蓄
積する傾向を有する場合には、その特定器官(よう素の場合は甲状腺、ストロンチ
ウムの場合は骨)に被曝が集中すること、④放射能が減衰して消失するか排泄機能
により体外に出るまで被曝が続くことが指摘される。
(4) 放射線の量の単位
 放射線の量を表す単位としては、レントゲン、ラド、レム等がある。
 レントゲンは、放射線が物質に照射された量(照射線量)の単位であり、空気に
ガンマ線又はエックス線を照射した時に発生する電荷(イオン)の数をもとにした
単位である(一レントゲンは、一キログラムの空気に二・五八×一〇のマイナス四
乗クーロン個のイオンを作るようなガンマ線、エックス線の照射線量である。)。
 ラドは、放射線が物質に当たった時に、その物質にそのエネルギーが吸収される
量(吸収線量)を表す単位であり、人間の場合は、一レントゲンの放射線が当たる
と、約一ラド吸収される。
 レムとは、放射線の人体に対する影響を表す放射線の量(線量当量)の単位であ
り、放射線が人体に与える影響は「吸収線量のみならず、放射線の種類やエネルギ
ーによって異なり、また生体の組織によっても異なるために、放射線防護の目的か
ら、被曝の影響を全ての放射線に共通する尺度で評価するために用いられるもので
ある。その数値は、組織の吸収線量と線質係数の積で求められ、人が一レントゲン
のガンマ線を被曝したとき、その人に及ぼす影響は約一レムとされる(以下、単に
「線量」というときは、原則としてこの線量当量をいう。)。
 なお、現在、我が国の原子力の安全規制体系においては、レントゲンに代わって
クーロン毎キログラム(一レントゲンH二・五八×一〇のマイナス四乗クーロン毎
キログラム)が、ラドに代わってグレイ(一ラド=〇・〇一グレイ)が、レムに代
わってシーベルト(一レム=○・〇一シーベルト)が用いられているが、本判決に
おいては、原則として旧単位を用いることにする
(5) 放射線の人間に与える障害の種類と内容
 放射線の人間に与える障害には、被曝した個人に現れる身体的障害とその子孫に
現れる遺伝的障害とがある。このうち、身体的障害には、短期間に比較的高線量の
放射線を被曝した場合に、急性死亡、白血球の減少、脱毛、皮膚障害等の症状とし
て現れる急性障害(「確定的影響」ともいう。)と、比較的低線量の放射線を被曝
した場合でも、数か月から数年以上、長い場合には数十年の潜伏期を経てから、白
血病その他のがん、白内障等の症状として現れる晩発性障害とがある。これらのう
ち、急性障害の場合は、線量の大きさと症状の「重さ」との間に相関関係があると
されているが、晩発性障害及び遺伝的障害(以下この両者をあわせて「晩発性障害
等」という。また、「確率的影響」ともいう。)の場合には、右の相関関係は認め
られない。
(6) 放射線による障害の特徴
 右の放射線の人間に与える障害は、放射線が生体を構成する細胞や分子を破壊
し、時にはDNAの突然変異を引き起こすことによって生じるものであるため、そ
の障害は、症状の非特異性(放射線障害は、すべての臓器、組織に起こり得るもの
であり、放射線によって生ずる変化は、他の原因でも起こり得ること)、症状の遅
発性(数年、数十年を経た後に現れるものもあること)、症状の複雑性(再発、併
発、悪性変化など完治し難いこと)などの特徴を有する。
 このように、放射線障害は、その症状が他の原因によっても生じ得るものである
こと、殊に晩発性障害等は、被曝と発現との間
の時間が長いこと、被曝により必ず発現するものではないことと相まって、特定の
個人についてその症状が放射線によるものであるかどうかを判別することは困難な
場合が多い(当事者間に争いがない。)。
(イ) 高線量の放射線による障害の場合
 高線量の放射線を短期間に被曝した場合については、その被曝線量とそれによっ
て生じる障害との関係が比較的よく判明しており、また、低線量の放射線を被曝し
た場合の急性被曝については、二五ラド以下では臨床症状はほとんど発生しない。
したがって、しきい値(ある作用因子が生体に反応を引き起こすか、引き起こさな
いかの限界の線量。「しきい線量」ともいう。)の存在がかなりの程度明らかにな
っている(当事者間に争いがない。)。
(ロ) 低線量の放射線による障害の場合
 他方、低線量の放射線を被曝した場合の白血病その他のがん等の晩発性障害等の
発生については争いがあり、原告らは、被曝線量と晩発性障害等の発生との間には
直線的比例関係にあり、どのような低線量であっても晩発性障害等を生ずるのであ
り、放射線による晩発性障害等の発生についてはしきい値がないと主張している
(なお、被告も、被曝線量と晩発性障害等の発生との関係は、低線量・低線量率の
被曝ではいまだ解明されていないとしながらも、結局しきい値がないという前提に
立っている。)。
 この点については、原告らも指摘する次の研究結果等が存在するので、以下、こ
れらの研究結果等について検討する。
(a) セラフィールド再処理工場周辺住民の白血病
 甲ロ四によれば、一九八三(昭和五八)年一一月、英国のヨークシャーテレビ局
が、そのドキュメンタリー番組で、セラフィールド再処理工場周辺の町村では子供
のがんや白血病の発生率が全国平均より遥かに高く、同工場から二・四キロメート
ル離れたシースケール町では全国平均の一〇倍であり、その原因は再処理工場から
放出された放射性物質であるとの放映を行ったこと、これを受けて、英国政府は、
ダグラス・ブラック卿を委員長とする諮問委員会を組織し、同委員会は、一九八四
(平成元年)七月、政府に報告書を提出したが、右報告においては、同工場南側の
シースケール町を含むミロム地区の二五歳未満の若年層の間では、白血病死亡率が
一九六八年から七八年までの間では四倍、一九五九年から七八年の間では二倍とな
っており、シースケール町では一〇歳未満の白血病が期待
値に対し約一〇倍高く、小児悪性リンパ腫罹患率は、イギリス北部地域の七六五の
同規模の区の中で三番目に高く、シースケール町を含むミロム地区の二五歳未満の
白血病死亡率は同程度の人口の一五二地方自治区の中で二番目に高いなど、これら
の地区の白血病発生率は高いとしたが、その原因については、公表された放射性物
質の放出データから計算される周辺住民の被曝線量からは右のような白血病の異常
発生は説明できないとして、不明であるとされたことが認められる。
 しかし、甲ロ五ないし七によれば、その後、一九九〇(平成二)年二月、M・
J・ガードナーらは、セラフィールド再処理工場周辺の西カンプリア地方で生ま
れ、一九五〇年から八五年の間に二五歳以下で白血病患者(五二人)、非ホジキン
ス氏リンパ腫患者(二二人)、ホジキンス氏病患者(二三人)と、これらの患者と
同性で年齢も近い一〇〇一人の対照群とを比較したこと、その結果、論文「英国セ
ラフィールド核施設周辺の子供たちに生じている白血病、リンパ腫についての調査
研究」において、白血病と非ホジキンス氏リンパ腫に罹患する相対的危険率が、同
工場から五キロメートル以上離れたところで生まれた子供は○・一七、子供の受胎
期に父親が同工場で雇われていた場合は二・四四、子供の受胎前に父親が○・一レ
ム以上被曝している場合は六・四二と、同工場近くで生まれた子供と、父親が核施
設で働いている子供に高かった事実から、父親が受胎前に放射線に被曝すること
は、その子孫に白血病が発生することと関連しているとしたことが認められる。他
方、乙ロ一七によれば、国際連合原子放射線の影響に関する科学委員会(UNSC
EAR)は、右ガードナーの論文に対して、もしこれが正しければ大きな意義があ
るとしながらも、他の集団で得られた最近の結果はガードナーらの結論を支持して
いないこと、セラフィールド再処理工場で働く父親で見つかった白血病の相対リス
クの統計的増加は、わずか四人の患児に基づいているにすぎず、大部分の他の患児
の父親は他の工場施設で働いていたこと、被曝親についての他の観察結果との整合
性がないこと、右ガードナーの論文が指摘したように、一レムほどの低い放射線量
が白血病の集積発生を誘発するものなら、同じ線量で同じ集団に別の疾患が誘発さ
れるものと予測されるのに、同工場付近では、そのような遺伝病の発生は報告され
ておらず、ロシア連邦
での長期追跡にも報告がなく、そのほかの核施設の周辺からも報告がないことなど
から、右結論が強く正しいとは言えないだろうと指摘していることが認められる。
(b) ドーンレイの再処理施設周辺住民の白血病
 甲ロ五によれば、スコットランドのドーンレイの再処理施設周辺においても、一
九七九(昭和五四)年から八四(昭和五九)年の間の若年齢の白血病発生率が、ス
コットランド地方の期待値に比べ六倍も高く、特に同施設から一二・五キロメート
ル以内では一〇倍高いという有意な結果が明らかにされたことが認められる。
 しかし、他方で、甲ロ五によれば、右調査において対象とされた白血病患者の数
は五例ないし六例であり、症例の絶対数が統計的分析の目的には少ないかもしれな
いとされていることが認められる。
(c) 福島原発の労働者の被曝による染色体異常
 甲一四ないし一八によれば、昭和六三年、福島県環境医学研究所の村本淳一が、
昭和五九年から六三年の五年間に集積線量一五レム未満の被曝を受けた福島第一及
び第二原子力発電所に従事する二〇歳代から六〇歳代までの労働者の一一五名を対
象とした、末梢血リンパ球の染色体異常の調査研究を実施したこと、その結果、染
色体は人間においては一つの細胞に四六本あり、正常なものは途中に動原体と呼ば
れるくびれが一か所あるところ、調査対象となった労働者には、くびれが二か所に
ある二動原体染色体やリング状の環状染色体が細胞全体の○・二二パーセントにみ
られ一般住民の細胞に検出された同種の染色体異常の出現頻度○・一二パーセント
と比較すると二倍近いことが判明したこと、この染色体異常の出現頻度は、集積被
曝線量が多くなるほどその出現率が高くなる傾向にあり、集積被曝線量が一四レム
の労働者について、一般住民の五倍の値となっていることが認められる。
 しかし、染色体異常の出現頻度が、直ちに放射線に基づく障害の発生と結びつく
と認めるまでの証拠はないこと、調査の対象とされた労働者は一一五名にとどま
り、その統計的な意味には疑問の余地も残されているとみるべきである。
(d) ハンフオード原子力施設の労働者のがん死
(い) 甲ロ九によれば、ジョージ・ニールとアリス・スチュアートは、米国のハ
ンフォード原子力施設で働き、原爆製造計画に携わってきた労働者の一九四四(昭
和一九)年から七八(昭和五三)年までの間の四万四一〇一人の被曝と、一九四四

から八六(昭和六一)年までの間の死亡者九四四三人の死亡者のうちのがん死者と
の関係について分析したこと、その結果、ジョージ・ニールらは、低線量の被曝を
含むいかなる線量の被曝であってもがん死のリスクがあり、右リスクが被曝年齢と
正の相関があることが明らかになったとし、固形の腫瘍よりも白血病を引き起こし
やすいとか、線量率が低い放射線の場合はがんになる割合が低くなるという考え方
には賛同できないとしたことが認められる。
 しかし、他方で、乙ロ九によれば、一九九四(平成六年)年、UNSCEAR
は、右分析に対して、主に非標準的かつ不適切な統計手法を用い、死亡年齢、死亡
した暦年、職業、雇用期間などを正しく考慮していないと指摘していることが認め
られる。
(ろ) また、乙ロ一四によれば、マンクーソーらは、ハンフォード原子力施設で
一九四四(昭和一九)年から七二(昭和四七)年までの間に死亡した一一三三六名
の非被曝及び二一八三名の被曝男性労働者について、発がんと放射線被曝との関係
の調査を行ったこと、その結果、累積線量とがん死亡率、特に肺、膵臓及び骨髄の
がんによる死亡率との間に有意な関連が見い出されたとし、また、各種のがんの倍
加線量(自然に発生する突然変異と同じ数の突然変異を発生させる放射線量)を算
定すると、一ラド当たり、がん全体で八パーセント、膵臓がんで一四パーセント、
肺がんで一六パーセント、リンパ系、造血系のがんで四〇パーセント、骨髄がん
(骨髄性白血病及び多発性骨髄腫)で一二五パーセントの過剰ながんリスクに相当
するものであるとしていることが認められる。
 しかし、他方で、乙ロ一三によれば、国際放射線防護委員会(ICRP)内に設
置された放射線影響に関する専門委員会は、一九七九(昭和五四)年、右マンクー
ソーらの調査について、被曝量が体外被曝のみで、体内被曝、医療被曝を考慮して
おらず、また正規分布でないこと、がん死亡を死亡全体のパーセントで比較する方
法を採っていること、死亡率の対照を米国の一九六〇年の統計から採っているこ
と、多発性骨髄腫、膵臓がんの死亡が多いが、これは別の原因(例えば化学物質)
を考えた方がよいこと、発がんまでの潜伏期が考慮されていないこと、被曝例の方
が高年齢であり、したがってがんによる死亡が増える可能性があること、他の疫学
者の結論と反対であることから、信用するに足りない旨批判していること
が認められる。また、乙ロ一四によれば、米国科学アカデミー内の電離放射線生物
影響委員会(BEIR委員会)は、一九八○(昭和五五)年、BEIR―Ⅲ報告書
において、右調査について、右調査による多発性骨髄腫や膵臓がんのリスク推定値
は論理的見地に立てば信じがたいほど高いものであり、この推定値によると、一般
集団の中における多発性骨髄腫等の病因の中で自然放射線の役割がありそうもない
ほど大きなものとなってしまうこと、調査対象が少なく、明らかに統計的な力を欠
いていることを指摘していることが認められる。
 さらに、乙ロ一四によれば、マンクーソーらの報告が契機となって、多くの研究
者によってハンフォード原子力施設の労働者に関する研究が行われたが、①サンダ
ースは、被曝労働者の寿命は、彼らの兄弟姉妹の寿命よりも長命であり、しかも、
右兄弟姉妹の寿命は非被曝労働者のそれよりも長かったとし、また、被曝した労働
者達の間で、一九四四(昭和一九)年から七二(昭和四七)年の期間中のがん死者
の累積被曝線量が、同時期における他の原因での死亡者あるいは生存者のそれより
高いという傾向はないとしていること、②ミルハムは、同施設の労働者の多発性骨
髄腫と膵臓がん、結腸がんによる比死亡率に有意な相異は見い出されていないとし
ていること、③マークスらは、二年間以上.ハンフォードに雇用され、その雇用が
一九六〇(昭和三五)年一月以前にわたりている白人労働者七七二九名の累積線量
に関して死亡割合を比較した結果、被曝線量と膵臓がん、多発性骨髄腫の発生率と
間には有意な関連が認められるが、肺がんによる死亡率との間には有意な関連は認
められないとしていること、④ハチソンらは、スチュアートとニールの死亡率分析
を再現し、被曝線量と多発的骨髄腫、膵臓がんの発生率との間には統計的に有意な
関連が認められるがその他すなわちがん全体や肺がん、骨髄性白血病、リンパ性白
血病等との間には有意な関連は認められないとしていることが認められる。
(e)オークリッジ国立研究所の職員のがん死
 甲ロ一〇によれば、ウィングは、一九四三(昭和一八)年から七二(昭和四七)
年までの間、米国テネシー州オークリッジ国立研究所に雇用されていた白人職員に
ついて、一九八四(昭和五九)年時点での生存者八三一八名、死亡者一五二四名の
追跡調査を行ったこと、その結果、一九七七(昭和五二)年までの調査におい
ては放射線とがんとの相関関係は見つからなかったが、体外放射線被曝後約二〇年
に達するデータが蓄積された一九八四年の調査においては、潜伏期間を一〇年及び
二〇年とした場合には、放射線と死亡のすべての原因との間には一レムあたり二・
六八パーセント増、特にがん死亡率との間には一レムあたり四・九四パーセント増
という相関関係がみられるとしたことが認められる。
 しかし、他方で、乙ロ九によれば、UNSCEARは、右調査結果に対して、右
有意な関係は喫煙関連がんによるところが大きいことが明らかにされていると指摘
していることが認められる。
(f)スチュアートの見解乙ロ一一によれば、一九七〇(昭和四五)年、スチュア
ートとニールは、出生前の短期間に一ラドの放射線の被曝を受けた一〇〇万人の子
供の中に、一〇歳以前に三〇〇から八○○の放射線発がんによる過剰死があるだろ
うと評価したことが認められる。
 しかし、他方で、乙ロ一一によれば、米国放射線防護測定審議会(NCRP)
は、一九七六(昭和五一)年、右超過発生は、胎児期に受けた低線量被曝に起因す
るというよりは、むしろ、放射線以外の要因による可能性があるとしていること、
乙ロ一二によれば、ICRPの一九八一(昭和五六)年会議において、トッター、
マクファーソンらが、胎内被曝が小児がんの原因と結論するのは誤りであって、小
児がんの発生にとって放射線以外の要因の方が重要であると指摘したことが認めら
れる。
(g) プレストンとピアスの見解
 甲一二によれば、一九八七(昭和六二)年九月、プレストンとピアスは、論文
「原爆被曝者の線量推定方式の改定による炉ん死亡リスク推定値への影響」におい
て、新しい線量評価システム(DS八六)に基づき、がんと白血病の死亡リスク評
価を行い、中性子の生物学的効果比(RBE)を一〇と仮定した場合の過剰相対リ
スク(ある線量の放射線によって増加した障害数を、もともとの障害発生数で除し
たもの。)を一〇〇レム当たり○・一六六としたこと、これをもとに日本人の致死
がんの死亡リスクを計算すると、一〇〇万人レム当たり二八二○人、白血病死の死
亡リスクは一〇〇万人レム当たり一二〇人、合計一〇〇万人レム当たり一七四〇人
となることが認められる。
 しかし、他方で、甲一二によれば、右論文は、一〇〇ないし二〇〇レムという高
線量、高線量率の被曝に関するデータをもとにしたものであること、プレストンら
自身も、高線量の被曝におけるリスクを基に低線量の被曝におけるリスクを検討す
る際に、種々の仮定を置いており、不確実性があること、低線量の被曝と発がんの
リスクとの関係についてはほとんど推論できないことを指摘していることが認めら
れ、右論文は低線量域においても線量とリスクが比例関係にあることを論証したも
のではない。
(ハ) 検討
 右認定の事実によれば、原告らの主張には、相当程度の調査研究等の資料が存在
するということができるが、他方、これらの資料に対しては、公的な機関や専門家
によって疑問点が指摘されるなどしていることも認められる。
 また、乙ロ一〇によれば、清水由紀子、加藤寛夫、シュールは、一九八八(昭和
六三)年、論文「寿命調査第一一報第二部 新線量DS八六における一九五〇年か
ら八五年のがん死亡率」において、高線量の被曝で得られたリスク係数から低線量
の被曝のリスクを外挿することはしばしば困難であるので、低線量の被曝で得られ
たリスク係数を全線量範囲で得られた係数と比較した結果、○・二グレイ(なお、
「グレイ」は吸収線量であり、単純にレム等の単位に換算することはできないが、
便宜換算すると、一グレイは約一〇〇レムに相当する。)未満では、リスク係数の
増加はいずれのがん部位においても統計学的に有意ではないこと、対照群(○グレ
イ)の場合よりも統計学的に有意に高いがん死亡率が認められる最低の線量範囲
は、白血病以外の全部位のがん及び肺がんで○・一一から○・四九グレイ、白血病
及び乳がんで○・五から○・九九グレイ、胃がんで一から一・九グレイ、結腸がん
で二グレイ以上であるとしていることが認められ、しかも、乙ロ一によれば、IC
RPは、右報告書を検討した結果、統計学的に有意ながんの過剰は、九五パーセン
ト信頼幅では、二〇レム以上の線量で認められ、それより低い信頼レベルでは、五
レム程度の線量で認められるとし、それ以下のデータについては信頼性は認められ
ないとしていることが認められる。
 そして、乙ロ九によれば、UNSCEARは、自然放射線の被曝による人体影響
に関して、バックグラウンド放射線被曝の影響は、他の多くの致死がんに比べ、白
血病の方がはるかに評価しやすいと考えられるところ、コネチカット州、日本、フ
ランス、米国、スウェーデン、中国における研究では、白血病とバックグラウンド
放射線の間に有意な関連は認め
られないとしていること、乙二によれば、日本国内における自然放射線の地域差は
約四〇ミリレムほどあるが、地域を相互に比較しても、晩発性障害等の発生率に有
意な差はないことがそれぞれ認められる。
 さらに、乙ロ六によれば、BEIR委員会が、一九九〇(平成二)年、BEIR
―V報告書において、広島、長崎の原爆被曝者の子供に関する約七万五〇〇〇の出
産(そのうち三万八○○○については、両親のどちらか一方が被曝している。)に
ついての研究によれば、死産、出生時の体重、先天性異常、小児期の死亡率、白血
病、性比のいずれについても被曝の影響は見られていないこと、被曝者の子供、対
照群の双方について、①研究対象を一九四五(昭和二〇)年五月から五八(昭和三
三)年の間に広島あるいは長崎で出生し、一方あるいは両方の親が爆心から二〇〇
〇メートル以内にいた子供、②年齢及び性を一致させた集団で、一方の親が二五〇
〇メートル以内にいて、他方の親が二五〇〇メートル以遠にいたかあるいは被曝し
ていない集団、③年齢及び性を一致させた集団で両親ともに被曝していない集団に
拡大したが、統計的に有意な差は認められないとしていることが認められる。
 そうすると、直ちに原告らの主張するように放射線被曝と晩発性障害等の発生と
の間にしきい値がないことを自然科学的な意味において断定することは困難であ
る。
 しかしながら、乙二及び乙ロ一によれば、低線量の被曝と晩発性障害等の発生と
の間の関係については、しきい値があるとする見解はほとんどなく、他方、しきい
値がないものと断定する見解も有力ではなく、最も有力な見解は、しきい値がない
とまでは断定できないが、そう推定すべきであるとする見解ないしは放射線防護の
観点からそう仮定すべきであるとする見解であることが認められる。
 そうすると、低線量域における被曝線量と晩発性障害等の発生との間の関係につ
いては、現在においても未だ十分に解明されていない状況にあり、自然科学的証明
の問題としてこれを断定することは困難である。しかし、右のとおり放射線防護の
観点等からしきい値がないものと推定ないし仮定するのが一般的な見解であると、
統計的調査等は、その性質上収集できる対象は常に限定され、また、人間の生命、
身体の被害に関しては実験が許されず、他の動植物による実験結果を人間に外挿す
ることは科学的に限界があり、民事訴訟において通常要求
される程度に証明することには困難が伴うといえること、放射線が人間の生命、身
体に有害なものであることは明白な事実であり、放射線から保護されるべき利益は
人の生命、身体という重大なものであること、人間の生理、病理、遺伝等に関して
はいまだ解明されていない点も多いことなどに照らせば、法的な評価としては、右
認定の事実からすれば、低線量域における被曝線量と晩発性障害等の発生との間の
関係については、しきい値がないものと認めるのが相当である。
2 安全性の意義
 前記(1、(一))のとおり、規制法二四条一項四号が規定する原子炉施設の安
全性とは、放射性物質の有する危険性をいかに顕在化させないかという点にある。
ここで、前記(1、(二))のとおり、放射線障害の発生にはしきい値がないと仮
定すべきである一方で、弁論の全趣旨によれば、本件原子炉施設を含むすべての原
子炉施設は、その通常の運転によっても不可避的にある量の放射性物質を環境に放
出するものであることが認められるから、原子炉施設の運転は、常に、人の生命、
身体に対する危険ないし害を伴うということができる。そうすると、同号にいう安
全性がいかなる意味においても完全に放射線障害の発生を防止することをいうと解
すると、同号の要件を満たすためには、原子炉施設が放射線を環境に全く放出しな
いものであることが必要となり、原子炉施設の設置は現実にはおよそ許容される余
地がないことになる。しかしながら、人の生命、身体に対する害や、その危険性が
絶対的に零でなければ社会においてその存在が認められないとするならば、原子炉
施設のみならず、現代社会において受け入れられている科学技術を利用した各種の
機械、装置施設等も、何らかの事故発生等の危険性を伴っている以上、その存在を
許されないことになるが、人類はこのような科学技術を利用した各種の機械、装
置、施設等の危険性が社会通念上容認できる水準以下であると考えられる場合に
は、その危険性の程度と科学技術の利用により得られる利益の大きさを考慮した上
で、なお安全性を有するものとして利用している。そして、基本法一条は、原子力
の研究、開発を推進することが将来におけるエネルギー資源の確保及び学術の進歩
と産業の振興とを図ることとなり、人類社会の福祉と国民生活の水準向上とに寄与
することになるとの考え方を明示しており、規制法も、原子炉の設置を一定の要件
の下に
許容することを当然の前提としているものと解される。したがって、規制法二四条
一項四号のいう原子炉施設の安全性の確保とは、原子炉施設の有する潜在的危険性
を顕在化させないよう、放射性物質の環境への放出を可及的に少なくし、これによ
る災害発生の危険性を社会通念上容認できる水準以下に保つことにあると解され
る。
3 高速増殖炉開発の公益性に関する主張について
 原告らは、本件施設を含む高速増殖炉開発は非経済的である旨主張し、右主張
は、規制法二四条一項四号の安全性か、又は本件許可処分の違法性の重大性におい
て、裁判所の判断の対象となると主張する。これに対して、被告は、高速増殖炉の
経済性そのものは、安全性とは関係しないから、原子炉設置許可に係る安全審査の
対象とはならず、本件訴訟の審理の対象とはならない事項であると主張している。
 この点、右2のとおり、規制法二四条一項四号のいう原子炉施設の安全性の確保
とは、人の生命、身体に対する害や、その危険性が絶対的に零であることではな
く、その危険性の程度と科学技術の利用により得られる利益の大きさを共に考慮に
入れた上で、原子炉施設の有する潜在的危険性を顕在化させないよう、放射性物質
の環境への放出を可及的に少なくし、これによる災害発生の危険性を社会通念上容
認できる水準以下に保つことにあることをいう。そうすると、経済性というかはと
もかく、本件原子炉施設の利用により得られる利益の大きさ(以下便宜「有益性」
という。)は、安全性の判断における一つの要素となることを否定できないという
べきである。
 もちろん、原子炉施設の運転に伴う放射線の環境への放出による危険ないし損害
は、人の生命、身体の安全という最大限の尊重を必要とする重大な法益に対するも
のであるから、原子炉施設の運転によって得られる利益と単純に金銭的に比較衡量
すべきものではなく、人の生命、身体に対する危険性は、社会通念上容認できる水
準以下、すなわち社会的にその影響を無視することができる程度まで低いものであ
ることが当然に要求され、原子炉施設の有益性を理由としてこれを超える危険を正
当化することは許されないというべきである。したがって、「有益性」は、人の生
命、身体に対する危険が社会通念上無視できる程度まで低いものであるとしても、
それは零ではない以上、この危険をもたらす活動には、右危険を超えるだけの有益
性が要求されるという
限りにおいて、安全性の判断に含まれるものと解するべきである。
 このように、本件原子炉施設においても、安全性の一つの要素として、有益性が
要求されると解するべきであるが、人の生命、身体に対する危険が許されるのは、
それが社会的にその影響を無視することができる程度まで低いものに限られるか
ら、求められる有益性は、右の程度の危険をもたらす活動を正当化するものである
ことが必要であり、また、それで足りるというべきである。
 これを本件原子炉施設についてみるに、前記(第二章第二)のとおり、本件原子
炉施設は、高速増殖炉の開発の第二段階に位置づけられる「高速増殖原型炉」であ
り、将来高速増殖炉を実用化して電力供給の用に供することを目的として、その研
究のために設置運転されるものであって、電力源の開発という有益性を有すること
は明らかであり、この程度の有益性があれば、社会的にその影響を無視することが
できる程度の危険性を正当化するには十分であって、これ以上に、本件原子炉施設
ないし高速増殖炉の発電コストが経済的に見合うものであるかどうかや、他の合理
的なエネルギー供給の方法があるかどうか等の点を検討する必要はないというべき
である。
四 本件安全審査の基本的な考え方と審査内容
 争いのない事実並びに乙九及び乙一四の三によれば、本件安全審査の基本的な考
え方と審査内容について次のとおりと認められる。
 本件安全審査においては、平常時はもちろん、地震、機器の故障その他の異常時
においても、一般公衆及び従業員に対して放射線障害を与えず、かつ、万が一の事
故を想定した場合にも一般公衆の安全が確保されることを基本方針としている。そ
して、具体的には、①立地条件(立地条件に係る安全性)、②安全設計、③平常運
転時の被曝評価(平常運転時における安全性)、④各種事故等の検討(事故防止対
策に係る安全性)、⑤立地評価(公衆との離隔に係る安全性)の五項目について審
査した。これについてその基本的な考え方と審査内容をみると、次のとおりであ
る。
1 立地条件(立地条件に係る安全性)
 原子炉施設は、その自然的立地条件との関連において十分安全に設置されること
が必要である。この基本的考え方に則り、本件安全審査においては、地盤、地震、
気象、海象等が審査されたが、このうち、地盤及び地震については、次の事項を重
点的に審査した。
(一) 本件敷地の地盤は、本件原子炉
施設に損傷を与えるような大規模な地滑りや山津波を発生するおそれはないか。本
件敷地の地盤のうち、原子炉施設の支持地盤は、その施設を支持する上で十分な地
耐力を有すると共に、地震による地盤破壊や荷重による不等沈下を起こすおそれは
ないか。
(二) 本件敷地周辺において将来発生することがあり得るものと考えるべき地震
が、過去の地震歴等から適切に選定されているか。これらの地震が原子炉敷地に及
ぼすと考えられる影響を十分吟味した上で、原子炉の敷地基盤における設計用基準
地震動が十分安全余裕をもって設定されているか。
(三) この設定された設計用基準地震動に対しても工学的、技術的見地からみ
て、申請の対象となる本件原子炉施設について、十分安全余裕のある耐震設計を講
ずることができるか。
2 安全設計
 原子炉施設の安全設計においては、まず、その平常運転時において、原子炉施設
に起因する放射線による周辺公衆の被曝を法令で定める許容被曝線量以下とし、か
つ、これを合理的に達成できる限り低く保つという考え方(以下、ALARAの考
え方という。)に基づき、これを十分に下回らせることが必要であり、また、多重
防護の考え方に基づき、事故防止対策として適切な措置を講じることが必要であ
る。この基本的考え方に則り、本件安全審査においては、次の諸点を審査した。
(一) 平常運転時における被曝低減対策としての安全設計
(1) 本件原子炉施設の平常運転時において、放射性物質が一次冷却水中に現れ
るのを極力防止し得るよう適切な対策が講じられているか否か。
(2) 本件原子炉施設の平常運転時において、一次冷却水中に現れた放射性物質
を処理し、管理し得るよう適切な対策が講じられているか否か。
(3) 本件原子炉施設の平常運転時において、周辺環境に放出される放射性物質
については、これを適切に監視することとされているか否か。
(二) 事故防止対策としての安全設計
(1) 異常の発生防止
(イ) 燃料の核分裂反応を安定的に制御することができるようになっているか否
か。
(ロ) 燃料は、熱的機械的・化学的影響によって、その健全性(換言すれば、安
全確保上期待されている放射性物質の閉じ込め機能)が損なわれることのないよう
に十分安全余裕のあるものとなっているか否か。
(ハ) 圧カバウンダリは、機械的・化学的影響によって、その健全性が損なわれ
ることのないように十分安全余裕のあ
るものとなりているか否か。
(ニ) 右以外の関連設備は、燃料及び圧カバウンダリの健全性を損なうような異
常状態の発生を防止し得るよう十分安全余裕のある性能や強度等を有するものとな
っているか否か。
(2) 異常事故の拡大及び事故への発展の防止
(イ) 燃料及び圧カバウンダリ並びにこれらの健全性の確保に関連する諸設備
は、軽微な異常状態が発生した場合に、所要の措置がとれるように、その異常状態
を早期にかっ確実に検知し得ることとなっているか否か。
(ロ) 燃料及び圧カバウンダリの健全性の確保に関連する諸設備に発生した異常
状態が大きなものである場合等、その異常状態に対し迅速な措置を講じなければ燃
料及び圧カバウンダリの健全性に重大な影響を及ぼすおそれのある場合には、燃料
及び圧カバウンダリを損傷させないように原子炉緊急別停止装置等の安全保護設備
が設置ざれることとなっているか否か。
(ハ) 燃料及び圧カバウンダリの損傷を防止するために設置される安全保護設備
等は、いずれも確実にその機能を発揮し得るものとなっているか否か。
(3)放射性物質の異常放出の防止
(イ) 圧カバウンダリを構成するいかなる配管の破断を想定しても、放射性物質
の外部への異常な放出を防止するため、非常用炉心冷却設備、格納容器等の工学的
防護機構が設置されることとなっているか。
(ロ) 放射性物質の外部への異常な放出を防止するために設置される工学的防護
設備は、いずれも確実にその機能を発揮し得るものとなりているか。
3 平常運転時における公衆の被曝線量評価(平常運転時における安全性)
 2において審査した平常運転時における安全性を確保するための安全設計の妥当
性を確認するために、申請者が、本件原子炉施設の平常運転時において、環境に放
出される放射性物質及び本件原子炉施設の内部にある放射性物質に起因する周辺公
衆の被曝線量は、法令で定める「公衆の許容被曝線量以下となり、ALARAの考
え方に基づき、これを十分に下回るようになっているかについて行った解析を審
査、評価した。
4 各種事故の検討(事故防止対策に係る安全性)
 2において審査した事故防止対策に係る安全性を確保するための安全設計の妥当
性を確認するために、申請者が、「運転時の異常な過渡変化、「事故」「技術的に
は起こるとは考えられない事象」とに分けて各種の異常事態を想定してこれについ
て行った解析を審査、評価
した。
5 立地評価(公衆との離隔に係る安全性)
 原子炉施設は、現実には起こるとは考えられない万一の事故を想定した場合であ
っても周辺公衆の安全が確保し得るよう、その工学的防護設備との関連において、
十分に公衆から離れていることが必要である。この基本的考え方に則り、本件安全
審査においては、次の諸点を審査する。
(一) 重大事故(敷地周辺の事象、原子炉の特性い工学的防護設備等を考慮、技
術的見地からみて、最悪の場合には起こるかもしれないと考えられる重大な事故)
の発生を仮定した場合において、そこに人が居続けるならば、その人に放射線障害
を与えるかもしれないと判断される距離までの範囲が非居住区域となっているか。
(二) 仮想事故(重大事故を超えるような技術的見地からは起こるとは考えられ
ない事故)の発生を仮想した場合においても、何らの措置も講じなければ、その範
囲にいる公衆に著しい放射線災害を与えるかもしれないと判断される距離までの範
囲内であって、非居住区域の外側の地帯が、低人ロ地帯となっているか。
(三) 仮想事故の発生を仮想した場合に、全身被曝線量の積算値(集団中の一人
一人の被曝線量の総和)が、国民遺伝線量の見地から十分受け入れられる程度に小
さな値になるような距離だけ、その敷地が人ロ密集地帯から離れているかどうか。
第二 本件安全審査の具体的審査基準
一 本件安全審査に用いられた審査基準等
 乙四、乙九及び乙一四の三によれば、本件安全審査に用いられた審査基準等は次
のとおりと認められる。
1 本件安全審査に用いられた審査基準
① 「原子炉立地審査指針及びその適用に関する判断のめやすについて」(昭和三
九年五月二七日原子力委員会決定、以下「立地審査指針」という。)
② 「高速増殖炉の安全性の評価の考え方」(昭和五五年一月六日原子力委員会決
定、以下「評価の考え方」という。)
③ 「発電用原子炉施設の安全解析に関する気象指針について」(昭和五七年一月
二八日原子力安全委員会決定、以下「気象指針」という。)
④ 「プルトニウムを燃料とする原子炉の立地評価上必要なプルトニウムに関する
めやす線量について」昭和五六年七月二〇月原子力安全委員会決定、以下「プルト
ニウムに関するめやす線量について」という。)
⑤ 「許容被曝線量等を定める件」(昭和三五年九月三〇日科学技術庁告示第二一
号)
2 参考として用いられた指針
⑥ 発電用軽水型
原子炉施設に関する安全設計審査指針について」(昭和五二年六月一四日原子力委
員会決定、以下「安全設計審査指針」という。)
⑦ 「発電用軽水型原子炉施設の安全評価に関する審査指針」(昭和五三年九月二
九日原子力委員会決定、以下「安全評価審査指針」という。)
⑧ 「発電用軽水型原子炉施設周辺の線量自標値に対する評価指針について」(昭
和五一年九月二八日原子力委員会決定、以下「線量評価指針」という。)
⑨ 「発電用軽水型原子炉施設における放出放射性物質の測定に関する指針」(昭
和五三年九月二九旧原子力委員会決定)
⑩ 「発電用軽水型原子炉施設の火災防護に関する審査指針について」(昭和五五
年一一月六日原子力安全委員会決定)
⑪ 「発電用原子炉施設に関する耐震設計審査指針について」(昭和五六年七月二
〇日原子力安全委員会決定、以下「耐震設計審査指針」という。)
⑫ 「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針につ
いて」(昭和五六年七月二三日原子力安全委員会決定)
⑬ 「「我が国の安全確保対策に反映させるべき事項」について三一昭和五六年七
月二三日原子力安全委員会決定」
⑭ 「「我輝国の安全確保対策に反映させるべき事項について(審査、設計及び運
転管理に関する事項一)へ昭和五五年六月二三日原子力安全委員会決定」
⑮ 「「放射性液体廃棄物処理施設の安全審査に当たり考慮すべき事項ないしは基
本的な考え方」について」(昭和五六年九月二八日原子力安全委員会決定)
⑯ 「被曝計算に用いる放射線エネルギー等について」(昭和五○年一一月一九日
決定)
⑰ 発電用軽水型原子炉施設の安全審査における一般公衆の被曝線量評価につい
て」(昭和五二年六月一七日決定)
⑱ 「原子力発電所の地質、地盤に関する安全審査の手引き」(昭和五三年八月二
三日決定)
二 具体的審査基準の合理性
1 具体的審査基準の合理性
 右本件安全審査において用いられた審査基準、参考として用いられた指針(以下
これらを包括して「具体的審査基準」という。)は、「許容被曝線量等を定める
件」を除いて、いずれも合理的であり妥当なものと認められる。
 すなわち原子炉の安全性を確保するためには、前記(第一、四)のとおり、平常
時はもちろん、地震、機器の故障その他の異常時においても、一般公衆及び従業員
に対して放射線障害を与えず、かつ、万が一の事故を想定した場合にも一般公衆の
安全
が確保されることが必要であり、本件安全審査においては、①立地条件に係る安全
性、②安全設計、③平常運転時における安全性、④事故防止対策に係る安全性、⑤
公衆との離隔に係る安全性について審査しているが、審査事項①については一に挙
げた①ないし⑱の各具体的審査基準のうち、②、⑥、⑪、⑬、⑭及び⑱が、審査事
項②ないし④については、具体的審査基準②ないし⑩及び⑫ないし⑰が、審査事項
⑤については、具体的審査基準①、④、⑧、⑨、⑫及び⑯がそれぞれ具体的審査基
準となることになり、これらの審査基準は各審査事項について審査するのに十分な
ものと認められ、その内容についても、「許容被曝線量等を定める件」を除いて
は、格別、不合理な点があるとは認められない。
2 「許容被曝線量等を定める件」について
(一) 「許容被曝線量等を定める件」は、公衆の被曝線量を具体的数値により計
算した場合に、右線量が社会的にその影響を無視することができる線量と解されて
いる公衆の許容被曝線量を下回ること、さらに合理的に達成できる限り低く保つよ
う設計上の対策が講じられていることを確認するために用いられる「公衆の被曝許
容線量を定め、また、これを合理的に達成できる限り低く保つこと(ALARAの
考え方)を要求している。これは、いずれも世界で最も支配的かつ妥当な数値とし
て採用され続けていると認められる国際放射線防護委員会(ICRP)の一九五八
(昭和三三)年勧告を尊重したものである(当事者間に争いがない。)。
(二) ところで、乙ロ一、乙ロ三及び乙ロ五によれば、ICRPは、一九六五
(昭和四〇)年及び一九七七(昭和五二)年の勧告においては、放射線作業従事者
に対する線量当量限度を一年間につき五レム、公衆に対する線量当量限度を一年間
につき○・五レム(ただし、生涯線量当量限度は、年当たり○・一レム)としてい
たが、一九八五(昭和六〇)年のパリ声明において、公衆に対する実効線量当量限
度につき、主たる限度を一年間につき○・一レムとし、生涯にわたる平均の年線量
が主たる限度を超えない場合、数年にわたって許される補助的限度として一年間に
つき○・五レムとし、従来の勧告においては、主たる限度を一年間につき○・五レ
ムとしていたのを、一年間につき○・一レムと改めたこと、一九九〇(平成二)年
の勧告においては、実効線量当量限度の用語に変えて、実効線量限度及び等価線量
の用
語を導入し、臓器毎の荷重係数についても見直しを行って詳細に定めたが、公衆に
対する実効線量限度の勧告値については、一年間につき○・一レムから変更されて
ないことが認められる。
(三) そして、これを受けて、我が国でも、現在では、「許容被曝線量等を定め
る件」を改廃し、「線量当量限度を定める件」(昭和六三年七月二六日科学技術庁
告示第二〇号)三条が、「公衆の許容被曝線量」につき、実効線量当量で一年間に
つき○・一レムとし、更にALARAの考え方の要件を定めている。
(四) そうすると、現在においては、「許容被曝線量等を定める件」の定める
「公衆の許容被曝線量」は妥当性を失い、現在妥当性を有するのは「線量当量限度
を定める件」のそれというべきである。
 そこで、具体的審査基準の合理性と本件許可処分の規制法二四条一項四号適合性
との関係について検討するに、本件安全審査の具体的審査基準が規制法二四条一項
四号の趣旨に照らして合理的かつ妥当なものであり、かつ、本件原子炉施設が、右
審査基準に適合するものであれば、本件安全審査における調査審議及び判断の過程
に重大かつ明白な瑕疵といえるだけの過誤、欠落はなく、本件許可処分は適法であ
るということができる。
 他方、具体的審査基準が同号の趣旨に照らして合理的かつ妥当なものといえない
場合には、右審査基準に基づいてされた本件安全審査に過誤があるとされる場合が
ありうることになるが、その場合であっても、同号の趣旨に適合する合理的かつ妥
当な具体的審査基準に基づいて本件安全審査が行われたとしても、安全審査の結論
に差異がないと認められる限り、なお本件安全審査における調査審議及び判断の過
程に重大かつ明白な瑕疵といえるだけの過誤、欠落はないというべきである。
 したがって、「許容被曝線量等を定める件」の定める「公衆の許容被曝線量」が
妥当性を失ったことをもって本件安全審査が直ちに合理性を失うと解するべきでは
なく、「線量当量限度を定める件」の定める「公衆の許容被曝線量」である一年間
につき○・一レム及びALARAの考え方の要件に照らしても、本件安全審査の結
論に差異がなく、本件安全審査における調査審議及び判断の過程に重大かつ明白な
瑕疵といえるだけの過誤、欠落はないかどうかを検討すべきである。そこで、この
判決においては「線量当量限度を定める件」の定める「公衆の許容被曝線量」及び
ALARAの考
え方の要件に基づいて本件安全審査の妥当性を検討することとする。
(五) なお、乙四によれば、「発電用軽水型原子炉施設周辺の線量目標値に関す
る指針について」(昭和五〇年五月一三日原子力委員会決定)において、放射性希
ガスからのガンや線による全身被曝線量及び液体廃棄物中の放射性物質に起因する
全身被曝線量の合計値については年間五ミリレム(○・○〇五レム)、放射性よう
素に起因する甲状腺被曝線量については年間一五ミリレム(○・〇一五レム)の線
量目標値が定められていることが認められる。この数値は、本件安全審査が公衆の
被曝線量を合理的に達成できる限り低く保つよう設計上の対策が講じられているこ
とを確認したことの妥当性を検討する際の参考となる数値であるといえる。
三 原告らの主張について
1 「立地審査指針」及び「プルトニウムに関するめやす線量について」について
 原告らは、本件原子炉施設の公衆との離隔に係る安全性についての具体的審査基
準である「立地審査指針」及び「プルトニウムに関するめやす線量について」に示
されている「めやす線量」は、「許容被曝線量等を定める件」ないし「線量当量限
度を定める件」の定める「公衆の許容被曝線量」より大きな線量であり、不当であ
る旨主張する。
 しかし、「めやす線量」は、あくまでも本件原子炉施設の公衆との離隔に係る安
全性を判断するための一方法として、その判断の際に目安として用いられる線量で
あって、公衆にその線量値までの被曝を許容するものとしての前記「公衆の許容被
曝線量」とはその意義を異にするものであるから、原告らの主張は理由がない。
2 「評価の考え方」について
(一) 「炉心崩壊事故」などの「シビアアクシデント」について
 原告らは、「評価の考え方」において、LMFBRの安全評価について「炉心崩
壊事故」などの「シビアアクシデント」が評価の対象とされていないことは不当で
ある旨主張する。
 この点、「シビアアクシデント」とは、「設計基準事象」を大幅に超える事象で
あって、安全設計の評価上想定された手段では適切な炉心の冷却又は反応度の制御
ができない状態であり、その結果、炉心の重大な損傷に至る事象をいうこと、「シ
ビアアクシデント」の重大さは、炉心の損傷の程度や格納施設の健全性の喪失の程
度によるものとされていること、軽水炉において、TMI事故やチェルノブイリ事
故を契機に、放射性物質の周辺
環境中への放出を抑制する最後の砦である原子炉格納容器の加圧破損の防止という
問題が一躍重要視されるようになり、米国を中心として、我が国や欧州諸国等にお
いて、アクシデントマネージメント、すなわち「シビアアクシデント」への拡大防
止対策及び「シビアアクシデント」に至った場合の影響緩和対策を検討する目的の
下に「シビアアクシデント」に関する様々な研究、検討が進められた結果、「シビ
アアクシデント」の対策としてアクシデントマネージメントが有効であることが認
識されるところとなっていることは、当事者間に争いがない。
 しかし、「評価の考え方」は、多重防護の思想に基づき厳格な安全確保対策が講
じられていることを確認することを要求しており、これが確認されれば、「シビア
アクゲント」が発生しないことが確認されたといえるのであるから、それ以上に
「評価の考え方」が「シビアアクシデント」を評価の対象としていないことをもっ
て、審査基準として不合理であるということはできない。また、乙イ七・九九二頁
によれば、我が国においては、「発電用軽水型原子炉施設におけるシビアアクシデ
ント対策としてのアクシデントマネージメントについて」(平成四年五月二八日原
子力安全委員会決定)によって、アクシデントマネージメントの有効性が指摘さ
れ、その実施が勧告されていることが認められるが、右勧告は、我が国の軽水炉の
安全性は、現行の安全規制の下に、多重防護の思想に基づき厳格な対策を講じるこ
とによって十分確保されているとした上で、シビアアクシデント対策としてのアク
シデントマネージメントについては、その整備を原子炉設置者において自主的に行
うこととし、原子炉設置許可の際の安全審査の対象とはしていないのである。
 したがって、原告らのこの点についての主張は理由がない。
(二) 「技術的には起こるとは考えられない事象」について
 原告らは、「評価の考え方」は、LMFBRの運転実績が僅少であることにかん
がみ、「「事故」より更に発生頻度は低いが結果が重大であると想定される事象
(本件許可申請において「技術的には起こるとは考えられない事象」)」につい
て、その起因となる事象とこれに続く事象経過に対する防止対策との関連において
十分に評価を行い、放射性物質の放散が適切に抑制されることを確認することを要
求しているが、右概念は根拠を欠いた不当なものである旨主張する。
 しか
し、乙イ七・六六五頁及び乙ニ四の一(証人P2調書)七ないし九頁によれば、
「技術的には起こるとは考えられない事象」に係る安全評価は、「運転時の異常な
過渡変化」及び「事故」の解析評価によって、本件原子炉施設蜘の事故防止対策に
係る安全設計の妥当性を確認した上で、更に、LMFBRの運転実績が僅少である
ことにかんがみ、「事故」より更に発生頻度は低いが結果が重大であると想定され
る事象について、その起因となる事象とこれに続く事象経過に対する防止対策との
関連において、放射性物質の放散が適切に抑制されること、すなわち、本件原子炉
施設の安全裕度を確認することを目的とするものと認められ、根拠を欠くものとは
いえない。また、具体的な事象選定基準は定められていないが、評価の目的に照ら
して事象を適切に選択することは十分可能であると認められるから、原告らのこの
点についての主張は理由がない。
3 「許容被曝線量等を定める件」ないし「線量当量限度を定める件」とICRP
の勧告について
(一) 原告らの主張
 原告らは、「許容被曝線量等を定める件」ないし「線量当量限度を定める件」の
基礎となったICRPの勧告する公衆に対する許容線量(ここでは、線量当量限
度、実効線量当量限度・実効線量限度等の総称として用いる。)は最近の、研究成
果により低線量や微量線量の影響についての知見が一層詳細になっているのに、こ
れが反映されておらず、何ら根拠のないものとなっている、また、ICRPの勧告
は原子力企業の利益を偏重した不合理なものであるなどと主張するので、以下、I
CRPの勧告の概要を検討した上で、原告らの主張について判断を示すこととす
る。
(二) ICRP勧告の概要
 乙ロ一、乙ロ三及び乙ロ五並びに弁論の全趣旨によれば、ICRP勧告の概要に
ついて次のとおりと認められる。
(1) ICRPは、一九二八(昭和三)年に、第二回国際放射線医学会議によっ
て、「国際エックス線及びラジウム防護委員会」として創立され、その後、放射線
利用の多様化や原子力開発利用の進展により、急速に拡大する放射線防護の分野を
一層効果的に網羅するため、一九五〇(昭和二五)年に国際放射線防護委員会(I
CRP)と改称され、現在に至っている。ICRPは、世界保健機構(WHO)及
び国際原子力機関(IAEA)と公的な関係を有すると供に、国際連合原子放射線
の影響に関する科学委員会(UNS
CEAR)、経済協力開発機構原子力機関(OECD/NEA)等と協力関係を有
している。
(2) ICRPは、一九二八(昭和三)年に最初の報告書を刊行し、一九五〇
(昭和二五)年の組織改正以降は、一九五八(昭和三三)年、一九六四(昭和三
九、ただし刊行の年。)年、一九六五(昭和四〇)年、一九七七(昭和五二)年及
び一九九〇(平成二)年に一般勧告を行ってきたが、その間も、最新の科学的知見
に基づいて基本的勧告の修正、拡大を続けていると共に、より専門的な問題につい
ての報告を、一般勧告の中間に公表している。
(3) ICRPは、勧告を行うに当たって、低線量放射線被曝と晩発性障害及び
遺伝的障害の発生に関するしきい値の存否について、しきい値の存在を積極的に肯
定する知見がないので、どのような低い線量でも白血病その他の悪性腫瘍を含む身
体的障害及び遺伝的障害を発現させる危険があるという慎重な仮定をするという方
針が放射線防護の基礎として最も合理的であるとして、しきい値の不存在を仮定し
ている。
 そして、その上で、被曝をもたらす活動から得られる利益を考慮すると共に、他
の職業上ないし日常生活におけるリスクとの比較をしつつ、社会的に容認又は正当
化し得る線量の限度を提供している。(4) 前記(二、2、(ニ))のとおり、
ICRPは、一九六五(昭和四〇)年及び一九七七(昭和五二)年の勧告において
は、放射線作業従事者に対する線量当量限度を一年間につき五レム、公衆に対する
線量当量限度を一年間につき○・五レム(ただし、生涯線量当量限度は、年当たり
○・一レム)とした。更に、一九八五(昭和六〇)年のパリ声明においては、公衆
に対する実効線量当量限度につき、主たる限度を一年間につき○・一レムとし、生
涯にわたる平均の年線量が主たる限度を超えない場合、数年にわたって許される補
助的限度として一年間につき○・五レムとした。そして、平成二(一九九〇)年勧
告では、公衆に対する実効線量限度を○・一レムとした。
 これを詳細にみるに、一九七七(昭和五二)年勧告において、ICRPは、「委
員会が以前に勧告した線量当量限度は二〇年以上にわたって使われてきた。それは
国際的に広く使われ、多くの国及び地域において法律の中に組み入れられてきた。
更に、委員会が勧告した線量制限体系が、十分なレベルの安全を保つことに失敗し
たことを示す証拠は何もない。しかし、委員会
は、線量当量限度のレベルをいくらかでも変える必要があるかどうかを決定するた
めに、委員会の線量当量限度を現在の知識に照らして見直すことが適切と考え
る。」と述べた上で、放射線誘発がんに関する死亡のリスク係数は、男女及び総て
の年齢の平均値として一レム当たり約一万分の一であると仮定し、公衆の個々の構
成員の容認できるであろう死亡リスクを年当たり一〇万ないし一〇〇万分の一とす
ると、そのためには、公衆の個々の構成員の生涯線量当量を一生涯を通して年当た
り○・一レムの全身被曝に相当する値に制限すればよく、ICRPの勧告値である
一年間につき○・五レムという全身線量当量限度は、これを決定グループに適用し
たとき、これと同程度の安全を確保することが分かっているので、長期間にわたっ
て高線量率で被曝する人々には右の年当たり○・一レムという生涯線量当量を適用
すること等の条件のもとに、右勧告値を維持するとしている。
 そして、一九八五(昭和六〇)年のパリ声明において、ICRPは、公衆に対す
る実効線量当量限度につき、主たる限度を一年間につき○・一レムとするが、生涯
にわたる平均の年線量が主たる限度を超えない場合、数年にわたって許される補助
的限度として一年間につき○・五レムとし、従来の勧告においては、主たる限度を
一年間につき○・五レムとしていたのを、一年間につき○・一レムと改めた。
 その後、一九九〇(平成二)年勧告において、ICRPは、実効線量当量限度の
考え方を改め、実効線量限度及び等価線量の用語を導入し、臓器毎の荷重係数につ
いても見直しを行って詳細に定めると共に、作業者に対する実効線量限度の勧告値
について、従来、一年間につき五レムであったのを、五年平均で一年間につき二レ
ム(ただし、いずれの一年間においても五レムを限度とする、)と改めているが、
公衆に対する実効線量限度の勧告値については、一年間につき○・一レムのまま変
更されていない。
 このように、ICRPの勧告は、常に再検討が加えられてきており、公衆に対す
る許容線量(一九七七(昭和五二)年の勧告では線量当量限度、一九八五(昭和六
〇)年の勧告では実効線量当量限度、一九九〇(平成二)年の勧告では実効線量限
度であるが、すべて「許容線量」と表記する。)値としては、一九八五(昭和六
〇)年のパリ声明が出される以前は年間○・五レムとされてきたが、パリ声明以降
は年間○・一レ
ムとされている。
(5) ICRPは、許容線量の勧告をすると同時に、被曝線量と晩発性障害及び
遺伝的障害の発生との間にしきい値がないと仮定する以上、いかなる被曝でもある
程度の危険を伴うことになることを前提として、同時に被曝線量をできる限り少な
くするべきであるとの勧告を行ってきた。ただし、その文言には変遷があり、一九
五八(昭和三三)年の勧告では、「すべての線量を実行可能なかぎり(いわゆるA
LAP)低く保つべきこと、及び、どんな不必要な被曝もすべて避けるべきである
ことを強く勧告する。」とされていたのが、一九六五(昭和四〇)年の勧告では、
「いかなる不必要な被曝も避けるべきであること、並びに、経済的及び社会的な考
慮を計算に入れた上、すべての線量を容易に達成できる限り低く(いわゆるALA
RA)保つべきであることを勧告する。」とされ、一九七七(昭和五二)年の勧告
では、「すべての被曝は、経済的及び社会的な考慮を計算に入れながら、合理的に
達成できる限り低く保つべきであることを勧告する。」とされた。
(三) 原告らの主張の検討
(1) ICRP勧告の表現の変遷
 原告らは、ICRPは被曝線量をできる限り少なくするべきであるとの勧告を行
ってきたが、その表現が徐々に緩やかなものに変遷しているのは(「可能な」から
「実効可能な」へ、さらに「容易に達成できる」から「合理的に達成できる」
へ)、ICRPが原子力商業利用の開始と共に変質し、原子力産業の要請に合わせ
る方向を取り始めたことを示すものであるから、合理性を欠くものである旨主張す
る。
 しかし、乙ロ四によれば、このような文言の変遷の背景には、放射線及び原子力
利用の拡大とそれに伴う放射線防護、管理の経験の積み重ねの結果、当初の定性的
な表現では、解釈にある程度の困難が生じたため、同じ目的を持つより定量的な表
現を望む要求が出たことがあり、表現が変わってもその意図は同一であることが認
められるから、原告らの主張はその前提を欠くものである。
(2) 確率的影響のうち致死がんの確率係数について
 原告らは、ICRPは、確率的影響のうち致死がんの確率係数が、全集団で一レ
ム当たり一万分の五であるという仮定に基づいて、公衆の許容線量値を勧告してい
るが(一九九〇(平成二)年の勧告)、広島、長崎の原爆被曝線量の再評価等によ
って、右リスク係数が誤りであることが明らかになったから、IC
RPの公衆の許容線量についての勧告値の妥当性は失われた旨主張する。また、原
告らは、ICRPの勧告においては、低線量・低線量率の被曝における右確率係数
について、高線量・高線量率の被曝における観察から直接に得られるリスク係数
に、線量・線量率降下係数(DDREF係数)として二を採用してこれで除してい
るが、右係数は何らの根拠もなく導き出されたものであり、不当に低線量・低線量
率の被曝における確率的影響のリスクを低く見積もったものである旨主張する。
 そこで検討するに、乙ロ一及び弁論の全趣旨によれば、ICRPは、一九九〇
(平成二)年の勧告において、確率的影響のうち致死がんの確率係数として、それ
までの一レム当たり一万分の一から、一レム当たり一万分の五に引き上げたが、こ
の計算に当たり、DDREF係数として二を採用し、右係数の数値の選択について
はやや恣意的であり、多分に保守的かもしれないとしていることが認められる。
 ところで、甲一一、甲一二及び甲ロ三によれば、一九八○(昭和五五)年ごろか
ら、米国のローレンス・リバモア国立研究所(LLNL)及びオークリッジ国立研
究所(ORNL)の研究員らにより、それぞれ、広島、長崎の原爆被曝者の放射線
被曝線量の推定の見直し作業が行われるようになり、その結果、その線量は、同研
究所が一九六五(昭和四〇)年に発表した従来の線量評価システム(丁六五D)に
比べて大幅に低いことが判明したこと、これを受けて、一九八一(昭和五六)年以
降日米両国に線量再評価検討委員会が設置された後、一九八三(昭和五八)年に
は、広島、長崎原爆放射線量の再評価に関する合同委員会が設置され、一九八六年
三月、日米合同の上級委員会において、新しい線量評価システム(DS八六)が承
認されたこと、これによると、丁六五Dと比較して、広島ではガンマ線が二ないし
三・五倍に増加する一方、中性子線は一〇分の一に減少し、長崎ではガンマ線はほ
とんど変化がなかったが、中性子線は二分の一ないし三分の一に減少したことが認
められる。
 また、前記(第一、三、1、(二)、(6)、(ロ)、(g))のとおり、一九
八七(昭和六二)年九月、プレストンとピアスは、論文「原爆被曝者の線量推定方
式の改定によるがん死亡リスク推定値への影響」において、右DS八六に基づき、
がんと白血病の死亡リスク評価を行い、中性子の生物学的効果比(RBE)を一〇

仮定した場合の過剰相対リスクを一〇〇レム当たり○・六六としたこと(これをも
とに計算した日本人の致死がんの死亡リスクは、一〇〇万人レム当たり一六二○
人、白血病死の死亡リスクは一〇〇万人レムあたり一二〇人、合計一〇〇万人レム
当たり一七四〇人となる。)こと、甲ロ一四によれば、一九八八(昭和六三)年五
月、清水由紀子らは、DS八六を用いて確率的影響のうち致死がんのリスク評価を
行い、がん死のリスクとして一〇〇万人レムあたり一三○○人のがん死と発表した
こと、甲イ一七一によれば、一九八八(昭和六三)年、UNSCEARは、確率的
影響のうち致死がんのリスクを、一〇〇万人レムあたり、絶対モデルで四〇〇から
五〇〇人、相対モデルでは七〇〇人から一一〇〇人とし、また、一九九〇(平成
二)年、BEIRはへBEFR―V報告書において、確率的影響のうち致死がんの
リスクを、相対モデルで一〇〇万人レムあたり八八五人としたこと、甲ロ一七によ
れば、一九九二(平成四)年、英国放射線労働者全国登録(NRRW)のデータに
よると、がん及び白血病のリスク推定値は、統計的不確かさが大きいとされるが、
ICRPの一〇〇万人レムあたり四〇人(白血病)及び四〇〇人(がん)というリ
スク推定値の約二倍となっていること、乙ロ一五によれば、ロットブラットは、一
九七八(昭和五八)年、「放射線業務従事者に対するリスク」と題する論文におい
て、すべてのがん死に対するリスクとして、一〇〇万人レムあたり八○○人として
いること(なお、これは、広島原爆被曝者の放射線誘発リスクを求めるに当たり、
いくつかの単純な仮定のもとで、平均線量を評価することができることから、これ
により一レムあたり二四〇×一〇マイナス六乗であるとした上で、この高い値の信
頼性は、本当は早期に広島に入っていないのに、放射線被曝の犠牲者に与えられた
追加的な利益を受けるために嘘の主張をした人々がいたことから、幾つかの報告さ
れた白血病の症例が誤っているということに照らして疑問もあるが、白血病がまれ
であることを考えると、多くの人々がもっともらしく聞こえる嘘の主張したという
ことはありそうもなく、もし、三分の一が嘘のケースだとすると、そのリスクファ
クタは一レムあたり一六○×一〇マイナス六乗になるとした上で、全体のリスクは
白血病の五倍であるという原子放射線の影響に関する国連科学委員会が示唆した手
順に従
い、この数字に五を乗じれば、ICRPが勧告した一レムあたり一〇〇×一〇マイ
ナス六乗の八倍に当たる一レムあたり八○○×一〇マイナス六乗の全体リスクファ
クタが得られるとしているものである。)が、それぞれ認められる。また、甲ニ一
の一(証人P13調書一)一一丁表及び甲ニ一の二(証人P13調書二)一丁表に
は、DS八六により、確率的影響のうち致死がんのリスクは一〇〇万人レムあたり
一〇〇〇人であるという認識が得られた旨の証言がある。
 しかし、他方で、甲一二によれば、プレストンとピアスの論文に対しては、前記
(第一、三、1、(二)、(6)、(ロ)、(g))のとおり、低線量域において
も線量とリスクが比例関係にあることを論証したものではないと認められること、
甲ロ一七によれば、NRRWのがん及び白血病のリスク推定値に対しては、統計的
不確かさが大きいとされていること、乙ロ一五及び乙ロ一六によれば、ロットブラ
ットの見解に対しては、白血病による死亡のリスクを推定する方法や根拠となる具
体的データが全く明示されていない上、一九七七(昭和五二)年UNSCEAR報
告書における数値を引用するに当たり、自己の結論に有利な数値のみを示してお
り、九〇パーセント信頼値を無視しているとの批判がされていることがそれぞれ認
められる。また、前記(第一、三、1、(二)、(6)、(ハ))のとおり、放射
線被曝と晩発性障害等の発生との間にはしきい値がないと仮定すべきではあるが、
他方で、低線量の被曝とリスクの増加はいずれのがん部位においても統計学的に有
意ではないこと、自然放射線の被曝による人体への影響に関して、地域差との有意
な関連は認められないこと、広島、長崎の原爆被曝者の子供の出産において、統計
的に有意な差は認められないことなども認められる。
 また、乙ロ一によれば、ICRPの一九九〇(平成二)年の勧告は、高線量・高
線量率の場合の確率的影響のうち致死がんの確率係数につき、一レムあたり一万分
の一〇(一〇〇万人レムあたり一〇〇〇人)とした上で、DDREF係数で除して
一レムあたり一万分の五(一〇〇万人レムあたり五〇〇人)としていることが認め
られ、DDREF係数を考慮する以前の段階では、右各証拠の指摘するリスクと大
幅に異なる点はない。そして、DDREF係数については、右係数の数値の選択に
ついてはやや恣意的であり、多分に保守的かもしれないと
されているとはいえ、日本の原爆被曝者のデータの直接の統計的評価からは、DD
REF係数は約二よりもそれほど大きくはなりそうにないとされていること、動物
の研究から得られたDDREF係数は二から一〇であること、他の機関により過去
に実際に用いられたDDREF係数はすべて二以上であり、五、一〇とするものも
あったことなどを根拠として、保守的な値としてDDREF係数として二を採用し
ていることが認められるのであって、その数値には合理的な根拠があるということ
ができる。
 そして、ICRPの公衆に対する許容線量の勧告は、致死がんの確率係数に加え
て、一年間につき○・五レム以下の継続した被曝の影響について、年齢別死亡率の
変化が非常に小さいというデータが得られていること、自然放射線による線量と同
等の線量であれば、その影響は社会的に無視しうるほど小さいといえることを重視
し、自然放射線からの年実効線量が○・一レムであり、その地域格差の幅も約○・
一レムであることから、一年間につき○・一レムと定めたものと解されるのであっ
て、致死がんの確率係数から直ちに公衆に対する許容線量を導いているものではな
い。したがって、DS八六による広島、長崎原爆被曝者の被曝線量の再評価の結果
によって、直ちに右勧告値が不当になるものではないというべきである。
 また、乙ロ一によれば、ICRPは、一九九〇(平成二)年の勧告に際して、前
回の一九七七(昭和五二)年の勧告以降の新知見を調査、検討しており、DS八六
に基づく新たなリスク推定値に関する論文(前記のプレストン、ピアスの論文「原
爆被曝者の線量推定方式の改訂によるがん死亡リスク推定値への影響」も含む)を
検討したほか、BEIRのBEIR―V報告書、UNSCEARのリスク推定値も
検討した上で、放射線誘発がんに関する死亡のリスク係数を見直し、従来の一レム
当たり約一万分の一から一レム当たり約一万分の五に引き上げたこと、しかし、作
業者に対する許容線量については、従来の一年間につき五レムであったのを、五年
平均で一年間につき二レム(ただし、いずれの一年間においても五レムを限度とす
る。)と改めたものの、公衆に対する許容線量の勧告値については一九八五(昭和
六〇)年のパリ声明における一年間につき○・一レムを更に引き下げる必要はない
としたことが認められ、ICRPは、原告らの主張に沿う見解及びこれらに対する
批判も考慮した上で勧告を行っているものと認められる。
(3) 「正当化」と経済性について
 原告らは、ICRPの勧告は、放射線被曝を伴う行為について「正当化」、すな
わち行為によって被曝する個人又は社会に対して、それが引き起こす放射線被害を
相殺するのに十分な便益を生むことを要求しているが、これは侵害される人の生
命、身体と放射線被曝を伴う行為により得られる利益とを金銭的に評価して比較す
る考え方であって、企業の利益を偏重する不合理な要件である旨主張する。
 この点、乙ロ一によれば、ICRPの勧告は、放射線被曝を伴う行為について
「正当化」を要求しており、ここで「正当化」とは、当該行為によって被曝する個
人又は社会に対して、それが引き起こす放射線被害を相殺するのに十分な便益を生
むこと、すなわち当該行為の正味便益がプラスであることとしていることが認めら
れる。しかし、同勧告では、更に、行為の「最適化」を要求し、その過程で、社会
において便益を享受する者と損害を受ける者とが同じ分布を示すことはなく、不公
平を生じることとなるので、この不公平を制限するために、個人に対する線量拘束
値を設けるとし、これに基づき、公衆に対する許容線量の勧告をしていることが認
められる。したがって、116CRPの勧告が、人の生命、身体よりも企業の利益
すなわち放射線被曝を伴う行為を優先する考え方であるとはいえない。
 また、右(2)のとおり、ICRPの公衆に対する許容線量の勧告は、致死がん
の確率係数に加えて、一年間につき○・五レム以下の継続した被曝の影響につい
て、年齢別死亡率の変化が非常に小さいというデータが得られていること、自然放
射線による線量と同等の線量であれば、その影響は社会的に無視しうるほど小さい
といえることを重視し、自然放射線からの年実効線量が○・一レムであり、その地
域格差の幅も約○・一レムであることから、一年間につき○・一レムと定めたもの
と解されるのであって、右勧告値は、「正当化」を量的に評価して定められたもの
ではない。
(4) 線量目標値に関する指針について
 なお、前記(二、2、(五))のとおり、「発電用軽水型原子炉施設周辺の線量
目標値に関する指針について」において、放射性希ガスからのガンマ線による全身
被曝線量及び液体廃棄物中の放射性物質に起因する全身被曝線量の合計値について
は年間○・○〇五レム、放射性よう素に起
因する甲状腺被曝線量については年間○・〇一五レムとの線量目標値が定められて
いるが、右指針の線量値は、ALARAの考え方を具体化した目標値であるから、
許容線量に関するICRPの勧告の妥当性を左右するものではない。
四 まとめ
 右認定のとおり、ICRPの勧告値が不当であるとする原告らの主張に沿う見解
もみられるが、これらの見解にはそれぞれ専門家による批判等が存在すること、I
CRPの勧告値は、自然放射線による線量と同等の線量であれば、その影響は社会
的に無視しうるほど小さいことに重要な根拠を置いていること、ICRPの組織、
性格、活動等の事実によれば、ICRPは、現在も、各種の研究結果の検討を続け
ており、原告らの主張に沿う見解及びこれらに対する批判も考慮した上で勧告を行
っているとみられるのであって、ICRPの勧告値の合理性を否定することはでき
ないというべきである。したがって、ICRPの勧告値を放射線被曝による人の生
命、身体に対する危険性を社会的に無視し得る程度に小さく保つための基準として
用いることは、ALARAの考え方の要件と共に用いる限りにおいては、合理的な
ものというべきであって、原告らのこの点についての主張は理由がない。
4 線量評価指針について
(一) 濃縮係数について
 原告らは、「線量評価指針」の示す被曝線量評価に用いる濃縮係数は、仮定的な
ものであり、これに基づいた被曝線量評価は現実性がない旨主張する。
 しかし、乙四・八○頁及び乙一六・九―五―二〇頁、二六頁によれば、右濃縮係
数の値は、UCRL(カリフォルニア大学の放射線研究所)の報告書に基づくもの
であること、右報告書の濃縮係数の報告値は、海産生物の食用部分に対する安定元
素(放射性崩壊をしない元素)の濃度測定値を広く文献から求め、これを取りまと
めて代表的な値を算出したものであり、また、右報告書は、フィールドで観察され
た放射性核種の濃縮係数と安定元素の濃度から求めた濃縮係数とを対比し、両者が
一致することも確認していることが認められる。
 したがって、「線量評価指針」の濃縮係数は十分信頼できるものということがで
きるから、原告らの主張は理由がない。
(二) 海産物摂取量について
 原告らは、「線量評価指針」が、海産物摂取量について、周辺住民の中でも標準
的なものを対象とし、極端な摂取をする極めて少数の住民を対象としていないの
は、安全側に立っ
た評価とはいえない旨主張する。
 しかし、前記(第一、四、3)のとおり、原子炉施設の平常運転に伴う周辺公衆
の被曝線量評価は、平常運転時の被曝低減対策についての安全設計が講じられてい
ることを前提として、その妥当性を確認するために、原子炉施設の通常運転時に周
辺環境に放出される放射性物質による一般公衆の被曝線量が、「許容被曝線量等を
定める件」の定める「許容被曝線量」を十分下回るのみならず、ALARAの考え
方に基づき、これを十分に下回るように設計されていることを確認するために行う
ものである。右評価の目的に照らせば、「線量評価指針」が、食物摂取による被曝
線量の評価を、現実に存在する被曝経路について、集落における各年齢グループの
食生活の態様等が標準的である人を対象として行うこととしていることは合理的で
あるというべきであり、また、後記(第五、一、2)のとおり、本件原子炉施設の
平常運転に伴う周辺公衆の被曝線量評価においては、保守的な評価条件を置いてい
るのであるから、これに加えて、原告らの主張するようにあえて特殊な食生活を送
る周辺公衆を対象とする理由はないというべきである。
 したがって、原告らの主張は理由がない。
(三) 放射性液体廃棄物による外部被曝について
 原告らは、「線量評価指針」が放射性液体廃棄物による外部被曝線量評価を行う
こととしていないのは過小評価である旨主張する。
 しかし、乙四・八二頁によれば、「線量評価指針」は、外部被曝経路として、液
体廃棄物中の放射性物質に起因する海水浴、ボート遊び中等に受ける外部全身被曝
等も考えられるとした上で、これらは、海産物摂取による被曝経路からのものに比
べ、一桁以上小さい寄与しか与えないことから、被曝線量評価の対象として考慮す
る必要はないとしていることが認められ、これが、前記第一、四、3の原子炉施設
の平常運転に伴う周辺公衆の被曝線量評価の目的に照らして不合理であるとはいえ
ない。
 したがって、原告らの主張は理由がない。
5 「耐震設計審査指針」について
(一) 歴史地震重視について
(1) 原告らは、「耐震設計審査指針」は、歴史的証拠から、過去において本件
敷地又はその近傍に影響を与えたと考えられる地震(歴史地震)を中心とする考え
方である(基準地震動S1、S2を区分しているのもその結果である。)ところ、
この考え方は古く、要注意断層の考え方に立つべきであるか
ら、同指針は不合理、不十分である旨主張する。また、「耐震設計審査指針」は活
断層を軽視しているとも主張する。
 しかし、甲ハ六五によれば、原告らの指摘する要注意断層とは、松田時彦が昭和
五六年に提唱した考え方であるところ、これは、無地震経過率の大小により、ある
活断層について、最新の大地震以降現在までの経過年数を、その断層の平均活動間
隔(第四紀後期(およそ一〇数万年前以降現在までをいう。)における平均の再来
間隔年数)で除した値を危険度とし、危険度が○・五以上に達した断層を要注意断
層とする、又は、同一断層帯における地震の続発性の見地から、歴史地震の有無に
より、一つの長い断層帯の一部分が比較的最近(歴史時代)に大地震を起こしてい
る場合、その残余の区間で大地震が起こる可能性が大きいとして、右断層帯を要注
意断層とする考え方であることが認められる。
 そうすると、右要注意断層の考え方は、歴史的資料から得られた過去の地震の発
生時期等を基に、活断層(構造線ないし断層帯)の中から要注意断層を認定するも
のであるから、それ自体、歴史地震を基本とする考え方であって、この点では「耐
震設計審査指針」と異なるところはない。また、同指針は、「大地震は一般に同一
地域で繰り返し起こると認められているので、基本的には設計用最強地震のマグニ
チュードは敷地あるいはその近傍に影響を与えた過去の地震によって定められるも
のと考えられる。」とする一方、「古い地震資料には不備があるかもしれないこと
を考慮し、また、有史期間にはたまたま発生しなかったくり返し期間の長い地震の
生起を看過することがないよう、確実な地質学的証拠と工学的判断に基づいて近い
将来敷地に影響を与えるおそれのある活動度の高い活断層による地震を考慮に入れ
ることとする。」とした上で、災害防止の観点から最も重要なAsクラスの施設の
耐震設計に際しては、地震を引き起こす可能性のある活断層をすべて考慮すること
としているのであるから、同指針が要注意断層の立場に立っていないからといっ
て、耐震設計の審査指針として合理的でないということはできないし、活断層を軽
視しているということもできない。
 また、甲ハ六五によれば、要注意断層の考え方は、地震の予知の基礎資料とする
ために提唱されたものであって、要注意断層とされた構造線ないし断層帯が一つの
活断層として活動するものとして、その規模やエネ
ルギーの大小を求めるものではないことが認められるから、右考え方により直ちに
「耐震設計審査指針」が不合理になるものではない。
 したがって、原告らのこの点についての主張は理由がない。
(2) また、原告らは、長期間地震が発生していないブロック境界の断層につい
て認められる空白域では、歪工ネルギーが蓄積されている可能性があるところ、
「耐震設計審査指針」は、この空白域に起こる地震を考慮しておらず、不合理、不
十分である旨主張する。
 右原告らの主張は、金折裕司が提唱する「マイクロプレートモデル」に依拠する
ものと解されるところ、甲ハ六七(右金折の著作)には、甲楽城断層の北部等がブ
ロック境界の断層について認められる空白域であるとして図示されているが(同書
証一九八頁のDないしF)、同書証は、右のような空白域から想定される地震につ
いて、「歴史地震の発生が知られていないブロック境界については、地震の空白域
や次の地震で破壊する領域を予測することが困難である。」として、「仮にそれを
構成する大規模な活断層を次の地震での破壊域とみなし、地震危険度評価を試み
る。」と断った上で、右DないしFの空白域を破壊域とあえて仮定し、想定される
地震のマグニチュード等を試算しているにすぎないのであって、右DないしFの部
分において地震が発生する蓋然性があることや、その近辺の複数の活断層が同時活
動する具体的可能性があることを述べられていない。
 したがって、原告らのこの点についての主張はその前提を欠くものである。
(二) 考慮すべき活断層について
(1) 原告らは「耐震設計審査指針」が、①基準地震動S1の発生源としての活
断層としては、A級活断層(平均変位速度が一ミリメートル毎年以上のもの)に属
し、一万年前以降に活動したもの又は地震の再来期間が一万年未満のものとし、②
基準地震動S2の発生源としての活断層としては、B級活断層(平均変位速度が
○・一ミリメートル毎年以上一ミリメートル毎年未満のもの)及びC級活断層(平
均変位速度が○・一ミリメートル毎年未満のもの)に属し、五万年前以降に活動し
たもの又は地震の再来期間が五万年未満のものとしていることについて、本来、活
断層とは、「新生代第四紀の間に動いたことのある断層」を指し、実際にも、数万
年から数十万年の再来周期で活動したと認められる断層が存在するのに、五万年前
以降の活動が認められない断層
は原子力発電所の建設上問題とすべきでないとすることには合理的な根拠がなく、
考慮すべき活断層を右のように限定するのは不合理、不十分である旨一主張する。
 しかし、前記(第一、三、2)のとおり、原子炉施設の安全性の確保とは、放射
性物質の環境への放出を可及的に少なくし、これによる災害発生の危険を社会通念
上容認できる水準以下に保つことであるから、どの程度過去にさかのぼって活動歴
のある断層を考慮の対象とすべきかという問題も、右の安全性の確保という観点か
ら判断すべき事柄である。したがって、考慮の対象とすべき活断層の選定の当否
は、必ずしも、学術上の活断層の定義による必要はなく、それが原子炉施設の安全
性を確保するための考慮対象として相当性、合理性を有するかどうかによるという
べきである。
 そこで検討するに、甲八一によれば、専門的には、活断層とは、第四紀あるいは
第四紀後期に活動した断層で、将来も活動する可能性のある断層をいうと考えられ
ているが、具体的に何年前からのものをいうのかについては定説とまでいえるもの
はないことが認められ、また、実際に歴史時代に入ってから、日本国内で五万年を
大幅に超える再来期間で大地震が起こったと認めるべき資料もない。そして、乙ハ
二○によれば、そもそも「耐震設計審査指針」が、五万年前以降の活動が認められ
る活断層について評価すべきこととしているのは、地質時代的にみて最近まで繰り
返し活動していた断層は将来も活動して地震を起こす可能性があること、このよう
な断層の調査結果から繰り返しの期間の大半は約一万年以内、これより長いもので
も約五万年以内に納まっていること、一般に活動度が高ければ高いほど繰り返し期
間が短いとされていることなどの地震学、地質学等の知見に基づく工学的な判断に
よるものであると認められる。右認定の事実に照らせば、同指針が、五万年前以降
の活動が認められる活断層について評価すべきとしたことは、原子炉施設の安全性
の確保という観点からみたとき、相当性、合理性を有するというべきである。
 したがって、原告らのこの点についての主張は理由がない。
(2) なお、原告らは、C級活断層が活動して起こる地震でも、一万年がおおよ
その再来期間とされており、新しい見解によっても、C級活断層で断層の長さ二〇
キロメートルのものの歪みの蓄積期間は、一万三三四〇年から四万〇九七〇年とさ
れていることか
ら、B級、C級の活断層であっても、すべて五万年以内に活動するとして、「耐震
設計審査指針」が、B級、C級の活断層について、五万年前以降に活動したもの又
は地震の再来期間が五万年未満のものに限定して考慮することとし、五万年前以降
の活動の証明を要求しているのは不合理である旨主張する。
 しかし、右の主張は、B級、C級の活断層はすべて地震を起こすことを前提にし
たものであるところ、右関係が成り立つことを示す証拠はないから、原告らの右主
張はその前提を欠くものというほかない。
 また、原告らは、B級の活断層は、平均変位速度が○・一ミリメートル毎年以上
一ミリメートル毎年未満のものをいうところ、これが五万年前以降活動したことが
ないとすれば、五万年の間の変位量の蓄積は五メートルから五〇メートルというこ
とになるが、そのような変位は莫大なエネルギーの蓄積を意味するか、又はおよそ
ありえないものであるから、「耐震設計審査指針」の変位量と蓄積期間の関係は矛
盾している旨主張する。しかし、右主張は、断層の変位がすべて歪みとして蓄積さ
れ、地震により放出されることを前提とするものであるところ、右関係が成り立つ
ことを示す証拠はないから、原告らの右主張はその前提を欠くものというほかな
い。
(三) 直下地震について
(1) 原告らは、「耐震設計審査指針」が、設計用限界地震の基準地震動を決定
する際、直下型地震としてマグニチュード六・五の地震を深さ一〇キロメートルに
想定するとしていることについて、地表に断層が現れずにマグニチュード六・五を
超える直下型地震が発生した例があるから、右マグニチュードの想定は不合理であ
る旨主張する。
 確かに、甲ハ七二によれば、昭和二年北丹後地震(マグニチュード七・三)、昭
和一八年鳥取地震(マグニチュード七・二)、昭和二三年福井地震(マグニチュー
ド七・一)、昭和五九年長野県西部地震(マグニチュード六・八)は、いずれも活
断層がないか、ほとんどないところで発生したこと、これを踏まえると、原子力発
電所の耐震設計上、マグニチュード六・八ないし七・一程度の直下型地震を想定す
べきであるとの意見があることが認められ、甲二三の一(証人P4調書一)一二丁
表、同裏、一四丁表ないし一六丁裏にも同旨の証言がみられる。
 しかし、乙二三の一(証人P3調書一)二四丁裏ないし二七丁表、四二丁裏、四
三丁表及び乙二三の二(証人P3調書
二)六二丁裏によれば、「耐震設計審査指針」は、設計用限界地震を定めるにおい
て、過去の地震の発生状況、その活動度の大小の程度を考慮した敷地周辺の活断層
の性質、地震地体構造に基づき、地震学的知見に工学的見地からの検討を加えて、
このうち敷地に対して影響の大きいものを考慮するものとしているが、これに当た
って、原子炉施設の設置場所について、十分な文献調査や現地調査をした上で、過
去にマグニチュード六・五ないしこれに近い規模の直下型地震が発生した事実が認
められず、また、大規模な直下型地震が生じやすいと考えられる地形、地質等の指
摘がされたという事実も認められない場合であっても(本件原子炉施設においてこ
れらの事情が認められないことは後記(第三、一、2及び同3)のとおりであ
る。)、なお直下地震として想定するとしたものであることが認められるのであっ
て、「耐震設計審査指針」の直下地震の想定は、要するに十分な調査をして直下型
地震の発生可能性が低いことを確認した上でなお要求される想定であって、保守的
な想定といえることが認められる。
 したがって、原告らの主張するように、地表に断層が現れずにマグニチュード
六・五を超える直下型地震が発生した例があり、これに基づき直下地震の想定を引
き上げるべきであるという見解があるからといって、そのことから直ちに「耐震設
計審査指針」における直下地震の想定が不合理であるということはできない。な
お、原告らは、昭和五八年日本海中部地震(マグニチュード七・七)の発生をもっ
て、「耐震設計審査指針」の直下地震の想定を非難するが、右地震は直下型地震で
はない。
(2) 原告らは、「耐震設計審査指針」における直下地震の想定は、直下地震を
想定しているにもかかわらず、基礎岩盤が断層によって破壊されることや、また、
直下地震による「衝撃的破壊」について想定していないことは不合理である旨主張
する。
 しかし、「原子力発電所の地震、地盤に関する安全審査の手引き」は、地盤に係
る安全審査として、原子炉施設の敷地地盤のボーリング調査を行い、原子炉施設の
安全性に影響を及ぼすような断層の存在しないことを確認することを要求している
から、「耐震設計審査指針」の直下地震の想定において、基礎岩盤が断層によって
破壊される事態を想定していないことは不合理ではないし、甲ハ六〇によれば、
「衝撃的破壊」は、いまだ確証の得られたも
のではないと認められるから、およそ原子炉施設の設置場所の地盤の調査結果と無
関係に考慮しなければならないということはできない。したがって、「耐震設計審
査指針」の直下地震の想定において、衝撃的破壊が考慮されていないことに不合理
な点はないというべきである。
(四)鉛直地震力について
 原告らは、「耐震設計審査指針」においては、地震の鉛直地震力の設定につき、
動的地震力の鉛直地震力については、基準地震動の最大加速度(水平方向)の二分
の一とし、静的地震力の鉛直地震力については、震度○・三(水平方向の標準せん
断力の二分の一に相当する。)とされているが、兵庫県南部地震の観測記録の中に
は、水平動を上回る上下動がみられるから、右鉛直地震力の設定は不当である旨主
張する。
 この点、甲ハ六〇(検討会報告書)には、兵庫県南部地震による観測記録中には
上下動の最大加速度が水平動の最大加速度の二分の一を上回るものがみられる旨の
記述が存在する。しかし、同報告書は、これと並んで、右観察記録の中には、埋立
地盤のような軟弱な表層地盤(水平方向の加速度の増幅が抑えられる一方、上下方
向の加速度の増幅は抑えられないため、上下方向の加速度が相対的に大きくなる場
合があると言われている。)における観測記録や、高層ビルの地下階で得られた観
測記録のように構造物の影響を強く受けていると考えられるものが含まれるため、
これらを除外した観測記録一二五件について分析したところ、上下動と水平動の最
大加速度振幅の比は、平均的にほぼ二分の一を下回る結果が得られたことをも明ら
かにしている。
 また、同報告書によれば、上下動と水平動の両方向の地震動が作用する場合、一
般に、上下方向と水平方向と地震動の最大加速度の生起時刻及び施設の上下方向と
水平方向の振動特性の差等により、両方向の最大応答の発生時刻が異なることか
ら、右観測記録中、時刻歴波形の得られている観測記録二三件について、水平方向
の最大加速度の発生時刻における水平方向に対する上下方向の加速度振幅の比を分
析した結果、平均値は○・一程度、最大値は○・三程度となり、右比の値は二分の
一を大きく下回ることが認められるところ、「耐震設計審査指針」においては、水
平地震力と鉛直地震力とが、同時に不利な方向で作用することを想定することを要
求しているのであるから、右観測記録によって鉛直地震力を水平地震力の二分の一
とし
ていることの合理性は失われるものではない。
 そして、弁論の全趣旨によれば、構造物には常時自重が作用するため、構造物は
長期荷重としては一般に水平方向よりも鉛直方向に十分な裕度をもって設計され、
そのため、短期荷重としての鉛直地震力が構造物に与える影響は小さく、構造物の
耐震設計を支配するのは水平地震力であるといえること、原子炉施設の建物は、厚
い壁で構成される鉄筋コンクリート造の壁式構造が主体であって壁量が多いため、
全体的に上下方向には剛性の高い剛構造となっていることから、上下方向の地震力
に対し、一般建築物と比べてはるかに大きな安全余裕を有することが認められる。
 以上によれば、「耐震設計審査指針」の鉛直地震力の評価は、兵庫県南部地震で
得られた知見に照らしても、その妥当性が損なわれるものではないというべきであ
る。
(五)遠距離地震について
 原告らは、「耐震設計審査指針」が遠方の地震を考慮することとしていないのは
不合理である旨主張する。
 しかし、「耐震設計審査指針」は、遠距離地震を考慮することを求めているか
ら、原告らの主張は理由がない。
四 第三節以降の判断の方法
 第三節以降では、本件許可申請が右具体的審査基準に適合するとした本件安全審
査における調査審議及び判断の過程に重大かつ明白な瑕疵といえるだけの過誤、欠
落があるか否かについて検討する。すなわち、第三節では立地条件に係る安全性、
第四節では安全設計、第五節では平常運転時における安全性、第六節では事故防止
対策に係る安全性、第七節では公衆との離隔に係る安全性に関して、それぞれ本件
安全審査の内容とその合理性について検討する。
第三 本件原子炉施設の立地条件に係る安全性
一 本件安全審査の内容
 乙六ないし一〇、乙一四の一ないし三、乙一六、乙二二、乙二三及び乙イ六並び
に弁論の全趣旨によれば、本件原子炉施設の立地条件についての本件安全審査の内
容について、次のとおり認められる。
1 敷地
(一) 本件安全審査においては、以下の諸点が確認された。
 本件原子炉発電所の敷地(本件敷地)は、福井県敦賀市白木に属し、敦賀市市街
地より北西約一二キロメートル、美浜町中心街より北東約一六キロメートル、敦賀
半島北端部に位置している。
 本件敷地は背後を標高三〇〇ないし六〇〇メートルの山地によって囲まれ、中央
部は段丘ないし扇状地を呈する丘陵部で、勾配七分の一から一〇分の一の
緩い斜面になっている。
 原子炉本体は、海岸線から約七〇メートル山側に位置し、本件敷地の山裾を掘削
した岩盤上に設置される。原子炉本体の中心から本件敷地境界までの最短距離は北
東方向約五七〇メートルである。
 本件敷地の面積は約一〇八万平方メートルであるが、このうち発電所設備用地は
陸部造成による約二三万平方メートルと海面埋立による約八万平方メートルの合計
約二万平方メートルである。
(二) そして、本件安全審査においては、本件敷地の広さは、法令で規制される
周辺監視区域の設定において十分な条件を有しており、また、周辺公衆との離隔の
確保についても、「立地審査指針」に示される条件を満足しているので、妥当であ
ると判断した。
2 地震
(一) 耐震設計上想定すべき地震
 本件安全審査においては、①本件原子炉施設の耐震設計において考慮する地震動
は、本件敷地に最も大きな影響を与えると考えられる地震に基づき想定する必要が
あり、このためその強さの程度に応じて基準地震動S1をもたらす設計用最強地震
及び基準地震動S2をもたらす設計用限界地震をそれぞれ適切に想定することが要
求される、②設計用最強地震としては、過去に本件敷地又はその付近に影響を与え
たと考えられる被害地震及び近い将来本件敷地に影響を与えるおそれがあると考え
られる活動度の高い活断層による地震の中から、最も影響の大きいものを想定する
ことが要求される、③設計用限界地震としては、右最強地震を上回るものがある場
合には、その活動度の大小の程度を考慮した本件敷地周辺の活断層及び地震地帯構
造に基づき、工学的見地からの検討を加えて、このうち本件敷地に対して最も影響
の大きい地震を想定し、また、直下地震を想定することが要求されるとした上で、
次の事項について審査した。
(1) 過去の被害地震
(イ) 地震資料
 本件安全審査においては、過去の被害地震の調査に用いられた地震資料の信頼性
及び他の地震資料との相違点について検討し、地震の想定に当たって使用された地
震資料が、地震の規模、震央位置、震源深さ、余震域、被害状況等の十分な情報を
有するものか否かについて審査した。
 そして、本件安全審査においては、本件許可申請において地震資料として採用さ
れている「日本被害地震総覧」は、既往の種々の地震資料を基に最新の研究成果を
取り入れて編集されたもので、我が国において最も充実し、かつ、信頼性の
ある被害地震の資料の一つであると一般に認められているものであり、適切である
と判断した。
(ロ) 敷地周辺の主な地震
 本件安全審査においては、本件敷地に影響を及ぼすおそれのある地震の規模、震
央位置とその震度分布、被害状況等との整合性について検討し、本件敷地に影響を
与えたか、又は与えたと推定される過去の地震が適切に選定されているか否か、ま
た、それらの地震の規模、震央位置の想定が妥当であるか否かについて審査した。
 本件許可申請においては、「日本被害地震総覧」による地震の規模、震央位置、
余震域、被害状況等の情報に基づいて、本件敷地からの震央距離が約一五〇キロメ
ートル以内のすべての被害地震がリストアップされ、この中から、本件敷地に影響
を及ぼす被害地震として、天平美濃の地震(西暦七四五年、マグニチュード七・
九、震央距離六一・一キロメートル)、元暦近江の地震(一一八五年、マグニチュ
ード七・四、震央距離四九・七キローメートル)、正中近江の地震(一三二五年、
マグニチュード六・七、震央距離一八・ニキロメートル)、天正畿内の地震(一五
八六年、マグニチュード八・一、震央距離七八・八キロメートル)、寛文近江の地
震(二八六二年、マグニチュード七・八、震央距離五四・一キロメートル)、文政
近江の地震(一八一九年、マグニチュード七・四、震央距離六六キロメートル)、
濃尾地震(一八九一年、マグニチュード七・九、震央距離五七・ニキロメート
ル)、北丹後地震(一九二七年、マグニチュード七・五、震央距離八二・一キロメ
ートル)、福井地震(一九四八年、マグニチュード七・三、震央距離四四・六キロ
メートル)、越前岬沖地震(一九六三年、マグニチュード六・九、震央距離二一キ
ロメートル)が選定されている。
 本件安全審査においては、右被害地震は、一般家屋に被害が発生するとされてい
る気象庁震度階Vを一応の目安として選定されていることなどから、本件敷地周辺
の主な地震の選定及び地震の規模、震央位置の想定は妥当であると判断した。
(2) 活断層
(イ) 調査
 本件安全審査においては、文献調査、空中写真判読による調査及び現地調査等の
実施状況とその内容について検討し、海域を含む本件敷地周辺に存在する活断層に
ついて、その位置、長さ、活動性等の状況を把握するため、文献調査、空中写真判
読、現地調査等により、十分な調査が実施されているか否かを審査した。
 そして、本件安全審査においては、陸域については「日本活断層図」(地質調査
所、昭和五三年)等関連の断層分布図及び既往の文献を基にして、空中写真の判
読、現地調査を実施した結果によって、また、海域については「海底地質構造図
(若狭湾東部)」(海上保安庁、昭和五五年)等、本件敷地周辺海域で実施された
音波探査結果によって、本件敷地周辺の断層の存在及びその活動性等が確認されて
おり、必要な調査が行われていると判断した。
(ロ) 敷地周辺の活断層
 本件安全審査においては、活断層についての調査内容、活断層の規模、活動度等
の評価及び本件敷地において考慮する必要のある活断層の選定の妥当性について検
討して、本件敷地周辺に存在し、本件敷地に影響を与える可能性のある活断層の位
置、規模、変位様式、活動性等の状況が適切に把握されているか否かを審査した。
(a) 文献調査による敷地周辺の活断層
 本件許可申請においては、本件敷地への影響を検討する必要のある本件敷地周辺
の主な活断層として、陸域については、「日本活断層図」、「日本の1活断層分布
図」(地質学論集第一二号、昭和五一年)及び「日本の活断層」(活断層研究会、
昭和五五年)等の関連文献による検討により、柳ケ瀬断層、甲楽城断層、野坂断
層、三方断層木ノ芽峠断層、花折断層及び濃尾断層系等が挙げられており、また、
海域については、「海底地質構造図(若狭湾東部)」、「日本の活断層」による検
討により、敦賀湾ロから干飯崎海岸付近の断層(S―8断層)、干飯崎西側海域の
二本の連続する断層(S―1+S―6断層)及び敦賀半島西側海域の雁行する断層
(S―21ないしS27断層)が挙げられている。
 本件安全審査においては、右各文献は最新の知見をとり入れ、活断層に関する既
往の種々の文献を集約しているものと認められるから、これらの文献により本件敷
地周辺の主な活断層の存在を推定することは妥当であり、また、右の活断層の選定
は、その断層の活動によって本件敷地に気象庁震度階V程度以上の影響を及ぼすこ
とを想定してされており、妥当であると判断した。
(b)敷地周辺の主な活断層の性状
 本件許可申請においては、前項で選定された活断層の性状は次のとおりとされて
いるところ、本件安全審査においては、関連資料の検討、その他これを確認するた
めに行った空中写真判読、現地の断層露頭の観察等の調査により、その内容は妥当

あると判断した。
(い) 柳ケ瀬断層
 本断層は、琵琶湖北部の滋賀県伊香郡木ノ本町付近から、福井県今庄町西方上板
取に至る区間にあるとされ、谷の直線性が断層地形を示唆するものとして推定され
ている断層である。
 その活動性については、椿坂峠から南の部分一九キロメートルについては最大幅
五〇メートル以上の高破砕帯の存在、左横ずれの明瞭な変位地形が認められるこ
と、雁ケ谷では縄文土器を出土した地層に変位を与えていることなどから、活動度
の高い活断層として考慮する必要がある。他方、椿坂峠から北の部分は、武蔵野期
相当と判断される扇状地堆積物に変位を与えていないことなどから、南部に比べ活
動性が低いと考えられるが、リニアメントが連続して認められ、B級活断層と指摘
する文献もあることから、木ノ本町から上板取北方のニッ屋跡までの全長二八キロ
メートルについて、第四紀後期の活動の可能性を考慮することが適切である。
(ろ) 甲楽城断層
 本断層は、南条郡河野村大谷から干飯崎にある海岸が断層崖であるとして指摘さ
れている断層であり、陸域にみられる部分と海域の部分(S―8断層)とは連続す
るものとし、大谷沢から干飯崎沖までの長さ二〇キロメートルの断層として考慮す
ることが適切である。
 その活動性については、武蔵野期以降の活動性は認められないとも考えられ、新
しい時期に活動したと推定されるものではないが、B級の活断層と指摘している文
献もあることなどから、第四紀後期の活動の可能性を考慮することが適切である。
 なお、柳ケ瀬断層と甲楽城断層の関連については、空中写真判読の結果から両断
層を連続するリニアメントが認められないこと、また、現地調査の結果柳ケ瀬断層
の北に連続する破砕帯が認められないことなどから、両断層は連続しないとして差
し支えない。
(は) 野坂断層
 本断層は、三方郡美浜町北田付近から関峠、敦賀市長谷に至る数キロメートルの
断層とされている。
 その活動性については、新しい時期の活動を示す証拠は認められなかったが、長
谷扇状地、野坂南方山地に河谷の屈曲等の変位地形が認められること、B級の活断
層と指摘する文献があることなどか、第四紀後期の活動の可能性を考慮することが
適切である。
(に) 三方断層
 本断層は三方郡美浜町久々子湖東岸から遠敷郡上中町新道間に存在する、長さ約
一〇数キロメートルとされている断層であるが、その長さはリニアメント
が認められる久々子湖東岸から新道までの一八キロメートルとすることが適切であ
る。
 その活動性については、必ずしも明らかではなく、活動性の高いものではない
が、B級の活断層と指摘する文献があることなどから、第四紀後期の活動の可能性
を考慮することが適切である。
(ほ) 木ノ芽峠断層
 本断層は、敦賀平野の沈降性地形に関連して、敦賀市山付近から同市道ノロ、同
樫曲を通り、同市葉原付近に至る断層とされており、敦賀市雨谷から同新保までの
一四キロメートル及びその南西に多少離れた約一〇キロメートルのリニアメントの
位置にあると考えられる。
 その活動性については、活動度の高い断層であるという指摘はないが、B級の活
断層とされ、一部には尾根の屈曲や段丘堆積層を変位させている断層露頭がみられ
ることなどから、右各リニアメントが連続するものと仮定し、長さ二五キロメート
ルとした上で、第四紀後期の活動の可能性を考慮することが適切である。
(へ) 花折断層
 本断層は、京都の東部から高野川沿いに北上し、途中越、花折峠を通り、滋賀県
高島郡朽木村市場から、檜峠、高島郡今津町保坂付近に達する地形的に明瞭な断層
線谷を成す全長五六キロメートルの断層とされている。
 その活動性については、花折峠以南の二八キロメートルについては活動性の高い
活断層として取り扱うことが適切と考えられる(ただし、結論としては、本件敷地
からの距離が遠く、その影響が小さいことが明らかであるため、特に考慮の必要は
ない。)。また、全長五六キロメートルを地震地体構造との関連で考慮することが
必要である。
(と) 濃尾断層系
 本断層系は、岐阜市古市場付近から福井県今立郡池田町野尻付近までの数条の断
層群が濃尾地震時に部分的に活動したと指摘されているものであり、温見、根尾
谷、梅原の主要三断層によって構成されるとされている。
 その活動性については、活動性が高く、本件敷地に与える影響が大きい(ただ
し、結論としては、歴史地震によって評価することで十分である。)。
(ち) S―8断層
 本断層は、干飯崎沖より海岸に並行して南東に延びる長さ約一五キロメートルの
構造線であり、陸上の地質構造から、陸域の甲楽城断層と同一のものと推定されて
いる。したがって、甲楽城断層の項で述べたとおり、本断層と大谷沢で確認された
陸域の部分の連続したものを甲楽城断層として評価する必要がある。
(り) S―1+S
―6断層
 本断層は、越前岬沖から干飯崎沖に至る新第三紀鮮新世又は第四紀更新世初期に
対比される地層内に存在が推定される、長さ数キロメートルないし一〇数キロメー
トルの雁行又は断続する数条の断層のうち、連続するとみられる二〇キロメートル
の断層とされている。
 その活動性については、第四紀後期の活動の可能性を考慮することが適切であ
る。
(ぬ) S―21別ないしS―27断層
 本断層は、敦賀半島西方海域に存在が推定される長さ二ないし四・五キロメート
ルの断層の雁行した全長約一七キロメートルに及ぶ断層とされている。
 その活動性については、活動時期は新しいものではないと考えられるが、第四紀
後期の活動の可能性を考慮することが適切である。なお、これらの断層群と野坂断
層とは地質構造上調和的であるが、音波探査の結果、両断層間の海域には断層が認
められないことから、これらの断層群と野坂断層は連続しないものとして差し支え
ない。
(c) 敷地付近のリニアメント
 本件許可申請においては、本件敷地付近に認められるリニアメントは、いずれも
活断層に伴う変位地形ではないとされている。本件安全審査においては、本件敷地
付近の白木―丹生リニアメントについては、現地調査の結果、リニアメント付近に
小規模な粘土化帯が幾つか認められるものの、リニアメントに沿った連続する断層
は認められず、また、粘土化帯を不整合に覆っている下末吉期相当層に対比される
地層には変位は認められないこと、この他のリニアメントについても、現地調査の
結果、小規模な粘土化帯は認められるものの、問題となる断層は認められないこ
と、本件敷地付近の海域で実施された音波探査の結果によると、敷地付近の海域に
は断層は認められないことから、本件敷地付近に判読されたリニアメントを活断層
に伴う変位地形でないとすることは妥当であると判断した。
(ハ) 活断層と微小地震及び歴史地震との関連
 本件許可申請においては、微小地震の観測により断層の現在の活動性が顕著に認
められるもの、歴史地震との関連が認められるものは、活動度の高い活断層として
評価するとした上で、微小地震の観測資料により現在の活動性が顕著であると認め
られる活断層、歴史地震との関連が明確になっている活断層はないものとされてい
る。
 本件安全審査においては、比較的古くから行われている微小地震観測等の関連文
献を検討し、右(ロ)で選定された
各活断層について、これらに沿う微小地震の明確な線状配列などはみられず、微小
地震の生起状況が断層の現在における顕著な活動性を示していると認められるもの
はないこと、歴史地震との関連については現在のところ、濃尾断層系のように地震
断層とされているもの以外には、明確に歴史地震の震源となったが、地震時に変位
を示したとする根拠が認められるものはなく、歴史地震と関連があると認められる
活断層はないとして差し支えないと判断した。
(ニ) 活断層から想定される地震
 本件安全審査においては、活断層の調査結果に基づき、設計上考慮すべき活断層
が的確に選定されているか否か、これによる地震の想定が妥当であるか否かを審査
した。本件許可申請においては、設計上考慮する活断層とこれから想定される地震
として、陸域からは、柳ケ瀬断層による地震(断層長さ二八キロメートル、マグニ
チュード七・二、震央距離二一キロメートル)、甲楽城断層による地震(海域のS
―8断層を含む断層長さ二〇キロメートル、マグニチュード七・○、震央距離一
一・五キロメートル)、野坂断層による地震(断層長さ七キロメートル、マグニチ
ュード六・三、震央距離一四キロメートル)、三方断層による地震(断層長さ一八
キロメートル、マグニチュード六・九、震央距離二四キロメートル)、木の芽峠断
層による地震(断層長さ二五キロメートル、マグニチュード七・二、震央距離一
六・五キロメートル)を、海域からは、S―1+S―6断層による地震(断層長さ
二〇キロメートル、マグニチュード七・○、震央距離二〇・二キロメートル)、S
―21ないしS―27断層による地震(断層長さ一七キロメートル、マグニチュー
ド六・九、震央距離一二・一キロメートル)が選定されており、右においては、経
験式(松田式)に基づいて断層から想定される地震の規模を想定している。
 本件安全審査においては、前記(ロ)のとおり、選定された断層は妥当であり、
地震の規模の想定のために用いられている松田式は、日本の内陸における地震断層
の長さと地震の規模との関係から求められたものであり、妥当であると判断した。
(3) 地震地体構造
 本件安全審査においては、本件敷地周辺の地震地体構造から想定される地震の規
模、震央位置等が適切に定められているか否かについて審査した。
 本件許可申請においては、本件敷地周辺において起こり得る限界的な地震を活断
層との
関連で考慮するものとし、本件敷地周辺において規模の大きい活断層である花折断
層の位置にマグニチュード七・八、震央距離六〇キロメートルの地震が想定されて
いる。
 本件安全審査においては、右地震の想定について、過去の地震の生起状況等か
ら、マグニチュード七と四分の三が起こりうる地震の上限であるとする知見が得ら
れていること、花折断層から想定される地震規模がほぼこれに対応することなどか
ら、ここに限界的な地震が発生する可能性を考慮していることは安全評価上適切で
あると判断した。なお、濃尾断層系の属する地域は、起こり得る限界的な地震の規
模が本件敷地周辺の地域より大きいとされているが、これについては濃尾断層系に
よって本件敷地への影響が評価されているので支障はないと判断した。
(4) 直下地震
 本件安全審査においては、直下地震の規模、震源距離等が適切に想定されている
か否かを審査した。
 本件許可申請においては、マグニチュード六・五の地震が震央距離一〇キロメー
トルの位置に想定されている。
 本件安全審査においては、直下地震に相当する地震としては、その地域の地質構
造や地震の生起状況によって想定するのが望ましいが、その規模及び位置を特定す
ることが困難であり、また、この地震は実際に起こる地震との関連よりも、むしろ
起こった場合を想定することを要求されている地震であることから、右直下地震の
想定は、震源域における地震の被害状況の観測等から得られている知見からみて、
安全評価上適切であると判断した。
(5) 最強地震及び限界地震
 本件安全審査においては、考慮すべき地震から最強地震及び限界地震が適切に選
定されているか否かを審査した。
(イ) 最強地震
 本件許可申請においては、最強地震として、考慮の対象とされた歴史地震のう
ち、濃尾地震、寛文近江の地震、天平美濃の地震、越前岬沖地震、天正畿内の地震
の各地震及び柳ケ瀬断層(南部)から想定される地震(マグニチュード七・○、震
央距離二五キロメートル)が選定されている。
 本件安全審査においては、本件敷地周辺の主な被害地震が敷地に与える影響を検
討した結果、右各地震はその規模及び震央距離から想定される最大震幅等、本件敷
地に与える影響がその他の地震よりも大きいと認められるので、歴史地震の選定に
支障はなく、また、柳ケ瀬断層南部の約一九キロメートルは、前記((2)、
(ロ)、(b)、(い))の
とおり、活断層の疑いが高いことから、最強地震の対象として選定されたことは適
切であると判断した。なお、地震断層である濃尾断層系から想定される地震につい
ては、歴史地震で考慮されているので支障はないと判断した。
(ロ) 限界地震
 本件許可申請においては、限界地震として、甲楽城断層から想定される地震、木
ノ芽峠断層から想定される地震、S―21ないしS―27断層から想定される地
震、柳ケ瀬断層から想定される地震、地震地体構造の見地から想定される地震及び
直下地震が想定されている。
 本件安全審査においては、活断層、地震地体構造から想定される地震及び直下地
震の想定は、前記((2)、(ニ)、同(3)及び同(4))のとおり妥当である
から、限界地震の選定は適切であると判断した。なお、前記((2)、(ニ))に
おいて考慮する必要があるとされた諸断層による地震が敷地に与える影響は、右断
層の影響を上回るものではないことから、これら四つの断層で代表させたことに支
障はないと判断した。
(6) まとめ
 以上のことから、本件安全審査においては、本件許可申請における過去の被害地
震、活断層、地震地体構造及び直下地震の評価、これらによる最強地震及び限界地
震の想定はいずれも妥当であると判断した。
(二) 基準地震動
 本件安全審査においては、基準地震動S1及びS2の諸特性が、最強地震及び限
界地震から適切に評価されているか否かを審査した。
(1) 地震動特性
 本件安全審査においては、最大振幅について、考慮すべき地震と本件敷地との相
互関係、算定法等の妥当性を、周波数特性について、その特性を定めるために採用
した方法の信頼性、本件敷地の地盤特性との適合性等を、継続時間等について、地
震規模との関連性をそれぞれ検討し、地震動の策定に際して、その最大振幅、周波
数特性、継続時間と振幅包絡線の経時的変化が適切な方法で評価されているか否か
を審査した。
(イ) 地震の最大振幅
 本件許可申請においては、地震と本件敷地との相互関係について、歴史地震につ
いては震央からの距離で表し、断層による地震についてはその中心付近からの距離
で表している。また、最大速度振幅は、地震動の観測結果に基づいた経験式(金井
式)によって求められている。
 本件安全審査においては、右地震と本件敷地との相互関係の表現方法、最大速度
振幅を求めた金井式はいずれも妥当であると判断した。
(ロ)
 地震の周波数特性
 本件許可申請においては、周波数特性は、岩盤における地震観測資料を整理し、
工学的な検討を加えて提案されている解放基盤表面における標準スペクトル(いわ
ゆる大崎の方法に基づく大崎スペクトル)に基づいて定められている。
 本件安全審査においては、右標準スペクトルは使用した個々のデータを吟味した
上でされたもので、国内外における既往の種々の研究内容と比較しても整合性があ
り、信頼できるものであること、調査の結果、本件敷地の地盤は堅硬、均質で相当
な広がりのある岩盤であり、その横波速度が約一九キロメートル毎秒であるとされ
ていること、右標準スペクトルは主として硬質地盤上において観測された地震動特
性から作成されていることから、敷地での地震動の周波数特性として右スペクトル
を採用することは支障のないものと判断した。そして、周波数特性は、考慮すべき
地震の規模、震央距離及び敷地の地盤特性を反映したものであること、作成に際し
ては信頼性があると認められる方法によっていることから、妥当であると判断し
た。
(ハ) 地震動の継続時間等
 本件許可申請においては、地震動の継続時間は、地震規模、継続時間及び振幅包
絡線の経時的変化との関連を、地震観測記録を基に検討して提案されている方法に
基づき定められている。すなわち、継続時間は地震動の開始から実効上消滅すると
みなされる時間により、また、振幅包絡線の経時的変化は、地震の規模及び継続時
間に関連させて定められている。
 本件安全審査においては、右継続時間等の定め方は妥当であると判断した。
(2) 応答スペクトル及び模擬地震波
 本件安全審査においては、基準地震動S1及びS2の諸特性が、最強地震及び限
界地震のそれぞれによって与えられた条件に適合するか否かを審査した。
 本件許可申請においては、基準地震動は、地震の規模と震源距離から求められた
最大速度振幅と標準スペクトルから得られる応答スペクトルと、それに合致するよ
うに人工的に作成された模擬地震波との二方法で表されている。
(イ) 基準地震動の応答スペクトル
 本件許可申請においては、基準地震動S1の応答スペクトルは、濃尾地震、寛文
近江の地震天平美濃の地震、越前岬沖地震、天正畿内の地震及び柳ケ瀬断層(南
部)から想定される地震等、比較的影響の大きいとみられる地震について求められ
ており、これを包絡するように定めた応答スペク
トルで代表するとされている。基準地震動S2の応答スペクトルは、甲楽城断層木
ノ芽峠断層、S―21 ないしS―27断層及び柳ケ瀬断層(全長)の各断層から
想定される地震について求められており、これを包絡するように定めた応答スペク
トルで代表するとされている。
 本件安全審査においては、右基準地震時動S1及びS2の各々につき代表すると
された応答スペクトル(最大速度振幅はS1が一三・八カイン、S2が一八・二カ
イン)は、その影響が他の応答スペクトルを上回っていることから、安全評価上差
し支えないと判断した。なお、直下地震、地震地体構造の見地から想定される地震
についても、右基準地震動田の応答スペクトルに包絡されるので、差し支えないと
判断した。
(ロ) 基準地震動の模擬地震波
 本件許可申請においては、地震動の継続時間と振幅包絡線の経時的変化を条件と
し、位相を乱数とした正弦波の重ね合わせによって、右(イ)で定めた応答スペク
トルに合致するように模擬地震波が作成されており、設計に用いられる基準地震動
S1の模擬地震波の最大振幅は一九・○カイン、基準地震動S2のそれは二二・八
カインとされている。
 本件安全審査においては、模擬地震波を作成するに当たっては、そのスペクトル
強さが設定した基準地震動の応答ヌペクトルの強さを下回らないこと、スペクトル
の落ち込みが著しくないこと等が必要であるとして審査したが、右模擬地震波のス
ペクトル強さが基準地震動の応答スペクトルを磁全体として上回り、また、部分的
にみても設計上重要な固有周期近傍で大きく下回らないことを確認したことから、
作成された模擬地震波の、基準地震動の応答スペクトルに対する適合性は妥当であ
ると判断した。
(3) まとめ
 以上のことから、本件安全審査においては、本件敷地に想定される基準地震動S
1、S2の諸特性の策定方法及び耐震設計に用いられる基準地震動は妥当であると
判断した
3 地盤
(一) 敷地の地盤
(1) 本件安全審査においては、関連資料の検討のほか、地表地質踏査、試掘坑
調査、トレンチ調査、ボーリングコアの確認等の現地調査の結果を踏まえ、本件原
子炉施設の設置予定地付近の地盤は、地震時等に崩壊し、施設の安全性に影響を与
えることがないか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 調査結果によれば、本件敷地の地質は、新期花崗岩類
に属する黒雲母花崗岩からなり、平坦部には段丘ないし扇状地堆積層が分布してい
る。
(ロ) 敷地基盤を構成する黒雲母花嵐崗岩は、稜線表層部で風化作用によるマサ
化が認められるものの、この風化帯を除き、ほぼ堅硬、均質な岩盤から構成されて
いる。
(ハ) ボーリング調査、試掘坑調査及びトレンチ調査等から基盤岩中には節理系
に支配された粘土化帯が局部的に認められるが、いずれも小規模で連続性に乏し
く、原子炉施設の安全性に影響を与える性質のものとは認められない。
(ニ) 本件敷地背後の山地は、本件原子炉施設の地盤と同様の花崗岩からなり、
一部小規模な粘土化帯が認められるが、切取斜面に対しては差し目の方向となって
おり、また、風化の程度は漸次変化しているので、問題となる不連続面は存在せ
ず、切り取りにより風化の著しい表層部が取り除かれるので、法面は比較的堅硬な
岩盤で構成されている。
(ホ) 本件原子炉施設後背地の平坦部には敷地造成時の掘削土が盛り立てられる
が、この盛土斜面の基盤となる段丘ないし扇状地堆積層は層厚五ないし二五メート
ルの花崗岩砂礫層であり、淘汰不良ながらよく締まっている。
(ヘ) これらの切取斜面、盛土斜面について、ボーリング調査、試掘坑調査、岩
盤、堆積層、盛土の強度及び変形特性等の詳細な調査結果に基づき安定解析を行っ
た結果によっても、地震時等に崩壊が起こることはないものと判断されるが、更に
安全性の向上を図るため、法面保護、地下水位低下等の適切な対策を講じることと
されている。
(3) 本件安全審査においては、以上の事項を確認したことから、本件敷地の地
盤は地震時にも崩壊などによって施設に影響を与えるおそれはなく、安定した地盤
であると判断した。
(二) 原子炉設置地盤
 本件安全審査においては、地震に関する調査、試験方法の妥当性、強度特性及び
変形特性の評価の妥当性並びに支持力、すべり等に対する安全性について、関連資
料の検討のほか、試掘坑調査、トレンチ調査、ボーリングコアの確認等の現地調査
の結果を踏まえて検討し、本件原子炉施設を支持する地盤は、施設の自重や想定さ
れる地震時の荷重によって不等沈下や地盤破壊等が起こることがなく、本件原子炉
施設の安全性を十分確保できるものか否かを審査した。
(1) 調査、試験
 本件許可申請においては、本件原子炉施設の設置地盤について、地表地質調査、
弾性波試験、ボーリング調査、試
掘坑調査、岩石・岩盤試験等の各種調査及び試験が実施されている。
 本件安全審査においては、これらの強度特性、変形特性及び岩盤の性状等に関す
る調査内容は、原子炉設置地盤の安全性評価を行う上で十分なもので幻あると判断
した。
(2) 地盤物性
(イ) 原子炉設置地盤の性状
 本件安全審査においては、次の事項を確認した。
 本件許可申請書に添付された地質断面図によると、本件原子炉施設の基礎岩盤
は、全体としてCH級(電研式岩盤分類による。以下同じ。)ないしB級の堅硬、
均質な花崗岩で構成されている。試掘坑の調査結果によれば、原子炉設置地盤のE
L+五メートルには、幾つかの粘土化帯が認められるが、粘土化帯相互間の特定方
向への連続性や密集部は認められず、その規模は最大のもので一〇〇メートル前
後、大部分は二〇ないし三〇メートル程度であり、また粘度化帯の幅は、局部的に
九〇センチメートル程度の所もあるが、大半は一〇センチメートル以下である。ト
レンチ調査の結果によれば、これら粘土化帯は基盤を覆う段丘ないし扇状地堆積層
に影響を与えておらず、活動性が問題となるものではない。そして、試掘坑内の弾
性波試験の結果によれば、基礎岩盤の弾性波速度は、P波で約四・三キロメートル
毎秒、S波で約一・九キロメートル毎秒であり、方向による顕著な差異は認められ
ない。
(ロ) 岩石、岩盤物性
 本件許可申請においては、岩石物性について、試掘坑内で採取したブロツクサン
プル試料及びボーリングコアより採取した試料により、一般物性、強度特性及び変
形特性に関する諸試験が実施されている。
 本件安全審査においては、右諸試験の試験結果は、堅硬な岩石、岩盤として一般
的なものであると認められること、試掘坑内における坑道間弾性波速度の測定値に
は方向による顕著な差異はなく、岩石.岩盤試験によって得られた物性についても
特に方向による差があるとは認められず、岩盤には問題となる異方性はないとして
支障がないと認められること、岩盤物性のバラツキについては「岩石の強度試験、
RQD値、現位置せん断試験及び弾性波試験等の結果、基礎岩盤における各岩級の
分布状態を反映しているものと認められることから、本件許可申請における岩石・
岩盤試験の方法及び評価は妥当であると判断した。
(3) 地盤の安定性
(イ) 支持力に対する安全性
 本件安全審査においては、岩盤の平板載荷試験結果によると、最大約二一〇キロ
グラム毎平方センチメートルの荷重を与えてもCH級の岩盤の荷重―変位曲線に変
曲点が認められないので、常時の接地圧約五キログラム毎平方センチメートル、地
震時の最大接地圧約一四キログラム毎平方センチメートルに対し、支持力が問題と
なるものではないこと、基礎岩盤にはD級、CL級の岩盤等が一部分布するが、そ
れらの分布状態を考慮した安定解析によっても、基礎岩盤は地震時に破壊を生ずる
ことがなく、安全上支障がないものと認められることから、岩盤の支持力に対する
安全性の検討に用いられた試験の結果及びその評価は妥当であり、本件原子炉施設
の基礎岩盤は本件原子炉施設を支持する十分な耐力を有していると判断した。
(ロ) すべりに対する安全性
 本件安全審査においては、岩盤のせん断試験結果によって求められた各岩級ごと
のせん断抵抗力と基礎底面におけるこれらの各岩級分布状態から、地震時の基礎底
面のすべり抵抗力は、鉛直方向地震力を考慮して約二一五万トンとなり、一方、限
界地震時に本件原子炉建物基礎底面に作用する地震力は約四三万トンとなるので、
すべりに対して約五の安全率となることを確認し、すべりに対する安全性の検討に
用いられた岩盤試験の結果及びその評価は妥当であり、本件原子炉施設の基礎岩盤
は地震力によるすべりに対して、十分な安全性を有していると判断した。
(ハ) 沈下に対する安全性
 本件安全審査においては、本件原子炉施設の基礎岩盤の大部分を占めるCH級な
いしB級の岩盤は、岩石・岩盤試験によって得られた変形特性から、圧密やクリー
プによる沈下が問題となるものではないこと、基礎岩盤にはCL級以下の岩盤も一
部存在するが、その全体面積に占める割合はCL級岩盤が約四パーセント、D級岩
盤、粘土化帯が一パーセント以下と少なく、CH級以上の堅硬な岩盤の間に分散し
ていることから、不等沈下が予想されるものではないと判断した。
(4) 以上のことから、本件安全審査においては、本件原子炉施設の地盤は原子
炉格納施設等の主要構造物を設置する地盤として十分な安全性を有すると判断し
た。
4 気象
 本件安全審査においては、本件原子炉施設の設計に当たって考慮された気象条件
は、本件原子炉施設から約一二キロメートルに位置し、同一の気象区(日本海側型
北陸・山陰型気候区)に属している敦賀測候所の観測資料を考慮したものであって
妥当であり、また、本件
原子炉施設の安全解析に用いられた気象観測方法、統計処理方法、大気拡散の解析
方法等は、「気象指針」に適合したものであって、妥当であると判断した。
5 水理
(一) 洪水
 本件安全審査においては、本件原子炉付近には、河川として本件敷地内を流れる
渓流があるが、渓流の大きさと地形からみて、本件原子炉施設が洪水被害を受ける
ことはないと判断した。
(二) 発電所用水の確保
 本件安全審査においては、本件原子炉施設の運転に必要な淡水の使用量は、最大
でも一日当たり一〇〇〇立方メートルであり、この淡水は本件敷地内を流れる渓流
から取水することとしているが、右渓流の流量は渇水時でも一日当たり約一〇六〇
立方メートル以上あり、発電所用水の確保は可能であると判断した。
(三) 海象
 本件安全審査においては、①潮位については、本件敷地より南東約一二キロメー
トルに位置する敦賀湾敦賀検潮所の観測記録による既往最高潮位は、東京湾中等潮
位+一・二八メートルとされており、②波浪については、昭和四八年八月から昭和
四九年九月までの間の敷地前面海域における観測によると、有義波高は四メートル
以下が九七パーセント、最大波高は九・五七メートルとされているところ、本件原
子炉施設の主要な建物の整地面高さはEL+二一・○メートル以上であり、また、
敷地前面に設けられている防波護岸は、これらに対して十分耐えられるように設計
することとされていることから、海象によって本件原子炉施設の安全性が損なわれ
ることはないと判断した。
6 社会環境
 本件許可申請においては、本件敷地付近の社会環境について、原子炉を中心とす
る半径一〇〇キロメートル以内の人口分布、半径五キロメートル以内の集落及び公
共施設、敦賀市等における産業活動、交通の状況、開発計画等について、関係行政
機関が作成した統計資料等により調査されている。
 本件安全審査においては、右調査とその結果について、次のとおり審査した。
(一) 人口分布
 本件許可申請においては、仮想事故時の全身被曝線量の積算値を計算するための
敷地を中心とした人口分布及び西暦二〇二五年における人口分布については、それ
ぞれ昭和五〇年一〇月に実施された国勢調査の結果及び厚生省人口問題研究所が推
計した資料を基に調査されている。
 本件安全審査においては、右人口分布の調査は妥当であると判断した。
(二) 周辺の産業活動
 本件許可申請において
は、本件敷地周辺の産業活動について、関係行政機関獅作成の統計資料等により、
敦賀市を中心として調査されており、右調査によれば、敦賀布における産業別就業
状況は、第一次産業約一一パーセント、第二次産業約三八パーセント、第三次産業
約五一パーセント(昭和五〇年国勢調査による。)とされている。
 本件安全審査においては、本件敷地付近には申請者の新型転換炉「ふげん」、日
本原子力発電敦賀原子力発電所、関西電力美浜原子力発電所を除いて特別な産業活
動は見当たらず、敦賀市における主な産業は卸売・小売業、サービス業、製造業で
あり、これらの産業活動が本件原子炉施設の安全性に影響を与えることはないと判
断した。
(三) 周辺の交通
 本件許可申請においては、本件原子炉施設周辺の交通について、陸上交通は、鉄
道路線として国鉄北陸本線及び小浜線が、道路として国道八号線、同二七号線及び
北陸自動車道があるが、いずれも本件敷地中心から一〇キロメートル以上離れてい
ること、最寄りの道路は本件原子炉施設の炉心からの最短距離が約一・二キロメー
トルの県道佐田立石敦賀線であること、海上交通は、重要港湾に指定されている敦
賀港が本件敷地から約一二キロメートル離れたところにあること、航空関係につい
ては、本件敷地周辺に飛行場はなく、本件原子炉施設上空に定期航空路もないこ
と、本件原子炉施設周辺空域は航空自衛隊の練習区域となっているが、防衛庁通達
によって発電所上空域は原則として飛行してはならないとされていることから、各
交通関係については、本件原子炉施設の安全性に影響を及ぼすことはないものと判
断した。
7 耐震設計
 本件安全審査においては、本件原子炉施設の耐震設計について、耐震設計の方
針、施設の耐震重要度の分類、地震力の算定、地震力と他の荷重の組合せ及び地震
時における応力等の許容限界等の妥当性について検討し、本件原子炉施設が、想定
されるいかなる地震力に対しても、これが大事故の誘因とならないよう、十分な耐
震性を有するか否かについて審査した。
 その結果、本件安全審査においては、次のとおり、本件原子炉施設の耐震設計の
基本的方針は妥当であり、施設の耐震性を十分確保し得るものと判断した。
(一) 耐震設計の重要度分類
 本件安全審査においては、LMFBRの設計の特徴を踏まえ、施設の持つ安全機
能からみた耐震重要度分類の方針及び各施設の重要度分類の妥当性につ
いて検討し、本件原子炉施設が地震により機能を失うことによって想定される環境
への影響の観点から、LMFBRの設計の特徴を十分に踏まえた耐震設計上の重要
度分類がされているか否かを審査した。
(1) 耐震重要度分類の方針
 本件許可申請においては、自ら放射性物質を内蔵しているか、又は内蔵している
施設に直接関係しており、その機能喪失により放射性物質を外部に拡散する可能性
のあるもの、これらの事態を防止するために必要なもの及びこれらの事故発生の際
に外部に放散される放射性物質による影響を低減させるために必要なものであっ
て、その影響効果の大きいものをAクラスとし、更に、Aクラスの施設のうち特に
安全上重要な施設はAsクラスとしている。また、右において影響効果が比較的小
さいものをBクラスとし、Aクラス、Bクラスに属さないものをCクラスとしてい
るが、ナトリウムの性状を考慮し、Aクラス以外の施設で大量の液体ナトリウムを
内蔵する施設はBクラスとしている。
 本件安全審査においては、右分類の方針は、放射性物質の外部放散による環境へ
の影響を防止するために必要な機能を、その影響の程度の重大性に応じて分類する
方針であり、妥当であると判断した。
(2) 各施設の重要度分類
(イ) 本件許可申請においては、主要な施設の重要度は次のように分類されてい
る。
(a) Aクラスの施設
 ①原子炉冷却材バウンダリを構成する機器・配管、②制御棒及び制御棒駆動機構
(原子炉自動停止時の制御棒挿入に関する部分)、③原子炉格納容器、④補助冷却
設備及び二次主冷却系設備(中間熱交換器からみて蒸気発生器の止め弁まで)、⑤
炉外燃料貯蔵槽のうち燃料貯蔵容器及び回転ラック並びに水中燃料貯蔵設備の燃料
池及び貯蔵ラック、⑥ガードベッセル、⑦アニュラス循環排気装置、⑧原子炉カバ
ーガス等のバウンダリを構成する機器・配管等。
 なお、このうち①ないし⑤はAsクラスとされている。
(b) Bクラスの施設
 一次ナトリウム純化系設備、廃棄物処理設備、二次ナトリウム補助設備等。
(c) Cクラスの施設
 発電器、蒸気タービン設備、淡水供給設備等、その他A及びBクラスに属さない
もの。
(d) なお、主要施設の持つ機能を維持するために必要な補助施設は、主要設備
と同等の重要度に分類される。また、これらの主要施設及び補助施設を支持する構
造物については、その施設の耐震設計に用いられる地
震動によって支持機能を失わないことを確認することとする。
(ロ) 本件安全審査においては、これらの各施設の重要度は、基本方針に従い、
施設の機能に基づいて分類されており、また、要求される機能に関連する補助施設
等も考慮して、当該機能が損なわれることがないように配慮されていると認められ
るので、妥当であると判断した。
(二) 地震力の算定
 本件安全審査においては、地震力の算定に用いる層せん断力係数、震度、地震
動、静的解析及び動的解析による地震力の算定方法について検討し、地震力の算定
が施設の重要度に応じた適切な方法によっているか否かを審査した。
(1) 静的解析に基づく地震力
 本件許可申請においては、標準せん断力係数を○・二とし、建物、構造物の振動
特性、地盤の種類等を考慮して求められる層せん断力係数から、静的解析に基づく
水平地震力を求め、また、鉛直地震力については、震度○・三を基準とし、建物、
構造物の振動特性、地盤の種類等を考慮した高さ方向に一定の震度(鉛直震度)が
垂直方向に作用するものとされた。
 そして、静的解析に際しては、Aクラスの建物、構造物については、層せん断力
係数の三倍及び鉛直震度から求められる地震力を静的地震力として用い、機器、配
管では、建物、構築物に対する層せん断力係数の値を水平震度としたもの及び鉛直
震度の一・二倍から求められる地震力が静的地震力とされ、Bクラスについては、
層せん断力係数の一・五倍、Cクラスについては、層せん断力係数の一・○倍から
それぞれ求められる地震力が静的地震力とされた。
 本件安全審査においては、右静的地震力の算定方法は、最新の知見に基づいたも
のであり、支障はないと判断した。
(2) 動的解析に基づく地震力
(イ) 本件許可申請においては、動的解析に基づく地震力について、次のとおり
とされている。
(a) 動的解析は、各施設を集中質点系等の解析モデルに置換して、剛性及び減
衰量を適切に評価し、地盤との相互作用を考慮した上、スペクトルモーダル解析
法、時刻歴モーダル解析法又は時刻歴直接積分法によって行う。
(b) A及びAsクラスの施設の地震応答解析は、基本的には施設が弾性的挙動
をするものとして行われるが、建物、構築物については、基準地震動S2に対して
弾性範囲をある程度以上超える場合にあっては、その超える程度を安全上支障のな
い範囲に制限した上、適切な減衰量、剛性を
考慮するか、又は実験等に基づく復元力特性を考慮して行う。
(c) 動的解析に際しては、基準地震動を敷地のEL+五メートルの位置に想定
し、設置される建物、構築物等の地震波動に与える影響を適切に考慮して入力地震
動を定める。
(ロ) 本件安全審査においては、動的解析に基づく地震力の算定についての基本
方針は妥当であると判断した。すなわち、
(a) 本件許可申請における動的解析の手法は、既に工学的に一般的になってい
て実績もある上、弾性範囲をある程度以上超える場合には、建物、構築物の構造特
性等を考慮して、十分その安全性を確認する方針となっており、支障はないと判断
した。
(b) 本件許可申請における地震応答解析における地震動の取り扱いについて
は、重要な建物、構築物の設置レベル付近では、微小な粘土化帯の存在がみられる
が、全体として堅硬な岩盤が分布し、その横波速度が約一・九キロメートル毎秒程
度となっていること、これより下方はその横波速度もほぼ一様に漸増する傾向がみ
られることなどから、このような敷地の地盤条件で基準地震動を定めることは適切
であると判断した。
(C) 荷重の組合せと許容限界
(1) 本件安全審査においては、原子炉施設の耐震設計においては、常時作用す
る荷重、運転時に施設に作用する荷重等と地震による荷重とを加算して考慮しなけ
ればならないとした上で、地震力と他の荷重との組合せ法の妥当性と、その組合せ
荷重状態で施設に許容される応力限界等について検討し、A、B及びCクラスの施
設については、弾性とみなされる範囲の状態を維持できるか否か、また、Asクラ
スについては、基準地震動S2による地震力に対して弾性とみなされる範囲を超え
ることがあっても、その施設の機能に影響を及ぼすおそれがない程度であるか否か
を審査した。
(2) 本件許可申請においては、荷重の組合せと許容限界の基本的方針につい
て、次のとおりとされている。
(イ) Aクラスの建物、構築物については、常時作用している荷重及び運転時に
施設に作用する加重と、基準地震動S1による地震力又は静的地震力と組み合わ
せ、その結果発生する応力に対して、安全上適切と認められる規格及び基準による
許容応力度を許容限界とする。
 そして、Asクラスの建物、構築物については、右に加え、更に常時作用してい
る荷重及び運転時に作用する荷重と基準地震動S2による地震力とを組み合わせ、

の結果発生する応力に対して建物、構築物の終局耐力に妥当な安全余裕を持たせ
る。
(ロ) B、Cクラスの建物、構築物については、常時作用している荷重及び運転
時に作用する荷重と静的地震力とを組み合わせ、その結果発生する応力に対し、安
全上適切と認められる規格及び基準による許容応力度を許容限界とする。
(ハ) Aクラスの機器、配管については、通常運転時、運転時の異常な過渡変化
時及び事故時に生じるそれぞれの荷重と基準地震動S1による地震力又は静的地震
力とを組み合わせ、その結果発生する応力に対して降伏応力又はこれと同等な安全
性を有する応力を許容限界とする。Asクラスの機器、配管については、右に加え
て、通常運転時、運転時の異常な過渡変化時及び事故時に生じるそれぞれの荷重と
基準地震動S2による地震力を組み合わせ、その結果発生する応力に対して構造物
が局部的に降伏して塑性変形する場合でも、過大な変形、亀裂、破損等が生じるこ
とによってその施設の機能に影響を及ぼすことがないこととする。
(ニ) B、Cクラスの機器、配管についても、Aクラスの場合と同様の荷重の組
合せ及びその許容限界を用いる。
(ホ) 地震時に機能の維持を要求される施設に含まれる動的機器の地震時におけ
る動作機能については、実験等により確認する。
(ヘ) 地震力と組み合わせる運転時の異常な過渡変化時及び事故時に生じる荷重
は、地震によって引き起こされる事象によりて作用する荷重とするが、地震によっ
て引き起こされるおそれがなくても、長期間作用する事故時の荷重については、基
準地震動S1による地震力又は静的地震力との組合せを考慮する。
(3) 本件安全審査においては、右荷重の組合せと許容限界についての基本的方
針を妥当であると判断した。すなわち、
(イ) 荷重の組合せに対する方針は、合理的で、妥当なものである。
(ロ) 許容限界については、建物、構築物の場合は、基準地震動S1による地震
力、又は静的地震力に対しては安全上適切と認められる規格及び基準による許容応
力度とされ、機器、配管の場合についても、材料の降伏応力程度とされていること
から、弾性範囲にあると認められる。また、基準地震動S2による地震力に対し
て、建物、構築物については、終局耐力に余裕を考慮して許容限界を定め、十分な
変形能力を有していることを、機器、配管については、過夫な変形、亀裂、破損を
起こさないこ
とをそれぞれ確認することにより、施設の機能を喪失しないことが基本方針とされ
ているので支障はない。
(ハ) 重要な動的機器の動作機能については、実験等によってその機能を確認す
る方針とされているので適切である。
8 本件安全審査の結論
 本件安全審査においては、調査審議の結果、本件原子炉施設の立地条件及び地震
に係る安全性について、本件原子炉施設が具体的審査基準に適合し、その基本設計
ないし基本的設計方針において、本件原子炉施設の周辺において発生するおそれの
ある地震を含め、本件原子炉施設の立地条件を考慮しても、本件原子炉施設の安全
性を確保することができ、原子炉等による災害の防止上支障がないものとした。
二 当裁判所の判断
1 立地、気象、水理、社会環境に関する本件安全審査の調査審議及び判断の過程
に重大かつ明白な瑕疵といえるような看過し難い過誤、欠落があるとは認められな
い。
2 地盤に係る安全性については、①敷地付近及び敷地周辺において、将来、土地
の大きな陥没や火山活動など、大きな地変が発生し、本件敷地に影響を及ぼすおそ
れのないこと、②本件敷地において地すべりや山津波などが発生し、本件原子炉施
設に損傷を与えるおそれのないこと、③敷地周辺で想定される地震等によって、本
件敷地の地盤が崩壊するおそれのないことがそれぞれ必要であるところ、本件安全
審査においては、本件敷地の地盤は、地震時にも崩壊などによって施設に影響を与
えるおそれはなく、安定した地盤であること、本件原子炉施設を支持する地盤は、
施設の自重や想定される地震時の荷重によって不等沈下や地盤破壊等が起こること
はなく、本件原子炉施設の安全性を十分確保できることが確認されており、本件許
可申請について右①ないし③が満たされることが確認されたということができるか
ら、本件安全審査の調査審議及び判断の過程に重大かつ明白な瑕疵と言えるような
看過し難い過誤、欠落があるとは認められない。
3 耐震設計については、原子炉施設の耐震設計が適切に行われたといいうるため
には、①施設の耐震設計上の重要度分類が適切に行われていること、②設計用最強
地震及び設計用限界地震想定の前提となる考慮すべき地震の選定が適切に行われて
いること、③設計用最強地震によってもたらされる基準地震動S1及び設計用限界
地震によってもたらされる基準地震動S2について、地震動の諸特性が適切に決定
されてい
ること、④耐震設計が十分な耐震安全性を確保し得る適切な手法で行われることが
それぞれ必要であるところ、本件安全審査においては、本件許可申請について右①
ないし④が満たされることが確認されたということができるから、本件安全審査の
調査審議及び判断の過程に重大かつ明白な瑕疵といえるような看過し難い過誤、欠
落があるとは認められない。
三 原告らの主張について
1 地震について
(一) 過去の被害地震(歴史地震)について
 原告らは、被告が、敷地周辺に被害を及ぼした過去の地震を本件敷地からの震央
距離が一五〇キロメートル以内のものに限ったことは不合理である旨主張する。
 この点、前記(第二、五、5、(五))のとおり、「耐震設計審査指針」は、遠
距離地震を考慮することを求めているところ、本件安全審査においては、基準地震
動の策定に当たり、本件敷地からの震央距離が一五〇キロメートル以遠の歴史地震
を考慮していないことは当事者間に争いがない。しかし、乙ニ三の一(証人P3調
書一)二九丁裏、四三丁表によれば、これは、これら遠方の地震が本件敷地に与え
る影響が、考慮した地震のそれを下回るからであることが認められ、これに反する
証拠はない。
 したがって、本件安全審査において、震央距離が一五〇キロメートル以遠の歴史
地震を考慮しなかったことは、不合理ではなく、原告らのこの点についての主張は
理由がない。
(二) 活断層の存在、連続性、同時活動性、活断層から起こる地震について
 原告らは、活断層の存在、連続性、同時活動性、活断層から起こる地震等につい
ての本件安全審査には誤りがある旨主張する。
(1) リニアメントについて
 原告らは、本件敷地周辺には、白木―丹生間にほぼ南北方向に延びる延長約四キ
ロメートルのリニアメント(以下「白木―丹生リニアメント」という。)が存在す
るほか、立石―浦底間にもリニアメントが、また本件敷地の近傍にやや不明瞭な三
本のリニアメントがそれぞれ存在するなど、本件敷地は多数の断層に取り囲まれて
いるとし、これらは活断層であるから、本件安全審査においてこれらを評価の対象
としなかったことは不合理である旨主張する。
 この点、乙ハ一及び乙ニ三の一(証人P3調書一)三〇丁裏ないし三二丁裏によ
れば、リニアメントは、断層の活動によって形成される場合もあれば、浸食等によ
って形成される場合もあることから、リニアメントに対応する活断
層が存在するか否かは、断層変位を特徴づける他の地形的特徴の有無や地表踏査の
結果に基づき判断する必要があることが認められるので、以下、原告らの指摘する
各リニアメントについて検討する。
(イ) 白木―丹生リニアメントについて
 乙ハ一によれば、白木―丹生リニアメントは、「[新編]日本の活断層」におい
て、確実度Ⅲ、すなわち活断層の可能性があるが、変位の向きが不明であったり、
他の原因によってリニアメントが形成された疑いが残るもので、活断層である確率
が五〇パーセント以下のものと位置づけられていることが認められる。
 そして、乙一六・六―三―三〇頁によれば、本件許可申請に際して、申請者は、
白木―丹生間リニアメント付近の地質等について調査を行い、①右リニアメント沿
いに、断層の存在を特徴づけるような変位地形は認められないこと、②右粘土化し
た部分を覆う地層(第四紀層の堆積層)に、活断層運動による変位は認められない
ことを確認したことが認められる。
 また、乙ニ三の一(証人P3調書一)三六丁裏ないし三八丁裏によれば、本件安
全審査においては、右申請者の調査の妥当性を確認した上、右リニアメントに対応
する位置に、粘土化した花崗岩が所々認められたが、リニアメントが断層運動によ
って形成された場合には、その力学的作用によって元々の岩石組織は破砕されるの
が一般的であるところ、粘土化した花崗岩の中の岩石組織は破砕されずそのまま残
されていることが確認されており、リニアメントが断層運動によって形成された場
合の一般的特徴がみられないこと、その他断層の活動の存在を示唆するような地形
的特徴が認められないことなどから、白木―丹生リニアメント上に所々みられる粘
土化帯は、断層活動以外の原因で生じた節理面(岩石の割れ目)を有する花崗岩
が、熱水変質作用(地下深部の温度の高い水溶液等により、岩石を構成している鉱
物が化学的に変質して新しい鉱物が生じる作用。)を受けて生じたものと考えられ
るとした。そして、他に右リニアメントに対応する断層が存在することを根拠づけ
るものはないとした上で、右リニアメントは、右の理由で粘土化した軟弱な部分が
選択的に浸食されることによって低地帯が形成され、その端部が線状模様になった
地形であると考えるのが合理的であり、活断層の活動によって形成された地形では
ないと判断したことが認められ、その合理性に疑いを入れるような
証拠はない。
 したがって、同リニアメントに対応する断層が存在するとは認め難いというべき
であり、他にこれを認めるに足りる証拠もない。
(ロ) 立石―浦底間のリニアメントについて立石―浦底間のリニアメントは、平
成三年に発刊された「[新編]日本の活断層」(甲ハ二三)において確実度Ⅲから
確実度Ⅰに変更されたから、現時点では右リニアメントは活動層と判断するのが相
当である。しかし、右リニアメントは、長さが約四キロメートルと短いから、これ
が活断層であるとしても本件原子炉施設の地盤の健全性に影響を及ぼすものではな
く、本件安全審査の合理性を左右するものではないことが明らかである。
(ハ) 他のリニアメントについて
 乙一六・六―三―三〇頁及び乙ニ三の一(証人P3調書一)三八丁表によれば、
本件安全審査においては、白木―丹生リニアメント以外の三本のリニアメントにつ
いては、現地踏査の結果、右各リニアメントの延長線上に、局所的に、幅数センチ
メートルないし数十センチメートル程度、比較的連続性があるもので幅二メートル
以下の粘土化帯が認められたが、粘土化帯をリニアメントが走行する方向に追跡し
たところ、破砕帯は認められず、未変質部分が現れ、堅岩露頭が分布することが観
察されたこと、他に断層の存在を特徴づけるような変位地形は認められないことか
ら、これらのリニアメントは断層の活動によって形成された地形ではないことを確
認したことが認められ、その合理性に疑いを入れるような証拠はない。
 したがって、これらのリニアメントに対応する断層が存在するものと扱わなかっ
た本件安全審査に不合理な点はないというべきであるから、原告らのこの点につい
ての主張は理由がない。
(2) 敦賀半島西岸断層について
 原告らは、城ケ崎沖合から敦賀半島の白木―丹生間の谷を通り、S―16断層の
北部まで、延長約一九キロメートルの横ずれ段層(敦賀半島西岸断層)があり、こ
れによってマグニチュード六・九の直下型地震が生じる旨主張する。
 そして、原告らは、その根拠として、①リニアメントの存在、②三角末端面の存
在、③三角形状の地塊の移動、④海底断層の存在等の地形的特徴を挙げるので、以
下、これらの点について検討する。
(イ) リニアメントの存在について
 原告らは、白木―丹生リニアメントに平行するリニアメントが存在することを根
拠として主張し、甲ニ三の三(証人P4調書三)三
七丁裏、三八丁表にはこれに沿う証言がある。
 しかし、右証言は、リニアメントらしきものが白木―丹生リニアメントの西側に
もう一本あるが、直線的にずっと続いているとは必ずしも確認できなかったという
ものにとどまるし、「[新版]日本の活断層」(乙ハ一)においても、白木―丹生
リニァメントの西側にこれに平行するようなリニアメントが図示されていないこと
からすると、右リニアメントの存在自体、なお疑問が残るというべきである。
(ロ) 三角末端面について
 原告らは、白木峠南方一キロメートルに存在する尾根筋には、西側側面が途中で
断ち切られたような三角形状の地形があり、これが活断層運動によって形成された
三角末端面であることを根拠として主張する。
 しかし、乙ニ三の一(証人P3調書一)四四丁表ないし四七丁表には、①仮に右
三角形状の地形が活断層運動によって形成された三角末端面であるとすれば、その
西側斜面のすそを通ってリニアメントが走行しているのが普通であるが、右西側斜
面にはリニァメントは認められない(なお、前記((1)、(イ))のとおり、白
木―丹生間のリニアメントは断層運動により形成されたものではない。)、②原告
ら主張のリニアメントの走向方向と、右三角形状の地形の等高線の走向方向とは一
致しなければならないところ、両者の走行方向は斜交していて一致しない、③活断
層運動によって三角末端面が形成される場合には、複数の三角末端面のすそが線状
につながることが普通であるが、原告ら主張の断層の走行方向には右三角形状の地
形の外に三角形状の地形は認められていない、④他に活断層運動による変位地形も
認められないとの証言があり、これに反する証拠はない。そうすると、右三角形状
の地形が、活断層運動によって形成された断層変位地形としての三角末端面に当た
ると認めることはできないというべきである。
(ハ) 地塊の移動について
 原告らは、敦賀半島西岸断層、S―21ないしS―26断層及びS―12ないし
S―17断層によって区切られる三角形の地塊(特牛崎地塊)を敦賀半島西岸断層
に沿って南方に移動させた場合、山の尾根筋や海岸線が東西にわたってなめらかに
連続することから、右地塊が北方に移動したことによって横ずれ断層である敦賀半
島西岸断層が形成された旨主張する。
 しかし、乙ニ三の一(証人P3調書一)四四丁表、同裏によれば、仮に右地塊が
北方へ移動したも
のであるならば、右地塊の北縁には東西方向の断層がなければならないと認められ
るところ、乙一六・六―三―一〇一頁によれば、右地塊の北縁にあるS―12ない
しS―14断層の走行方向はいずれもほぼ南北方向であり、その北にあるS―1な
いしS―16の断層群の走行方向も同じく南北方向であることが認められるのであ
って、右地塊の移動から敦賀半島西岸断層の存在を根拠づけることはできないとい
うべきである。
(二) 海底断層の存在について
 原告らは、海上保安庁水路部の海底音波探査の結果、S―17断層と本件原子炉
施設との間の海域(白木北方沖合)及び白木―丹生間のリニアメントの南側部分
(美浜原子力発電所の南方付近)の海域にいくつもの枝分かれした断層が認められ
るとし、敦賀半島西岸断層が右の地点を走行する旨主張する。
 しかし、乙一六・六―三―一〇一頁、一〇三頁によれば、海上保安庁水路部の資
料においては、白木北方沖合については、S―17断層の部分に海底断層の存在が
推定されるにとどまり、右断層と陸域との間には断層の存在は推定されていないこ
と、また、美浜原子力発電所の南方付近の海底にも断層の存在は示されていないこ
とが認められる。また、S―17断層と陸域との間に活断層の存在を示す地形的な
特徴も認められない。したがって、海底断層の存在から敦賀半島西岸断層の存在を
根拠づけることはできないというべきである。
(ホ) なお、原告らは、甲ハ四九の海上保安庁水路部の海底音波探査記録によれ
ば、敦賀半島西岸半島の存在を示す地層の乱れがあることがうかがわれる旨主張す
るが、右証拠は不鮮明なものである上、地層の乱れがすなわち断層であるというこ
とにもならないから、右証拠から同断層の存在を認めることはできない。
(ヘ) 以上からすると、敦賀半島西岸断層の存在を認めるに足りる証拠はないか
ら、原告らのこの点についての主張は理由がない。
(3) 海底断層S―1、甲楽城断層、山中断層及び柳ケ瀬断層の連続性、同時活
動性について
(イ) 原告らは、海底断層S―1、甲楽城断層、山中断層及び柳ケ瀬断層は雁行
しているから、一つの断層系として評価すべきであり、これらが一体となって活動
すれば、被告が考慮すべき限界地震を上回る地震動が生じる旨主張する。
(ロ) しかし、前記(一、2、(一)、(2)、(ロ)、(b))に加え、甲ハ
二三及び乙一六・六―三―九ないし一五頁によ
れば、本件安全審査においては、次のとおり、文献調査、空中写真判読、地形、地
表、地質調査、海上保安庁の調査活動等に照らし、右各活断層の間に連続性は認め
られず、また、右各活断層が一つの断層系としてその全域が同時に活動するとは認
められないことを確認したことが認められ、その合理性に疑いを入れるような証拠
はない。
 すなわち、①甲楽城断層の海域部については、海上保安庁水路部資料により、沖
合数百メートルの海底に大谷沢沢口から干飯崎沖までに推定断層が図示されている
が、音波探査結果によれば、干飯崎沖に断層が推定されるものの、この推定断層は
干飯崎沖より北西方向へは延長していないと判断できるので、甲楽城断層とS―1
断層との間に連続性は認められない(乙一六・六-三1一四頁、一五頁)。② 甲
楽城断層の陸域については、大谷沢の沢口に認められた破砕帯を覆う扇状地の堆積
物が断層によって変位を受けていないこと、大谷沢付近に変位地形がみられないこ
とから、五万年前以降の活動はないと判断できる(乙一六・六―三―一五頁)。
③ 柳ケ瀬断層については、椿坂峠から南の部分では活動性は高いと考えられる
が、椿坂峠から北の部分では、活動性は低いと考えられ、柳ケ瀬断層の活動性は、
椿坂峠付近を境にして、北側と南側とで異なる(乙一六・六―三―一二頁)。
④ 山中断層は、柳ケ瀬断層北端部と甲楽城断層南端部の間に位置し、北西南東方
向に走向する長さ五キロメートルの断層である(甲ハ二三)。
⑤ 甲楽城断層と柳ケ瀬断層との関連については、空中写真判読からは両断層を結
ぶリニアメントが認められないこと、地表地質調査の結果、柳ケ瀬断層北端部から
甲楽城断層南端部へ連続する破砕帯が認められないこと、柳ケ瀬断層の両側の古生
層は構成岩種や地質構造が明瞭に異なるが、甲楽城断層南端部では両側の地質に明
瞭な差がないから、両断層の形成過程は異なると考えられること、柳ケ瀬断層は五
〇ないし六〇度の西側傾斜、甲楽城断層は六〇度の東側傾斜ないしは九〇度の垂直
方向であり、断層面の傾斜方向と傾斜角度が異なること、両断層の破砕帯にみられ
る条線が各々異なった産状を示していることなどから、両断層間に連続性は認めら
れない(乙一六・六―三―一二頁、一三頁)。
(ハ) そうすると、甲楽城断層と柳ケ瀬断層との連続性は認められず、また、甲
楽城断層と柳ケ瀬断層とが山中断層を介して連続する、あ
るいはこれらの断層が一つの断層系として同時に活動すると考える根拠もないとい
うべきである。
(ニ) これに対して、甲ニ三の二(証人P4調書二)六三丁裏及び甲ニ三の四
(証人P4調書四)四九丁表には、右各活断層が連続していなくても、これらが雁
行していることのみから、一本の断層系として考慮すべきである旨の証言がある
が、右考え方には、合理的根拠が述べられていないし、右考え方が学界において支
持されているとも認められないから、採用できない。
 また、原告らは、蝶番断層の場合は、一本の断層であっても傾斜が部分的に異な
ることがあるとして、柳ケ瀬断層と甲楽城断層の断層面の傾斜が異なることは、両
者が一本の断層であることを否定する理由にはならない旨主張する。
 しかし、乙ハ一四によれば、蝶番断層とは、断層の一方の地塊が断層面に垂直な
方向を軸として、他方の地塊に対して相対的に回転運動した断層であると認められ
る。したがって、断層の両端で低下側が逆になることはあっても(すなわち、南北
に走る断層の北半分では断層の西側が低下し、断層の南半分では断層の東側が低下
するなど。)、断層の両端で断層面の傾きが逆になることはない(すなわち、南北
に走る断層の北半分と南半分で、傾斜面が逆になることはない。)というべきであ
る。しかし、前記(ロ)のとおり、甲楽城断層と柳ケ瀬断層とは傾斜が逆であるか
ら、蝶番断層としての特徴を有していない。また、他に甲楽城断層と柳ケ瀬断層が
蝶番断層であるとする学術的見解があるという証拠もない。
 なお、原告らは、「[新編]日本の活断層」(甲ハ二三)では、甲楽城活断層は
「西側対低下」とされているのに、本件許可申請書においては、甲楽城断層の傾斜
について、「六〇度E」と記載されていることから(乙一六・六―三―一三頁)、
甲楽城断層と柳ケ瀬断層の傾斜が異なるとした本件安全審査は、甲楽城断層の傾斜
を誤って評価したものである旨主張するが、本件許可申請書の「六〇度E」の記載
は、傾斜が東側方向の水平面から下方に六〇度傾いていることを意味するものと解
されるから、逆断層である甲楽城断層においては、右記載は隆起側は東側で西落ち
(西側低下)を示すことになるのであって、右記載は「[新編]日本の活断層」の
記載と矛盾するものではない。
(ホ) したがって、原告らのこの点についての主張は理由がない。(4) 野坂
断層とS―21ないしS
―27断層の連続性について
 原告らは、野坂断層とS―21ないしS―27断層とは連続しており、右断層か
らはマグエチユード七・三の地震が発生する旨主張する。
 しかし、乙一六・六―三―二六頁、二七頁、一〇一頁によれば、海上保安庁の音
波探査において、S―21ないしS―27断層と野坂断層との間の海域に断層は推
定されていないことが認められ、他に原告らの主張を認めるに足りる証拠はないか
ら、原告らのこの点についての主張は理由がない。
(5) S―15ないしS―17断層と白木―丹生リニアメントの同時活動性につ
いて
 原告らは、S―15ないしS―17断層と白木―丹生リニアメントは連続してい
る旨主張する。
 しかし、甲ハ七〇及び乙一六・六―三―三〇頁、三一頁によれば、S―15ない
しS―17断層について、海上保安庁水路部は、その海底地質構造図において、S
―15、S―17断層を伏在断層としてその存在を推定しているにとどまっている
上、活断層であるとはしていないことが認められる。また、前記((1)、
(イ))のとおり、白木―丹生リニアメントは活断層運動によって生じたものとは
認められない。したがって、S―15ないしS―17断層と白木―丹生リニアメン
トを一体として評価すべき理由はないから、原告らのこの点についての主張は理由
がない。
(6) 連続しない複数の断層の同時活動性について
 原告らは、型が異なり連続性が認められない断層であっても、近傍に存在する場
合には同時に活動する可能性があることを前提とした上で、①山中断層と甲楽城断
層と柳ケ瀬断層、②白木―丹生リニアメントとS―15ないしS―17断層、③野
坂断層とS―21ないしS―27断層、④木ノ芽峠断層(敦賀断層)と花折断層が
同時に活動する可能性がある旨主張し、さらに、地震地体構造を考えると、①花折
断層で地震が発生するとしても、木ノ芽峠断層も動くとみるべきであるから、震央
距離は六〇キロメートルから五〇キロメートルとなる、②山中断層と甲楽城断層と
柳ケ瀬断層は、一体となった断層系として考える必要があり、甲楽城断層の位置に
マグニチュード七・八の地震が発生する旨主張する。
 この点、平成七年の兵庫県南部地震において、近傍にある複数の断層が同時に活
動したことは当事者間に争いがない。しかし、甲ハ六〇によれば、兵庫県南部地震
は、六甲―淡路断層帯という、既知の活断層の密集体の一部が変
位したことにより発生したものと解されているところ、右断層帯は従前から安全委
員会において一連の断層として評価されていたものであったことが認められ、何ら
関連性のない断層が、近傍にあるということだけを理由に同時に活動したものでは
ない。したがって、兵庫県南部地震の発生をもって、断層が近傍に存在する場合に
は同時に活動する可能性があるということはできず、他に原告らの主張を認めるに
足りる証拠はない。なお、後記(8)のとおり、金折裕司が提唱する「マイクロプ
レートモデル」は、そもそも、構造線を構成する複数の活断層が同時に活動し、格
別に大きい地震を起こすことを内容とするものではない。
 したがって、原告らの主張はその前提を欠くものである。なお、山中断層と甲楽
城断層と柳ケ瀬断層が連続しないことは前記(3)の、②白木―丹生リニアメント
とS―15ないし17断層の同時活動性がないことは前記(5)の、③野坂断層と
S―21ないしS―27断層が連続しないことは前記(4)のとおりである。
(7) 木ノ芽峠断層(敦賀断層)と柳ケ瀬断層の同時活動性について
 なお、甲ハ六六には、木ノ芽峠断層と柳ケ瀬断層が、約七〇〇年前に同時に活動
した可能性があり、これを古文書のデータなどと照らし合わせると、一三二五年に
これらの断層が同時に活動して地震を引き起こした可能性が高く、将来、木ノ芽峠
断層と柳ケ瀬断層が同時に動いた場合、マグニチュード七・二の地震が発生する可
能性があるとの記載がある。しかし、本件安全審査においては、木ノ芽峠断層と柳
ケ瀬断層が同時に活動することは想定していないが、前記(一、2、(一)、
(1)、(ロ))のとおり、右一三二五年の地震(正中近江の地震)は、設計用最
強地震の選定に当たって考慮しており、前記(一、2、(一)、(二)、(ニ)及
び同(5)、(ロ))のとおり、木ノ芽峠断層及び柳ケ瀬断層から起こる地震につ
いては、それぞれマグニチュード七・二を想定して設計用限界地震として考慮して
いるから、右文献は本件安全審査の合理性を左右するものではない。
(8) マイクロプレートモデルについて
 原告らは、金折裕司が提唱する「マイクロプレートモデル」に基づき、マイクロ
プレート境界である敦賀湾―伊勢湾構造線上にある甲楽城断層、柳ケ瀬断層系では
大規模な地震が発生し、その場合、右境界から一一キロメートルの距離に位置する
本件原子炉施設に
危険が及ぶ旨主張する。
 しかし、甲ハ三七によれば、マイクロプレートモデルは、マグニチュード六・四
以上の被害地震が、活断層を結ぶ線で定義される構造線やブロック境界線に沿って
発生していることから、中部日本のブロック構造モデルとして提唱され、その後日
本列島全域に拡張された理論であること、その内容は、右ブロック境界の活動には
静穏期と活動期とがあり、活動期に入ると地震が構造線やブロック境界線上で間欠
的に発生し、境界全体が活動した断層で全て覆われると活動期が終息するというも
のであることが認められる。したがって、右理論は、構造線を構成する複数の活断
層が同時に活動し、格別大きい地震が発生することを述べたものではなく、右理論
により、甲楽城断層、柳ケ瀬断層系が一つの断層として活動するということはでき
ない。したがって、原告らのこの点についての主張は理由がない。
(9) 近畿三角地帯について
 原告らは、花折・金剛構造線、敦賀湾・伊勢湾構造線及び中央構造線によって囲
まれる近畿三角地帯の底辺に当たる中央構造線の活動性が高まっており、そのうち
の一〇〇キロメートルが動いた場合には、マグニチュード八・二の巨大地震が発生
し、その場合、本件原子炉施設の敷地に大きな影響を与える旨主張する。
 この点、右一〇〇キロメートルがどの範囲を指すのかについて、原告らの主張は
不明確であるが、仮に本件原子炉施設の敷地に最も近いところ(奈良県五条から三
重県伊勢までの約一〇〇キロメートル)を検討すると、甲ハ二三及び甲ニ三の四
(証人P4調書四)三九丁裏、四〇丁表によれば、五条以西(近畿三角地帯の底辺
の左側になる。)と以東とでは活動度に大きな相違があり、五条以東では約五〇万
年前以降は活動が停止していることが、乙ハ五によれば、高見峠付近にはリニアメ
ントがあるが、右リニアメントは、明瞭な活断層地形を示さないリニアメントであ
り選択的浸食により生じた可能性もあるため、「[新編]日本の活断層」では確実
度Ⅲとされていることがそれぞれ認められ、近畿三角地帯の底辺に当たる中央構造
線が一〇〇キロメートルにわたって活動する現実的可能性があると認めるに足りる
証拠はないというべきである。
 また、甲ニ三の四(証人P4調書四)四一丁表及び乙ハ六によれば、本件原子炉
施設から中央構造線までは、最も近いところで約一五〇キロメートルの距離がある
ことが認められ、また、甲ニ三の四(証人P4調書四)四一丁表、同裏及び乙三二
の一(証人P3調書)添付⑩によれば、この距離で仮にマグニチュード八・二の地
震が発生したとしても、震度Vのゾーンに入ることが認められるから、本件原子炉
施設の敷地に対するその影響は、考慮すべき限界地震として選定した甲楽城断層
(震度Ⅵのゾーン)よりも小さいことが明らかであり、中央構造線の活動は、本件
安全審査の合理性を左右するものではない。
 したがって、原告らのこの点についての主張は理由がない。
(10) 甲楽城断層による地震の想定について
 原告らは、甲楽城断層による地震はマグニチュード七・三、本件敷地との最短距
離約一二・五キロメートル(震央距離一五キロメートル)として評価すべきである
のに、本件安全審査においてマグニチュード七・○、震央距離一一・五キロメート
ルと評価したのは誤りである旨主張する。
 この点、甲ハ六七・一九九頁には、甲楽城断層の位置に対応するとみられる「空
白域D」に発生する地震としてマグユチにード七・三と記載されている。しかし、
右は、長期間地震が発生していないブロック境界の断層について認められる空白域
では、歪エネルギーが蓄積されているという空白域の考え方に基づくものであると
ころ、前記(第二、三、5、(一)、(2))のとおり、右考え方は、「歴史地震
の発生が知られていないブロック境界については、地震の空白域や次の地震で破壊
する領域を予測することが困難である。」として、「仮にそれを構成する大規模な
活断層を次の地震での破壊域とみなし、地震危険度評価を試みる。」と断った上
で、空白域を破壊域とあえて仮定し、想定される地震のマグニチュード等を試算し
ているにすぎないのであって、空白域において地震が発生する蓋然性があること
や、その近辺の複数の活断層が同時活動する具体的可能性があることは述べられて
いない。したがって、甲ハ六七の記載から、本件安全審査における甲楽城断層の評
価が不合理であるということはできない。
 そして、前記(一、2、(一)、(2)、(ロ)、(b)、(3))のとおり、
本件安全審査においては、甲楽城断層は大谷沢から干飯崎沖までの長さ二〇キロメ
ートルの断層として考慮することが適切であるとしているが、乙一六・六―三―四
頁、一五頁、六―五―三一頁によれば、右判断に当たっては、①地形調査の結果か
ら、現海岸はリニアメント付近にあった
断層崖が海岸浸食によって後退し、現在に至ったものと推定され、これによれば、
右断層は海底に認められるリニァメント状地形の位置に推定するのが適切と考えら
れること、②海上保安庁の資料及び申請者の行った音波探査の結果によれば、海底
のリニアメント状地形に沿って大谷付近から干飯崎沖までの約一八・五キロメート
ルにわたり伏在断層が推定されること、③陸域については、大谷と敦賀市杉津の中
間の沢に長さ約一・五キロメートルのリニアメントが認められるにすぎず、現地の
露頭調査では、右陸域のリニアメントの位置に対応する大谷付近の大谷沢口に幅五
〇ないし一二〇メートルの比較的規模の大きな破砕帯が認められることを確認して
いることが認められ、その合理性に疑いを入れるような証拠はない。
 したがって、原告らのこの点についての主張は理由がない。
2 地盤について
(一) 岩級(岩盤)分類について
 原告らは、岩級分類においては、CH級は「やや不良」、CL級以下は「不適」
とされているのに、本件安全審査において、本件原子炉施設の基礎岩盤について、
大部分がCH級からB級にあることから、「全体として堅硬、均質な花崗岩で構成
されている」としていることは不当である旨主張する。また、一部にはCH級以下
の岩盤も存在するから、本件原子炉施設の基礎岩盤が良好であるとはいえない旨主
張する。この点、甲八三によれば、田中式の岩級分類において、CH級は「やや不
良」、CM級以下は「不適」とされていることが認められる。しかし、甲ハ三及び
乙ニ三の二(証人P3調書二)八丁表によれば、右岩級分類はダムの基礎岩盤を対
象としたものであり、「やや不良」、「不適」という評価内容も、ダム建設につい
てのものであること、本件原子炉施設の岩盤にかかる重量は、ダムより遥かに小さ
いことが認められるから、右評価内容はそのまま本件原子炉施設に当てはまるもの
ではない(なお、本件安全審査においては、電研式の岩級分類が用いられてい
る。)。
 そして、乙一六・六―三―三五頁、三六頁、一三一ないし一三七頁によれば、本
件安全審査においては、本件原子炉施設の基礎岩盤中には、CL級以下の岩盤が一
部存在するものの、それはごくわずかなものがCH級以上の岩盤に包み込まれたよ
うな形で存在するにすぎず、大部分はCH級ないしB級の花崗岩からなる岩盤で構
成されていることを確認した上で基礎岩盤が良好であるとし
たことが認められるのであって、CL級以下の岩盤が存在することは、直ちに右判
断の合理性を左右するものではないというべきである.
 また、そもそも、乙一六・六―三―三九頁によれば、本件安全審査においては、
岩級ごとに行った岩盤試験の結果に基づき、十分な支持力、せん断抵抗力等が認め
られたことを確認した上で本件原子炉施設の基礎岩盤が安全であると判断したこと
が認められ、岩級分類のみから右結論を導いているのではないから、岩盤の一部に
「不適」とされるものがあったとしても、直ちに本件安全審査の合理性を左右する
ものではない。
 したがって、原告らのこの点についての主張は理由がない。
(二) 岩盤良好度評価(RQD評価)について
 原告らは、ボーリング調査を基にした岩盤良好度評価(RQD評価)によれば、
本件原子炉施設を設置する計画標高付近では、「非常に悪い」、「悪い」が圧倒的
に多く、総合評価をすると、右の付近の花崗岩類の岩質は劣悪である旨主張する。
 しかし、乙ニ三の二(証人P3調書二)七丁表、同裏によれば、RQD評価は、
ボーリングコアを採取した際に、長さ一〇センチメートル以上のコアがどの程度採
取されたかによって岩盤の良好度を評価しようとするものであり、岩盤試験等の手
法が確立される以前に重視されていた評価方法であるが、これによって、岩盤の強
度を直接に判断し得るものではないことが認められる。
 また、そもそも、前記(一)のとおり、本件安全審査においては、岩級ごとに行
った岩盤試験の結果に基づき、十分な支持力、せん断抵抗力等が認められたことを
確認した上で判断しているのであって、RQD評価を直接の根拠として結論を導い
たものではないから、RQD評価は、直ちに本件安全審査の合理性を左右するもの
ではない。
 したがって、原告らのこの点についての主張は理由がない。
(三) サンドイッチ地盤について
 原告らは、本件原子炉施設設置場所の地盤は、堅硬な岩盤の間にやや軟岩である
岩盤が挟まれた、いわゆるサンドイッチ地盤であり、地震に極めて弱い地盤である
旨主張する。
 この点、甲ハ二二及び甲ニ三の二(証人P4調書二)九四丁裏によれば、サンド
イッチ地盤とは、昭和五三年六月の宮城県沖地震後に、新聞記者が、ビルが設置さ
れていた表層地盤について硬い地層と軟らかい地層が上下方向に交互に重なり合っ
ている状態を便宜そのように呼んだものであり、学術
用語として承認されたものではないことが認められる。
 そして、本件原子炉施設は、表層地盤を除去して露出させた岩盤の上に設置され
ていることは当事者間に争いがないところ、表層地盤の内部に軟らかい地層が含ま
れることと、岩盤の内部に岩級の差異が存することとは異なるから、本件原子炉施
設の基礎岩盤をサンドイッチ地盤と呼ぶことはできない。
 また、前記(一)のとおり、本件安全審査においては、本件原子炉施設の基礎岩
盤中には、CL級以下の岩盤が一部存在するものの、そのことが基礎岩盤の安全性
に影響を及ぼすものでないことを確認している。したがって、原告らのこの点につ
いての主張は理由がない。
(四) 沖積地について
 原告らは、本件原子炉施設の地盤は基盤をカットして造成した土地と沖積地との
双方をまたいでいる旨主張する。
 しかし、本件原子炉施設の地盤が沖積地をまたいでいることを認めるに足りる証
拠はない。また、前記(一)のとおり、本件安全審査においては、本件原子炉施設
の基礎岩盤中には、CL級以下の岩盤が一部存在するものの、そのことが基礎岩盤
の安全性に影響を及ぼすものでないことを確認している。
 したがって、沖積地をまたいでいることにより本件原子炉施設の地盤の安定性が
確保されないとはいえず、原告らのこの点についての主張は理由がない。
(五)粘土化帯等について
 原告らは、本件原子炉施設設置場所で採取されたボーリングコア中に粘土化帯、
条線(条痕)、鏡肌等が認められるから、本件原子炉施設直下の岩盤は、断層活動
によって粉砕されている旨主張する。
 この点、乙一六・六―三―三六頁、一六八頁によれば、右岩盤には粘度を含む部
分(粘土化帯)の存在が認められるが、この点について、乙ニ三の二(証人P3調
書二)一二丁裏には、右粘度化帯は、相互に特定方向へ連続する関係は認められな
いことなどから、断層活動以外の原因すなわち節理面を有する花崗岩が熱水変質作
用を受けて生じたものと考えられるとの証言がある。また、本件許可申請書のボー
リング柱状図(乙一六・六―三―一六八頁)には、破砕帯がある旨の記載がある
が、この点について、乙ニ三の二(証人P3調書二)一五丁表ないし一六丁裏に
は、右破砕帯もまた、ピンク粘土があるとされていることなどから、圧力がかかっ
た熱水が入ったときの破砕であり、断層運動によって生じた破砕帯ではない旨の証
言がある。そして、本件
許可申請書のボーリング柱状図(乙一六・六―三―一四二頁、一四五頁)には、粘
土化帯部分の一部に条線や鏡肌がみられるとの記載があるが、それらはごく一部に
すぎない上、乙ニ三の二(証人P3調書二)一七丁表には、条線の方向も特定方向
に連続していないことや、鏡肌に断層運動による条痕が付いていないことなどか
ら、右条線や鏡肌もまた断層運動により生じたものではない旨の証言がある。ま
た、甲ニ三の三(証人P4調書三)二一丁表ないし二二丁表にも、本件原子炉施設
設置場所で採取されたボーリングコアの条線等について、これによって原子力施設
に支障があるということはできない旨の証言がある。これらの事実からすると、粘
土化帯の存在によって、本件原子炉施設直下の岩盤が断層運動によって粉砕してい
ると認めることはできないというべきであるから、原告らのこの点についての主張
は理由がない。
(六) 敦賀市の報告書について
 原告らは、敦賀市が昭和五六年三月に作成した「原子力発電所周辺地域地質調査
書(以下A「地質調査書」という。)中に、「原子炉本体だけでなく、その付属設
備、例えば用排水管など延長の長いものの工事との関係は、特に注意を要する。」
との記載があることから、本件原子炉施設の地盤は不安定である旨主張する。
 しかし、弁論の全趣旨によれば、右報告書には、「以上の調査事項・結果とも現
在の学問レベルでよく努力したものと評価できる。しかし、人類の知識は次々と進
歩し増している。今回特に問題となった2つのリニアメントは原子炉本体の場所で
はないので、原子炉の耐震設計の関係から問題とされる。しかし、原子炉本体だけ
でなく、その付属設備、例えば用配水管など延長の長いものの工事との関係は、特
に注意を要すると考えられる。」と記載されていることが認められ、右は、本件原
子炉施設の付属施設についても耐震設計上の配慮をすべきことに注意を喚起したも
のにすぎず、具体的に本件原子炉施設の地盤が不安定であるとしたものではないと
解されるから、原告らのこの点についての主張は理由がない。
(七) 背後山地の安全性について
 原告らは、右(六)の敦賀市の地質調査書が、「山地の崩壊・土石流の発生など
が問題」であるとしていることから、本件原子炉施設の背後山地は、山津波や地滑
りが発生するおそれがある旨主張する。
 しかし、弁論の全趣旨によれば、右地質調査書には、本件原子炉施設
の立地点には有意な活断層がないことを述べた上で、「はせ田地区の地形は、特に
山地部の比高が高く、傾斜の勾配も急である。したがって、むしろ活断層よりも山
地の崩壊・土石流の発生などが問題」であると記載されていることが認められ、右
は、単に、山地部の比高及び傾斜勾配に着目して山地の崩壊等の可能性を一般的に
指摘したものにすぎず、具体的に本件原子炉施設の背後山地に山津波や地滑りが発
生するおそれがあるとしたものではないと解されるから、原告らのこの点について
の主張は理由がない。
3 耐震設計について
(一) 施設の重要度分類について
 原告らは、一次冷却材を内蔵する施設や使用済燃料を冷却するための施設を、い
ずれも耐震設計上AクラスとせずBクラスとしたのは不合理であり、耐震安全性を
確保できない旨主張する。この点、乙一六・八―一―一一五ないし一一七頁によれ
ば、一次冷却材を内包する施設としては、一次ナトリウム充填ドレン系設備、一次
ナトリウム純化系設備等を、使用済燃料を冷却するための施設としては、炉外燃料
貯蔵槽冷却設備のうち地震後の冷却に必須でないもの、水中燃料貯蔵設備の燃料池
水冷却浄化装置をBクラスとしていることが認められる。
 しかし、乙一六・八―一―九九頁及び弁論の全趣旨によれば、本件安全審査にお
いては、これらの機器、設備のうち、一次ナトリウム充填ドレン系設備、一次ナト
リウム純化系設備等は、原子炉冷却材バウンダリにバルブを介して直接接続される
もので、一次冷却材を内包するものの、放射性物質を含む量が少なく、その機能が
喪失した際の環境への影響も小さいといえることから、また、炉外燃料貯蔵槽冷却
設備のうち地震後の冷却に必須でないもの、水中燃料貯蔵設備の燃料池水冷却浄化
装置も同様の理由からBクラスとしたことを確認したことが認められ、これが不合
理であるという証拠はない。
 したがって、原告らのこの点についての主張は理由がない。
(二) 基準地震動の策定について
 原告らは、本件安全審査において、金井式及び松田式を用い、またいわゆる大崎
の方法に基づいて基準地震動作成のための応答スペクトルの策定を審査したこと
は、十分保守的なものではなく、自然の地震波がこれを上回る可能性があるから、
不合理である旨主張する。
(1) 松田式について
(イ) 原告らは、松田式が誤差を内包するものであり、単なる目安でしかなく、
合理的な式とはい
えない旨主張し、その根拠として、①活断層による断層線が全て地表に表れるとき
限らず、断層線が短く評価されがちであり、現実の地震によって地表に現れた断層
線の長さを松田式に適用した場合、地震規模の想定が過小評価となること、②松田
式自体に大きな誤差が含まれること、③松田式を作成した松田時彦自身によって
「新松田式」が提案されていることを挙げる。
(ロ) しかし、①の点については、本件安全審査においては、前記(一、2、
(一)、(2))のとおり、地表に現れている部分だけではなく、地質学的見地等
から、地下の地質構造も推定した上で活断層の長さの妥当性を評価し、その長さを
松田式に当てはめており、原告らの主張するように、地表に現れている部分のみを
断層線と評価しているわけではないから、原告らのこの点についての主張はその前
提を欠くものである。
(ハ) ②の点については、乙ハ一六によれば、松田式は、断層の長さとその断層
が引き起こす可能性のある最大のマグニチュードを推定するために提案された経験
式であるが、他方で、断層の長さとその断層が引き起こす可能性のある最大のマグ
ニチュードの関係について、保守的に評価することまでは目的としていないことが
認められる。したがって、当該断層が引き起こす地震が松田式により算出された最
大マグニチュードを超える大きさのものとなる可能性は否定できない。
 しかし、弁論の全趣旨によれば、松田式は、本件原子炉施設を始め、他の原子炉
施設においても活断層による地震のマグニチュードを算出する際に有用な経験式と
して、「新松田式」が提案された後も用いられていることが認められる。
 また、①前記(一、2、(二)、(2))のとおり、設計に用いる基準地震動の
模擬地震波(最大速度振幅はS1が一九・○カイン、S2が二二・○カイン)は、
最強地震及び限界地震から求められた基準地震動の応答スペクトル(最大速度振幅
はS1が一三・八カイン、S2が一八・二カイン)を下回らないようにいわば拡幅
して作成されていること、②乙ハ一七及び乙ハ一八によれば、耐震設計において本
件原子炉施設の床応答スペクトルを作成するに当たっては、適切な減衰定数を定め
て求めた床応答スペクトルに対し、スペクトルが右下がりにある周期範囲ではスペ
クトルを右側、スペクトルが左下がりにある周期範囲では左側にそれぞれ一〇パー
セント平行移動させるなどの方法でスペ
クトルの拡幅を行って安全側の地震力設定となるようにしていると認められるこ
と、③前記(一、7、(三)、(2))のとおり、Asクラスの建物、構築物につ
いては、常時作用している荷重及び運転時に作用する荷重と基準地震動S2による
地震力とを組み合わせ、その結果発生する応力に対して建物、構築物の終局耐力に
妥当な安全余裕を持たせるように設計し、Asクラスの機器、配管については、通
常運転時、運転時の異常な過渡変化時及び事故時に生じるそれぞれの荷重と基準地
震動S2による地震力を組み合わせ、その結果発生する応力に対して構造物が局部
的に降伏して塑性変形する場合でも、過大な変形、亀裂、破損等が生じることによ
ってその施設の機能に影響を及ぼすことがないように設計されること、すなわち、
原子炉冷却材バウンダリや制御棒駆動機構等、本件原子炉施設の安全上特に重要な
施設については、工学的見地から発生することを予期することが適切と考えられる
地震を超える地震に対し、弾性の範囲を超えて施設に変形等が生じるに至ったとし
ても、放射性物質の封じ込め等の当該施設に期待される安全機能が確保できるよ
う、十分な余裕を持たせて設計されると認められることからすれば、本件原子炉施
設の耐震設計は、基準地震動の策定から個別具体的な耐震設計までの全体において
保守性を確保するものということができる。
 そうすると、松田式に誤差があるとしても、右誤差は、右の基準地震動の策定や
個別具体的な耐震設計における保守性の確保によって吸収することが相当程度可能
というべきであるところ、松田式の適用に当たって、現実の地震との間で右保守性
の確保によっては吸収することのできないような多大な誤差が生じると認めるに足
りる証拠はない。
 したがって、松田式に誤差が含まれることから、直ちに本件原子炉施設28の耐
震設計に関する本件安全審査の結果を不合理であるということはできない。
(ニ) ③の点については、「新松田式」とは、松田時彦が、平成七年六月、最近
の検討結果として、二本の直線で表される活断層の長さとそれによる地震のマグニ
チュードとの関係式を示したものであり、原告らは、これによると甲楽城断層のマ
グニチュードは大きくなる旨主張する。しかし、前記のとおり、松田式は、本件原
子炉施設を始め他の原子炉施設における活断層による地震のマグニチュードを算出
する際に有用な式として、「新松
田式」が提案された後も用いられているが、これに対して、「新松田式」は策定根
拠が全く明らかにされていない。そうすると、「新松田式」が策定されたことから
直ちに松田式による甲楽城断層のマグニチュードの評価が過小評価であるというこ
とはできない。
(ホ) したがって、原告らのこの点についての主張は理由がない。
(2) ②金井式について
(イ) 金井式の妥当性について
 原告らは、金井式の作成の基礎となった観測データはマグニチュード四・○から
五・一の地震のものであるから、マグニチュード七以上の大規模な地震に適用する
ことはできず、また、遠距離の地震の場合、金井式の計算値は、実測値の四分の一
から五分の一にしかならないとして、金井式を適用した本件原子炉施設の耐震設計
では耐震安全性は確保されない旨主張する。
 しかし、一般に、地震動の水平方向における最大速度振幅は、実測結果に基づい
た経験式によって定めることができるとされており、弁論の全趣旨によれば、金井
式は、本件原子炉施設を始め原子炉施設における解放基盤表面上での基準地震動策
定に際して用いられ、現在も広く活用されている有用な経験式である。
 また、乙ハ一五によれば、金井式は、日本海中部地震(マグニチュード七・
七)、宮城県沖地震(マグニチュード七・四)、根室半島沖地震(マグニチュード
七・四)及び十勝沖地震(マグニチュード七・九)の各地震について、地震の震源
及び観測点が共に日本列島の太平洋岸沖にある場合は地震加速度の良い推定を与
え、震源が太平洋岸又は日本海岸の沖合いずれにあっても、観測点が日本海側の場
合は距離減衰の傾度が大きく、おおよそ震源距離一〇〇キロメートル以上の遠距離
になると計算値は実測値より大きくなるとされていることが認められる。
したがって、マグニチュード七以上の地震、あるいは震央距離一〇〇キロメートル
以上の遠くの地震についても、金井式は適用し得るものというべきであるから、原
告らのこの点についての主張は理由がない。
(ロ) 金井式の適用範囲について
 原告らは、金井式の基礎となったデータは、本件原子炉施設の基礎岩盤よりかな
り硬い岩盤上の観測データに基づいているから、金井式を本件原子炉施設に適用す
ることはできない旨主張し、甲ニ三の二(証人P4調書二)二一丁表にはこれに沿
う証言がある。
 しかし、乙ハ一五によれば、金井式作成の基礎となった観測データは、日立鉱山
の地下三〇〇メートルの、縦波速度が毎秒約五・五キロメートル、そこから推定さ
れる横波速度が毎秒約三キロメートルの岩盤上のものとされていることが認められ
るが、乙ハ九によれば、その後、昭和四〇年の松代群発地震の際、岩盤表面上にお
ける地震動の観測記録が得られたことから、その地震動データについても考慮が払
われ、現在では、金井式は、解放基盤表面上の地震動の強さを推定する式としてふ
さわしいものとされていることが認められる。
 そして、前記(一、3、(二)、(3))に加え、乙一六・六―三―三六ないし
四〇頁によれば、本件安全審査においては、本件原子炉施設の基礎岩盤は堅硬、均
質で相当な広がりのある解放基盤表面であることを確認したことが認められるか
ら、金井式を本件原子炉施設の耐震設計に用いることに不合理な点はない。
 したがって、原告らのこの点についての主張は理由がない。
(ハ) 金井式の適用限界について
 原告らは、金井式には、限界距離(原告らは、マグニチュード七の場合は一三・
六キロメートルであると主張する。)内の地震には適用できないから、右限界距離
内の甲楽城断層(マグニチュード七・○、震央距離一一・五キロメートル)から想
定される地震に金井式を適用したのは不合理である旨主張する。
 しかし、原告らの主張する限界距離の概念が学説上受け入れられていると認める
に足りる証拠はない。また、限界距離の概念を採用した場合、限界距離内での最大
速度振幅をいかに算定するのか、そもそも不明である(甲ニ四の二(原告本人P5
調書二)三八、三九頁によれば、限界距離までは金井式を適用し、限界距離内では
わずかずつ最大速度振幅が大きくなるとするか、断層モデルという別のモデルを使
用するようであるが、その度合いや具体的な適用方法は明らかでない。)。
 また、甲ニ四の二(原告本人P5調書二)四五頁によれば、甲楽城断層に金井式
をそのまま適用する場合(乙ハ九によれば、大崎の方法では、近傍の地震について
は、距離が近づくにつれて最大加速度が増大するといった関係が成立しないことか
ら、震央域という概念を用い、震央域の外縁部分における最大速度振幅を金井式に
求め、震央域の内部においては、一定値をもって評価することが行われているとこ
ろ、甲楽城断層のマグニチュード七・○の場合は、震央域外縁距離は一〇キロメー
トルとされ、震央距離が一〇キロメートルまで
の範囲では金井式を用いて最大速度振幅を求め、それ以下の距離では、常に震央距
離一〇キロメートルにおける最大速度振幅によって評価するが、甲楽城断層は震央
距離が一一・五キロメートルであるから、金井式をそのまま適用することにな
る。)と、原告らの主張する限界距離の考えに立つた場合とで、求められる最大速
度振幅の値に有意な差が生じることはないものと認められる。
 したがって、本件安全審査において甲楽城断層による地震に金井式を適用したこ
とが不合理であるということはできず、原告らのこの点についての主張は理由がな
い。
(ニ) 金井式の誤差について
 原告らは、金井式の誤差は少なくとも二・五倍程度ある旨主張し、その根拠とし
て、田中貞二の「金井式に関する調査」と題する論文(甲ハ五五)のデータを基に
計算した結果と、甲ハ九の図を指摘する。
 しかし、原告らの指摘する田中論文(甲ハ五五)には、金井式の誤差について、
マグニチュードの誤差を考慮しなければ平均値に対する一σの変動幅は約○・八四
倍から一・二〇倍、マグニチュードの誤差のみを考慮した場合の平均値に対する一
σの変動幅は約○・六四倍から一・五七倍と記載されているのであって、二・五倍
程度の誤差が生じるという記載はない(なお、原告らは、乙ニ四の一(証人P2調
書一)添付④の、一σの範囲にデータのある確率は○・六八二七、二σの範囲にあ
る確率は○・九五四五、三σの範囲にある確率は○・九九七三であるとの記載か
ら、右田中論文のマグニチュードの誤差のみを考慮した場合の「一σは約○・六四
から一・五七」の数字を三倍して三σを求めると約二・五倍になる旨主張するが、
右添付④の平均値に対する一σの変動幅は正規分布についてのものであって、金井
式における震央距離及びマグニチュードと地震動の最大速度振幅の関係が正規分布
になるとの証拠は全くないから、右は原告らの誤解によるものと思われる。)上、
そのような実例があるとの証拠はなく、また、甲ハ九の図は、説明文中に、「この
測定点がどのような場所を選んで設置されているかははっきりしない。」と記載さ
れているところからみて、岩盤上の測定結果ではない可能性があるから、右を直ち
に金井式による算出結果と対比することは相当でないから、金井式の誤差が少なく
とも二・五倍であると認めるに足りる証拠はないというべきである。
 そして、前記(イ)のとおり、金井式は、震
源が太平洋岸又は日本海岸の沖合いずれにあっても、観測点が日本海側の場合はお
およそ震源距離一〇〇キロメートル以上の遠距離になると計算値は実測値より大き
くなるとされていることが認められるのであって、金井式は日本海岸にある本件原
子炉施設に関しては保守的な計算式ということができる。
 もっとも、乙ハ九によれば、金井式は、茨城県の日立鉱山地下三〇〇メートルの
坑道内で得られた地震観測記録等に基づく実験式を、近距離まで適用可能なものに
改定したものであるが、岩盤上での震源距離及びマグニチュードと最大速度振幅と
の関係について保守的に評価することまでは目的としていないことが認められる。
したがって、田中論文が指摘するような誤差をもって、現実にある断層で起きた地
震の最大速度振幅が、金井式により算出された最大速度振幅を超える可能性がある
ことは否定できない。
 しかし、金井式は、前記(イ)のとおり、岩盤における最も確からしい地震の影
響を評価する際に有用な経験式として、現在でも広く活用されているものであり、
また、前記((1)、(ハ))のとおり、原子炉施設の耐震設計は、基準地震動の
策定から個別具体的な耐震設計までの全体において保守性を確保する体系を採用し
ているといえる。したがって、金井式に誤差があるとしても、右誤差は、右の基準
地震動の策定や個別具体的な耐震設計における保守性の確保によって吸収すること
が相当程度可能というべきであるところ、金井式の適用に当たって、現実の地震と
の間で右保守性の確保によっては吸収することのできないような多大な誤差が生じ
ると認めるに足りる証拠はない。
 したがって、金井式に誤差が含まれることから、直ちに本件原子炉施設の耐震設
計に関する本件安全審査の結果を不合理であるということはできないから、原告ら
のこの点についての主張は理由がない。
(3) 大崎の方法について
(イ) 実地震動の包絡について
原告らは、大崎の方法により求められる基準地震動の応答スペクトル(大崎スペク
トル)は、すべての地震動を包含するものではないから、実地震動によって耐震設
計で想定された以上の力が加わるおそれがある旨主張する。
 しかし、乙ハ九によれば、「耐震設計審査指針」の解説の一部とすることを目的
に作成された「原子力発電所設計用の基準地震動評価に関するガイドライン」にお
いて、大崎スペクトルと実地振動スペクトルとの差が数
量的に比較されているが、これによると、大崎スペクトルは実地震動スペクトルを
ほぼ包絡しており、大崎スペクトルがわずかながら実地震動スペクトルを下回って
いるのは、マグニチュード六の遠距離地震に適用される標準スペクトルについて周
期〇・〇二ないし〇・一〇秒の周期範囲と、マグニチュード七の中距離地震に適用
される標準スペクトルについて○・〇二ないし○・一三秒の周期範囲に限られるこ
とが認められる。
 そうすると、一般に、建物の床応答スペクトルは、建物の固有周期において最大
となるところ、甲ハ五二の添付⑭及び甲ニ四の一(原告本人P5調書一)五六頁、
五七頁によれば、本件原子炉施設の原子炉建物の固有周期は約○・二秒であると認
められるから、前記各周期範囲における大崎スペクトルと実地震動スペクトルとの
わずかなスペクトル強度の差が、本件原子炉施設の原子炉建物の床応答スペクトル
に及ぼす影響は極めて小さく、耐震設計上問題となるものではないというべきであ
る。
 したがって、原告らのこの点についての主張は理由がない。
(ロ) 安全余裕について
 原告らは、大崎の方法には安全余裕がないから、右床応答スペクトルの示す加速
度が想定以上に及ぶ可能性があり、実地震動によって耐震設計で想定された以上の
力が加わるおそれがある旨主張する。
 しかし、乙ハ九によれば、大崎スペクトルは、マグニチュード六の遠距離地震に
適用される標準スペクトルについて周期○・〇二ないし○・一〇秒の周期範囲と、
マグニチュード七の中距離地震に適用される標準ス。ベクトルについて○・〇二な
いし○・一三秒の周期範囲を除いて、実地震動スペクトルを上回っており、この限
りでは安全余裕があることが認められる。
 また、前記((1)、(ハ))のとおり、床応答スペクトルを作成するに当たっ
ては、適切な減衰定数を定めて求めた床応答スペクトルに対し、スペクトルが右下
がりにある周期範囲ではスペクトルを右側、スペクトルが左下がりにある周期範囲
では左側にそれぞれ一〇パーセント平行移動させるなどの方法でスペクトルの拡幅
を行って安全側の地震力設定となるようにしているなど、本件原子炉施設の耐震設
計は、基準地震動の策定から個別具体的な耐震設計までの全体において保守性を確
保するものであり、基準地震動の模擬地震波の作成等の場面で保守的な想定をして
いる。
 そして、弁論の全趣旨によれば、大崎の方法は、ほぼ解放基盤上と考えられる場
所において実測された地震動特性を整理し、工学的検討を加えて標準化した応答ス
ペクトルであり、本件原子炉施設を始め他の原子炉施設の耐震設計においても有用
な方法として現在でも広く用いられていることが認められる。
 このようにみると、大崎の方法には安全余裕が十分にはないとしても、そのこと
から直ちに、本件原子炉施設の耐震設計に従前の大崎スペクトルを用いたことが合
理性を失うものではないというべきである。
 したがって、原告らのこの点についての主張は理由がない。
(ハ) 修正大崎スペクトルについて
 原告らは、長周期側の地震動をより大きく見積もる一九九四年版の大崎スペクト
ルが発表されたことにより、従前の大崎スペクトルは妥当性を失ったから、これを
用いて行われた本件原子炉施設の耐震設計には不合理である旨主張する。
 しかし、甲ハ五七によれば、修正大崎スペクトルは、作成者の大崎順彦自身が、
一般の土木・建築構造物用として位置づけていることが認められ、右修正大崎スペ
クトルは、剛構造の原子力発電所よりも固有周期が長い建物等に適用することを予
定したものというべきであって、原子力発電所に適用されるべきものとはいえな
い。また、前記(イ)のとおり、本件原子炉施設の原子炉建物の固有周期は短周期
であるから、長周期側の地震動を大きく見積もる修正大崎スペクトルによって本件
原子炉施設の耐震設計に従前の大崎スペクトルを用いたことが合理性を失うもので
はない。
 したがって、原告らのこの点についての主張は理由がない。
(ニ) 兵庫県南部地震について
 原告らは、兵庫県南部地震の際に神戸大学のトンネル内で観測された地震動の応
答スペクトルが大崎スペクトルを長周期側で上回ったことから、大崎の方法は合理
性を失った旨主張する。この点、乙ハ九によれば、大崎スペクトルは、露出した岩
盤表面上ないしはごく岩盤表面に近い箇所、すなわちほぼ解放基盤表面上と考えら
れる箇所に設置された地震計によって観測された実地震動記録を基に作成されたも
のであることが認められる。
 しかし、甲ハ六〇によれば、神戸大学で観測された地震動は、花崗岩上に厚さ
一・三メートルの埋戻土又は表層土があり、さらに、その上の厚さ九五センチメー
トル上のコンクリート床上に設置された地震計によるものであって、解放基盤表面
上と考えられる箇所に設置された地震計によるものでは
ないことが認められ、また、乙ハ九によれば、大崎スペクトルは、横波速度の値が
ほぼ毎秒〇・七ないし一・九キロメートルまでの範囲の堅さの岩盤に対してよく適
用するとされていることが認められるのに対し、甲ハ六〇によれば、神戸大学に設
置された地震計の直下九五センチメートルから二二五センチメートルまでの範囲に
ある埋戻土又は表層土の横波速度は、毎秒〇・二四キロメートル程度であることが
認められる。
 そうすると、神戸大学の地震計設置箇所が大崎の方法の前提となる解放基盤表面
といえないことは明らかであるし、兵庫県南部地震の際に、神戸大学で観測された
最大速度振幅が大きな値を示したのは、埋戻土や表層土といった表層地盤の増幅等
の影響によるものと考えられており(甲ハ六〇)、表層地盤を取り除いて岩盤に直
接設置されている本件原子炉施設をこれと同列に論じることはできないから、右神
戸大学で観測された地震動によって大崎スペクトルの妥当性が失われるものではな
い。
 さらに、地震動の応答スペクトルが、大崎スペクトルを長周期側で上回ったこと
については、前記(イ)のとおり、本件原子炉施設の建物及び構築物は剛構造であ
り、その固有周期は約〇・二秒程度であるから、本件原子炉施設の建物及び構築物
が長周期側の地震動との共振によって大きな影響を受けるということはできない。
 したがって、原告らのこの点についての主張は理由がない。
(三) 構造計算について
 原告らは、「設計及び工事の方法の認可申請書」添付の構造計算書中、ガードベ
ッセルの耐震性に関する応力評価の中で、「下部サポート外面」における「一次応
力+二次応力の判定」の欄において、求められた応力値(三三・三)がかっこ内の
値(三〇・二)を超えているにもかかわらず、結論において「地震時に発生する各
応力は許容値を満足しており、安全である。」としていることは、誤りである旨主
張する。
 しかし、乙ハ一一によれば、右の応力値は、地震動のみによる一次応力と二次応
力とを加えて求めた応力の最大値と最小値との差を示すものであり、右の差すなわ
ち変動値が設計降伏点(SY)の二倍以下であれば疲れ解析は不要であるが、二S
Yを超えるときは弾塑性解析により求められる応力値を用いて疲れ解析を行うこと
が必要となるものであるところ、被告は、右の変動値(三三・三)が判定値(三
〇・二)を超えたため、疲れ解析を実施し、疲れ累積
係数が〇・〇〇一であり、許容値の一・〇以下であることを確認し、許容値を満足
すると判断したことが認められる。
 なお、甲ニ四の二(原告本人P5調書二)六一ないし六四頁、六六頁、六七頁に
は、右判定値を超えた場合に疲れ解析をすることは適切でなく、右判定基準自体が
誤りである旨の供述があるが、乙ハ一七及び乙ハ一九によれば、疲れ解析は、地震
時の繰り返し荷重によって応力が繰り返し構造物にかかり、破損(疲労破損)に至
ることを防止するために、「発電用原子力設備に関する構造等の技術基準」(昭和
五五年通商産業省告示五〇一号)や原子力発電所耐震設計技術指針(社団法人日本
電気協会)に基づいて行われる解析であることが認められ、右は疲労強度の点から
材料の健全性を検討するものであるから、右判定基準は合理的なものということが
できる。
 したがって、原告らのこの点についての主張は理由がない。
四 まとめ
 以上のとおり、本件安全審査においては、調査審議の結果、本件原子炉施設の立
地条件及び地震に係る安全性について、本件原子炉施設が具体的審査基準に適合
し、その基本設計ないし基本的設計方針において、本件原子炉施設の立地条件及び
本件原子炉施設の周辺において発生するおそれのある地震を考慮しても、本件原子
炉施設の安全性を確保することができ、原子炉等による災害の防止上支障がないも
のとしているが、右調査審議及び判断の過程に、重大かつ明白な瑕疵といえるよう
な看過し難い過誤、欠落があるとは認められない。
第四 本件原子炉施設の安全設計
一 本件安全審査の内容
乙 七ないし一〇、乙一四の一ないし三、乙一六、乙二二、乙二三、乙イ六並びに
弁論の全趣旨によれば、本件原子炉施設の安全設計についての本件安全審査の内容
について、次のとおりと認められる。
1 原子炉及び計測制御系
(一) 炉心設計
(1) 核設計
(イ) 本件安全審査においては、核設計手法の妥当性、反応度制御性等について
検討し、炉心の核設計において、高速中性子を利用した増殖炉の核特性を考慮し
て、次の事項を満足するか否かについて審査した。
(a) 運転に伴う反応度の変化を安定に制御することができると共に、最大の反
応度効果を有する制御棒が完全に引き抜かれた状態であっても常に炉心を臨界未満
にできること。
(b) 通常運転時及び運転時の異常な過渡変化時において、プラントの各系統と
あいまって、燃料の許容設
計限界を超えないこと。
(c) すべての運転範囲で急速な固有の負の反応度フィードバック特性を有する
設計であること。
(ロ) そして「本件安全審査においては、次の事項を確認した。
(a) 核設計手法は、先行炉である高速実験炉「常陽」の手法と基本的には同じ
であり、モーツァルト、FCA及びZPPR臨界実験解析等により、その妥当性が
確認されている。
(b) 本件原子炉施設の反応度制御は、調整棒と後備炉停止棒からなる制御棒に
よって行われるが、調整棒は、原子炉を運転するために必要な出力補償反応度、燃
焼補償反応度等を制御する機能を有しており、運転に伴う反応度変化を安定して制
御できる設計とされる。
 また、最も反応度効果の大きい調整棒一本が完全引抜位置に固着して挿入できな
い場合でも炉心を臨界未満にでき、かつ、臨界未満を維持できる設計となってい
る。更に、調整棒による原子炉停止系が不動作の場合でも、後備炉停止棒により炉
心を臨界未満にし、維持できる設計とされる。なお、初装荷炉心においては、固定
吸収体を半径方向ブランケット領域再内層に装荷することによっても過剰反応度を
抑制することができる設計とされる。
(c) 炉心燃料領域は、内側炉心と外側炉心の二領域に分割され、外側炉心にプ
ルトニウム富化度の高い燃料集合体を装荷することによって、出力分布の平担化を
図っている。本件原子炉施設は、後記(第六、一、4)のとおり、運転時の異常な
過渡変化時においても、プラントの各系統とあいまって、燃料の許容設計限界を超
えることはない。
(d) 本件原子炉施設は、ドップラ係数、冷却材温度係数等を総合した固有の負
の反応度フィードバック特性を有しており、後記のとおり、未臨界状態からの制御
棒の異常な引き抜き等の運転時の異常な過渡変化時においても、急激な出力上昇を
軽減できる。
(e) 本件原子炉施設の中性子エネルギー範囲では、核分裂生成物が大きな吸収
断面積を有しないので、キセノンによる中性子束分布の空間的振動は発生せず、炉
心内の出力分布は安定である。
(ハ) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の核設計は妥当であると判断した。
(2) 熱流力設計
(イ) 本件安全審査においては、熱流力設計に用いる出力分布、サブチャンネル
間の熱的混合効果、冷却材流量配分について検討し、炉心の熱流力設計が、通常運
転時はもちろん、運転時
の異常な過渡変化時においても、燃料の許容設計限界を超えないように、また、ナ
トリウムの沸騰による過大な反応度添加を防止できるように、次の事項を満足する
か否かを審査した。
(a) 燃料最高温度はプルトニウム・ウラン混合酸化物の融点未満であること。
(b) 運転時の異常な過渡変化時における燃料被覆管肉厚中心最高温度は八三〇
℃以下であること。
(c) 冷却材温度は沸点未満であること。
(d) 定格出力時の炉心燃料被覆管肉厚中心最高温度は六七五℃以下であるこ
と。
(ロ) そして、本件安全審査においては、次の事項を確認した。
(a) 炉心内の出力分布は、燃料の燃焼状態、制御棒の挿入状態により変化する
ため、各流量領域ごとにそれらの状態を考慮して最も発熱量の大きくなる状態での
値を求め、熱流力設計用の出力分布としている。
(b) 燃料集合体内の隣接するサブチャンネル間の熱的混合割合を与える渦拡散
係数については、実機寸法の模擬燃料集合体を用いたナトリウム流動試験結果に基
づき、十分な余裕を見込んだ設計値が用いられている。
(c) 冷却材の流量配分は、炉心燃料集合体装荷領域を八流量領域に、ブランケ
ット燃料集合体装荷領域を三流量領域に分割して行われ、各領域の流量は、燃料被
覆管最高温度がほぼ均一になるように決められている。流量調節機構及び炉心構成
要素各部の出力損失特性は、各種の水流動試験に基づいて評価されており、その妥
当性が確認されている。
(d) プルトニウム・ウラン混合酸化物の融点は、未照射燃料では約二七四〇℃
であるが、初期の燃焼効果を考慮し、燃料最高温度に対する設計上の上限値は二六
五〇℃と設定されている。燃焼が進んだ段階では融点は漸減するが、線出力密度減
少による燃料温度低下の方が大きくなるため、燃焼初期の燃料最高温度を二六五〇
℃に制限することにより、燃焼進行後の燃料最高温度に対しても融点に対する裕度
は十分確保できる。
 また、燃料最高温度の計算値は、定格出力時で約二三五〇℃であるが、後記(第
六、一、4)のとおり、運転時の異常な過渡変化時においても最高約二五六〇℃で
あるので、制限値よりも十分低い。なお、ブランケット燃料最高温度の融点に対す
る裕度は炉心燃料の場合に比べて十分大きい。
(e) 運転時の異常な過渡変化時における燃料被覆管肉厚中心最高温度の制限値
は、燃料被覆管がプレナムガスの内圧により破損しないよう、炉
外急速加熱試験データに安全余裕を考慮して設定されている。そして、後記(第
六、一、4)のとおり、運転時の異常な過渡変化時における燃料被覆管肉厚中心最
高温度は制限値より十分低い。
(f) 冷却材最高温度の計算値は、定格出力時で炉心燃料集合体において約六五
九℃、ブランケット燃料集合体において約六九六℃であり、後記(第六、一、4)
のとおり、運転時の異常な過渡変化時においても沸点より十分低い。
(g) 定格出力時の炉心燃料被覆管肉厚中心最高温度の制限値は、通常運転時に
おける内圧クリープが、所定の燃焼度まで燃料被覆管の健全性を保持するための機
械的強度の主要な制限因子となることから設定されたものであるところ、最高温度
の計算値は、定格出力時で六七五℃以下とされている。
(ハ) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の熱流力設計は妥当であると判断した。
(3) 動特性
(イ) 本件安全審査においては、動特性計算コードの妥当性及び運転中の設計負
荷変化に対する安定性について検討し、本件原子炉施設を安定に運転するために、
運転中の外乱に対して燃料の許容設計限界を超える状態となる過大な出力振動が生
じないように自己制御性を持たせているか否か、十分な減衰特性を持たせる設計で
あるか否か、たとえ出力振動が生じても、それを検出して抑制できる設計であるか
否かを審査した。
(ロ) そして、本件安全審査においては、動特性計算コードは、先行炉及び試験
施設における実測データとの比較検討により、妥当なものと確認されていること、
原子炉施設の安定性についても、プラスマイナス一〇パーセントのステップ状出力
変化、プラスマイナス五パーセント毎分のランプ状出力変化及び五〇パーセント負
荷喪失の設計負荷変化を与えた解析結果から、原子炉出力制御系、一次主冷却系及
び二次主冷却系の流量制御系、給水流量制御系、主蒸気圧力制御系等を含めた原子
炉施設の各系統の機能とあいまって、十分な減衰特性を有していることから、本件
原子炉施設は十分な安定性を有すると判断した。
(4) 機械設計
(イ) 本件安全審査においては被覆管及び燃料集合体の機械強度、変形、SUS
三一六相当ステンレス鋼の耐スエリング性、燃料集合体の流路閉塞防止対策等につ
いて検討し、燃料要素については、高温ナトリウム中で使用され、かつ燃焼度が高
いことから、燃料被覆管の内圧によ
るクリープ効果及びスエリング効果等を考慮した設計であるか否か、また、燃料集
合体については、変形等を考慮すると共に流路閉塞を防止する設計であるか否かを
審査した。
(ロ) そして、本件安全審査においては、次の事項を確認した。
(a) 炉心燃料要素の内圧は、ガスプレナムの容積を十分とることにより抑えら
れており、被覆管のクリープ寿命分数和は、燃焼進行後の核分裂生成ガースの放出
率を一〇〇パーセントとして評価した場合においても約〇・三であり、設計上の制
限値である一以下となる。被覆管に生じる応力は、SUS三一六相当ステンレス綱
の許容応力を十分に下回っており、また、全使用期間中に予想される各種出力変動
による被覆管の累積疲労も設計疲労寿命と比べて十分小さい。
(b) 燃料被覆管に生じる歪みは、主として高速中性子の照射によるスエリング
と照射クリープ変形に起因する外径増加で表すことができ、この外径増加は燃料集
合体の冷却機能維持の観点から七パーセント程度までが許容できると評価されてい
るところ、本件原子炉施設の炉心燃料要素は、核分裂生成ガスによる内圧やペレッ
トと被覆管の相互作用等、原子炉の運転中に生じる諸現象を考慮して評価した被覆
管の最大外径増加は、使用期間末期で約六パーセントとなる。
(c) 炉心燃料集合体を構成する各部品は使用期間中に予想される各種荷重に対
して十分な強度を有する設計とされる。炉心燃料集合体の変形については、熱膨
張、スエリング、照射クリープ等を考慮した列群としての評価をした結果、湾曲や
ふくれによって、スペーサ・パッド部以外でラッパ管同士が接触することはなく、
また湾曲拘束の反力も集合体の健全性上過大となることはない。
(d) 燃料集合体は、燃料要素内部の自由間隙を狭めることにより、被覆管の健
全性上問題となるような擦り痕の発生を抑える対策が講じられている。
(e)ブランケット燃料集合体については、集合体最高燃焼度が約五八〇〇MWD
/Tと低く、燃料要素の外径増加、内圧、疲労寿命等は十分大きな設計余裕を有す
る。また、ブランケット燃料集合体の機械的強度は炉心燃料集合体と同等であり、
その健全性は問題とならない。
(f) 本件原子炉施設においては、ワイヤスペーサを用いた標準の炉心燃料集合
体のほかに、代替型炉心燃料集合体としてグリッドスペーサを用いた炉心燃料集合
体が装荷される場合があるが、装荷位置と体数
を限定することにより、前記(イ)の設計方針が満足されるので、その使用に問題
はない。
(g) 燃料集合体は、輸送及び取扱中に受ける通常の荷重に対しても十分な強度
を有する設計とされる。
(h) 燃料集合体の流路閉塞防止対策として、炉心燃料集合体の場合、冷却材流
入孔がエントランスノズルの円筒側面上六方向に分散配置されており、これらが異
物によって同時に塞がることのない設計としている。  
 また、ブランケット燃料集合体については、連結管側のオリフィス板に十字型の
溝を設け、冷却材が四方向から流入する構造とすることにより、流路閉塞を防止す
る対策が講じられている。
(i) 炉心槽、炉心支持板、炉内構造支持構造物、炉心上部機構等の原子炉容器
内構造物は、通常運転時、運転時の異常な過渡変化時、地震時及び事故時の荷重に
対し、原子炉容器内の温度、圧力等を考慮して、必要な強度及び機能を保持する設
計とされる。
(ハ) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の炉心燃料集合体及びブランケット燃料集合体は、全使用期間にわたってその健
全性が保たれるとして、本件原子炉施設の炉心に関する機械設計は妥当であると判
断した。
(二) 計測制御系
(1) 制御室
(イ) 本件安全審査においては、中央制御室の事故時の接近性、居住性、主要ケ
ーブル、制御盤等の火災対策、中央制御室外原子炉停止装置の機能について検討
し、中央制御室には、通常運転時の操作はもちろん、事故時にも従事者が接近し、
又は留まり、事故対策操作が可能であるように、換気設計、遮へい設計、不燃設計
等が適切にされているか否か、また、中央制御室外の適切な場所から本件原子炉を
停止することができるか否かを審査した。
(ロ) そして、本件安全審査においては、次の事項を確認した。
(a) 中央制御室には、通常運転操作、事故対策操作に必要な原子炉制御系、安
全保護系、タービン設備、電気設備、放射線監視設備、プロセス計装設備等の計装
制御装置が設置され、集中的に監視及び制御を行えるように設計される。
(b) 中央制御室の換気系は他の換気系とは独立して設けられ、事故時には外気
との連絡口を遮断し、よう素除去フィルタを備えた閉回路循環方式が採用され、従
事者は内部被曝から防護される。外気との遮断が長期にわたり、室内の雰囲気が悪
くなった場合は、外気をよう素除去フィルタで浄化しなが
ら取り入れることができる。また、中央制御室の遮へいは、事故時においても従事
者が外部被曝から防護される設計とされる。右設計により、事故時に中央制御室へ
接近し、留まって必要な操作を行う場合の被曝線量は十分低くなるので、通常運転
時にはもちろん、事故時にも従事者が中央制御室に接近し、留まって必要な操作を
行える。
(c) 中央制御室のケーブル、制御盤等は、原則として不燃性、難燃性材料を用
い、独立性を考慮した設計がされ、火災が発生する可能性を極力少なくするよう配
慮されると共に、火災検知器及び消火設備が設けられ、更に運転員が常時在室して
いるので早期火災検知及び早期消火が行える。
(d) 中央制御室において、何らかの原因により留まることができない場合に
も、中央制御室から十分離れた場所に設けられた中央制御室外原子炉停止装置によ
り原子炉を停止し、引き続き安全な状態に維持することが可能なように設計され
る。
(ハ) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の制御室は所要の機能を果たす能力を有すると判断した。
(2) 計測制御設備泌
(イ) 本件安全審査においては、計測制御設備の種類、系統構成、機能等につい
て検討し、計測制御設備が、通常運転時及び運転時の異常な過渡変化時において、
炉心、原子炉冷却材バウンダリ、格納容器バウンダリ及びそれらに関連する系統の
健全性を確保するために必要なパラメータが、適切な予想範囲に維持、制御される
か否か、これらのパラメータについて、予想変動範囲内での監視が可能であるか否
か、事故時において、計測制御設備は、事故の状態を知り、対策を講じるために必
要なパラメータを監視できる設計であるか否かを審査した。
(ロ) そして、本件安全審査においては、次の事項を確認した。
(a) 本件原子炉施設における計測制御設備は、通常運転時に起こり得る設計負
荷変化及び外乱に対して監視及び制御を行えるよう設計される。また、炉心、原子
炉冷却材バウンダリ、格納容器バウンダリ及びその関連する系統の健全性を確保す
るため、中性子束、制御棒位置、一次、二次各主冷却系の温度、流量、原子炉容器
ナトリウム液位、原子炉格納容器床下雰囲気温度等の重要なパラメータの監視、制
御を行えるよう設計される。これらのパラメータは、原子炉出力制御系、主冷却系
流量制御系、給水流量制御系等の制御設備により適切な運転範囲
内に維持し制御できる設計とされる。
(b) 一次冷却材漏えいのような事故時においても、原子炉格納容器床下雰囲気
温度等を連続して監視及び記録できる設計とされる。
(c) また、一次アルゴンガス系及び原子炉格納容器内の放射性物質濃度につい
ては、事故時においてもサンプリングにより測定、監視できるよう設計される。そ
して、原子炉の停止状態及び炉心の冷却状態は、二種類以上のパラメータにより監
視あるいは推定できる設計とされる。
(ハ) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の計測制御設備の設計は妥当であると判断した。
(3) 電源設備
(イ) 電源設備は外部電源系、非常用所内電源系等から構成されている。
(ロ) 外部電源系本件安全審査においては、外部電源系は、二回線以上の送電線
により電力系統に接続されているか否かを審査し、本件原子炉施設は連繋する送電
線は二七五キロボルト送電線二回線を有するので、外部電源系との電力系統連繋の
多重性は確保されると判断した。
(ハ) 非常用所内電源設備
(a)本件安全審査においては、ディーゼル発電器及び直流電源の容量及び信頼
性、ケーブル等の火災対策について検討し、外部電源喪失時に、一系統が作動しな
いと仮定しても、燃料の許容設計限界及び原子炉冷却材バウンダリの設計条件を超
えることなく炉心を冷却できるか否か、また、一次冷却材漏えい事故が同時に起こ
ったと仮定しても、炉心の冷却と共に、原子炉格納容器並びに安全上重要な系統及
び機器の機能を確保できる容量と機能を有するか否かを審査した。
(b) そして、本件安全審査においては、次の事項を確認した。
(い) 非常用電源設備として、必要な容量を持つデイーゼル発電機三台、蓄電池
三組が各々分離独立した部屋に収納され、分離独立した非常用母線に接続される。
(ろ) ディーゼル発電機は、一次冷却材漏えい事故又は外部電源の喪失が発生し
た場合、原子炉を安全に停止させ又は工学的安全施設を動作させるのに必要な電力
を約一〇秒で供給できる設計とされる。
(は) ディーゼル発電機及び蓄電池は、適切な定期試験及び検査が行える設計と
される。
(に) 所内ケーブル、制御盤等の絶縁材料は、可能な限り不燃性又は難燃性の材
料が使用される。
(ほ) 本件原子炉施設の全動力電源喪失を想定した場合にも、原子炉は安全に停
止できる。この場合、原子炉は自動的に停止
し、全動力電源喪失の期間(三〇分程度)を通じ蓄電池を電源とする非常用照明、
原子炉計装及びプロセス計装により、必要な運転監視を行うことができる。
(c) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の非常用所内電源設備は、外部電源喪失と機器の単一故障を仮定しても、安全上
重要な系統及び機器が所定の機能を果たすために十分な電力を供給する能力を有す
ると判断した。
2 原子炉停止系、反応度制御系及び安全保護系
(一) 原子炉停止系
 本件安全審査においては、原子炉停止系の独立性、反応度停止余裕、制御棒落下
時間、信頼性等について検討し、原子炉停止系が、次の事項を満足するか否かを審
査した。
(イ) 少なくとも二つの独立した系を有する信頼性の高い設計であること。
(ロ) 少なくとも一つは、通常運転時及び運転時の異常な過渡変化時において、
燃料の許容設計限界を超えることなく、炉心を臨界未満にでき、かつ、低温状態で
臨界未満を維持できる設計であること。また、一つの系の不動作を仮定しても、炉
心を臨界未満にでき、かつ、低温状態で臨界未満を維持できる設計であること。
(ハ) 少なくとも一つは、事故時において炉心を速やかに臨界未満にでき、か
つ、低温状態で臨界未満を維持できる設計であること。
(三) 反応度効果の最も大きい制御棒が完全に炉心の外に引き抜かれて固着し、
挿入できない時でも、炉心を臨界未満にでき、かつ、低温状態で臨界未満を維持で
きる設計であること。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 原子炉停止系は、調整棒による主炉停止系及び後備炉停止棒による後備炉
停止系の独立した二つの系統が設けられる。
(ロ) 主炉停止系は、最も反応度効果の大きい調整棒一本が完全引抜位置のまま
挿入でぎない場合でも、低温状態において適切な余裕をもって臨界未満に維持でき
る。
(ハ) 仮に主炉停止系が不動作の場合であっても、後備炉停止系のみによって、
低温状態において適切な余裕をもって臨界未満に維持できる。
(二) 原子炉緊急停止時の制御棒挿入時間は、全ストロークの八五パーセント挿
入までを一ないし二秒としているが、この値は水中及びナトリウム中の落下試験に
よって十分満足されることが確認されている。
(ホ) 後記(第六、一、4及び同二、4)のとおり、運転時の異常な過渡変化時
においても、炉心特性とあいま
って、燃料の許容設計限界を超えることなく、原子炉を臨界未満にし、かつ、維持
できる。また、事故時においても原子炉を臨界未満にし、かつ維持できる。
(3) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
一設の原子炉停止系の設計は妥当であると判断した。
(二) 反応度制御系
(1) 本件安全審査においては、制御棒の制御能力、急激な反応度添加等につい
て検討し、反応度制御系は、負荷変動、温度変化、燃料の燃焼等によって生じる反
応度変化を調整し、所要の運転状態に維持することができると共に、その最大反応
度価値及び添加率から想定される反応度事故により原子炉冷却材バウンダリの破損
等が生じないような設計であるか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 本件原子炉施設の通常運転時における反応度制御は、調整棒によって行う
が、調整棒は、一〇本の粗調整棒と三本の微調整棒に分けられ、十分な反応度制御
能力を有する設計とされる。
(ロ) 微調整棒は、主として負荷変動による反応度変化の調整を、粗調整棒は主
として部分出力状態から低温状態までの温度変化及び燃料の燃焼に伴う反応度変化
の調整を行う設計となっており、両者の組合せによって所要の運転状態を維持でき
る。
(ハ) 急激な反応度添加については、原子炉容器内の圧力が大気圧に比べてそれ
程高くないので、制御棒飛び出しのような事象は起こり得ず、最大反応度価値を有
する制御棒のステップ状反応度添加を想定する必要はない。また、制御棒の連続引
き抜きによる反応度添加については通常運転時の制御棒引抜最大速度を制限するこ
とにより、かつ、駆動モータの最大駆動速度は電源と負荷の関係等から物理的に制
限されるため、後記(第六、一、4及び同二、4)のとおり、運転時の異常な過渡
変化時又は事故時の基準を超えるような過度な反応度添加率にはならない。
(3) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の反応度制御系の設計は妥当であると判断した。
(三) 安全保護系
(1) 本件安全審査においては、安全保護系の起動条件、多重性、独立性、計測
制御系との分離、運転時の異常な過渡変化時及び事故時の機能について検討し、安
全保護系が、次の事項を満足するか否かを審査した。
(イ) 運転時の異常な過渡変化時にその異常状態を検知し、原子炉停止系
等を自動的に作動させ、燃料の許容設計限界を超えないように設計されること。
 また、偶発的な制御棒引き抜きのような原子炉停止系のいかなる単一の誤動作に
対しても、燃料の許容設計限界を超えないように考慮された設計であること。
(ロ) 事故時には直ちにこれを検知し、原子炉停止系及び工学的安全施設を自動
的に作動させる設計であること。
(ハ) 通常運転時、運転時の異常な過渡変化時、保修時、試験時及び事故時にお
いて、その保護機能が喪失しないように、チャンネル相互を分離し、多重性を持た
せたチャンネル間の独立性を確保できると共に、駆動源の喪失等不利な状態になっ
ても最終的に安全な状態に落ち着くような設計であること。
(ニ) 計測制御系との部分的共用によって、安全保護系の機能を失わないよう
に、計測制御系から分離される設計であること。
(ホ)原則としてその機能を原子炉運転中に試験できる設計であること。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 安全保護系は、運転時の異常な過渡変化時に、中性子束及び一次主冷却系
流量等の変化を検出し、原子炉停止系を自動的に作動させ、プラントの各系統の機
能とあいまって、後記(第六、一、4)のとおり、燃料の許容設計限界を超えるこ
とはない。また、制御棒引き抜きのような原子炉停止系の単一の誤動作に起因する
炉心内の反応度又は出力分布の異常な過渡変化においても、原子炉停止系が作動し
て、燃料の許容設計限界を超えることはない。
(ロ) 安全保護系は、事故時に、中性子及び一次主冷却系流量、原子炉容器ナト
リウム液位等の異常状態を検出し、原子炉停止系及び補助冷却設備等の工学的安全
施設を自動的に作動させる設計とされる。
(ハ) 安全保護系は、安全保護機能を失う結果をもたらさないように、十分に信
頼性のある少なくともニチャンネルの安全保護回路が設けられ、更に、原子炉停止
系及び工学的安全施設を作動させるための検出器は、原則として「2 Out o
f 3」構成とし、多重性を持たせることにより、当該系を構成する機器又はチャ
ンネルの単一故障あるいは使用状態からの単一の取り外しを行っても安全保護機能
が損なわれない設計とされる。
(ニ) 安全保護系を構成するチャンネルは相互干渉が起こらないように、各チャ
ンネル毎に専用のケーブルトレイ、計器ラック等を設けると共に、各チヤンネル相
互を可能な限り物理
的、電気的に分離し、独立性を持たせる設計とされる。
(ホ) 安全保護系及び計測制御系の電源、検出器、ケーブル等は、原則として互
いに分離する設計とされる。安全保護系の一部から、計測制御系への信号を取り出
す場合には、信号の分岐箇所に絶縁増幅器を使用し、計測制御系の短絡、地絡又は
断線によって安全保護系に影響を与えることのない設計とされる。
(ヘ) 安全保護系による保護動作は、フェイルセイフ又は故障と同時に現状維持
とし、現状維持の場合には、同一の機能を持つ他の系統の保護動作が行えるように
することにより、駆動源の喪失、系の遮断等、不利な状態になっても最終的に安全
な状態に落ち着くように設計される。
(ト) 安全保護系は、原子炉運転中にも計測チャンネル及び論理回路トレインの
試験ができるように設計される。計測チャンネル及び論理回路トレインは、多重
性、独立性を持たせることにより、試験中でも残りのチャンネル及びトレインで保
護機能を果たせるように設計される。
(3) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の安全保護系の設計は妥当であると判断した。
3 原子炉冷却系
(一) 原子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリ
(2) 原子炉冷却材バウンダリ
(イ) 本件安全審査においては、通常運転時における原子炉冷却材バウンダリの
圧力及び温度、昇温、降温速度の妥当性、運転時の異常な過渡変化時及び事故時に
予想される熱的過渡変化に対する健全性、漏えい検出対策、急速な伝播型破断防止
対策、運転開始後における定期的な試験可能性について検討し、原子炉冷却材バウ
ンダリを構成する機器及び配管は、冷却材の漏えいや破損の発生する可能性が極め
て小さくなるよう考慮された設計であるか否か、通常運転時、運転時の異常な過渡
変化時及び事故時において、
 その健全性を確保すると共に、原子炉冷却材バウンダリの漏えい検出、破壊の防
止及び定期的な試験、検査ができる設計であるか否か、原子炉冷却材バウンダリの
健全性について審査した。
(ロ) そして、本件安全審査においては、次の事項を確認した。
(a) 冷却材は沸騰を防止するために加圧する必要がないので、原子炉冷却材バ
ウンダリの圧力は低い水準に保たれる。通常運転時の一次冷却材温度は、原子炉出
力制御系、主冷却系流量制御系、中間熱交換器による適切な除勲等により、設定値
を保つ
よう制御される。また、原子炉冷却材バウンダリについては、通常運転時の原子炉
起動、停止時の昇温、降温速度を適切に抑えることとしている。
(b) 外部電源喪失、制御棒の異常な引き抜き等の運転時の異常な過渡変化に対
しては、原子炉停止に至る安全保護回路が設けられるほか、原子炉冷却材バウンダ
リの過度の温度上昇を防止するため、ポニーモータによる循環路ポンプの低速運転
及び補助冷却設備による除熱等により、原子炉冷却材バウンダリの運転時の異常な
過渡変化時の最高温度は、後記(第六、一、4)のとおり、最高使用温度の一・四
倍又は六〇〇℃のいずれか低い方を超えることはない。
(c) 事故時において、原子炉冷却材バウンダリの温度が最も高くなるのは、後
記(第六、二、4)のとおり、燃料スランピング事故であるが、この事故時におい
ても、原子炉は自動停止し、原子炉冷却材バウンダリの温度は、最高使用温度の
一・六倍又は六五〇℃のいずれも超えることはない。また、蒸気発生器伝熱管破損
事故に代表されるナトリウム・水反応を伴う事象に対しては、二次主冷却系を設け
ることによってその影響を緩和するので、原子炉冷却材バウンダリの健全性が損な
われることはない。
(d) 原子炉冷却材バウンダリを構成する機器及び配管の使用材料としては、脆
性破壊のおそれがないオーステナイト系ステンレス鋼が使用され、内圧が低いこと
とあいまって急速な伝播型破断が防止される。また、原子炉容器の母材及び溶接部
等については、試験片を原子炉容器内に挿入し、中性子照射等による材料特性の変
化を監視できる設計とされる。
(e)原子炉冷却材バウンダリからの冷却材漏えいに対しては、バウンダリを構成
する機器及び配管にサンプリング型又は接触型ナトリウム漏えい検出器が設けら
れ、これらにより速やかに検出できるようにされる。更に、安全保護系としての原
子炉容器ナトリウム液位、原子炉格納容器床下雰囲気温度、ガードベッセル内漏え
いナトリウム液位及び原子炉格納容器床上放射能の測定によって冷却材漏えいを検
出できるようにされる。したがって、冷却材漏えいの速やかな検出が可能であり、
また、確実な検出が十分できる。
(f) 原子炉冷却材バウンダリとなる機器及び配管は、原子炉の運転開始後、重
要な部分に対し、供用期間中定期的に検査が行えるように、検査箇所へ検査機器等
を接近できるよう配置が考慮される。
(ハ) 本
件安全審査においては、以上の事項を確認したことから、本件原子炉施設の原子炉
冷却材バゥンダリの健全性は十分に確保されると判断した。
(2) 原子炉カバーガス等のバウンダリ
 本件安全審査においては、原子炉カバーガス等のバウンダリが、異常な原子炉カ
バーガスの漏えいやバウンダリの破損の発生する可能性が十分小さくなるよう考慮
された設計であるか否か、原子炉カバーガスのバウンダリの健全性を審査した。
 そして、本件安全審査においては、原子炉冷却材バウンダリと合わせて原子炉か
らの放射性物質の放散に対する閉じた障壁を形成する原子炉カバーガス等のバウン
ダリについては、原子炉施設の寿命中を通じて高い信頼性を得るように、適切な材
料選択、耐震設計等を行い、定格出力時の原子炉カバーガス圧力は十分低く抑える
設計とされることから、異常な原子炉カバーガスの漏えい又はバウンダリの破損の
発生する可能性は十分小さいとして、本件原子炉施設の原子炉カバーガス等のバウ
ンダリの健全性は十分確保されると判断した。
(二) 二次主冷却系(中間冷却系)
(1) 本件安全審査においては、通常運転時、運転時の異常な過渡変化時及び事
故時における熱の輸送能力、蒸発器又は過熱器における伝熱管破損時の二次冷却材
への水漏えいの対策、中間熱交換器の伝熱管破損時の二次冷却材中への一次冷却材
の漏えい防止対策について検討し、二次主冷却系は、通常運転時、運転時の異常な
過渡変化時及び事故時において、一次主冷却系からの熱を確実に水・蒸気系あるい
は補助冷却設備に輸送できる設計であるか否か、蒸発器又は過熱器における伝熱管
からの水漏えいが生じた場合であっても、その影響により重要な構築物等の安全機
能が失われることがない設計であるか否か、また、中間熱交換器伝熱管破損時に二
次主冷却系に一次冷却材が漏れ出すことのない設計であるか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 通常運転時には、回転数可変の主モータによる一次及び二次主冷却系循環
ポンプの運転を行い、一次主冷却系から二次主冷却系に伝えられた熱を蒸気発生器
を介して水・蒸気系に伝達できる設計とされる。
(ロ) 運転時の異常な過渡変化時及び事故時においても、原子炉が自動停止され
た後は、ポニーモータにより一次及び二次主冷却系循環ポンプの運転を行い、炉心
の崩壊熱及び他の残留熱は、一次主
冷却系、二次主冷却系の一部、補助冷却設備を用いて除去される設計とされる。 
   
(ハ) 二次主冷却系と水・蒸気系との境界となる蒸発器又は過熱器において伝熱
管の破損が生じると、二次冷却材のナトリウムと水との反応が生じるが、これに対
応するために、水漏えい検出設備を設け、二次冷却材のナトリウム中及び蒸気発生
器カバーガス中の水素濃度を監視する。小漏えい時には、検出設備からの漏えい警
報を受け、運転員の判断により水漏えい信号を発する。右信号により、蒸気発生器
の水・蒸気側の遮断、内部の水、蒸気の急速なブロー、二次主冷却系循環ポンプ主
モータのトリップ等の操作が自動で行われる。  
(ニ) 万一、多量のナトリウム・水反応が発生した場合は、蒸発器のカバーガス
圧力計又は蒸発器と過熱器のそれぞれに設けられる圧力開放板の開放検出器によっ
て検出し、前述と同様の操作が自動的に行われる。
(ホ) 蒸発器及び過熱器には、圧力開放板を介して、ナトリウム・水反応生成物
収納設備が備えてあり、万一多量のナトリウム・水反応が発生した場合でも、二次
主冷却系の過度の圧力上昇は防止される。
(ヘ) 二次主冷却系は、一次主冷却系より高圧に維持し、万一、一次主冷却系と
の境界となる中間熱交換器において伝熱管に破損が生じても、一次冷却材が二次冷
却材中に漏れ出すことのない設計とされる。なお、中間熱交換器伝熱管の破損によ
る二次冷却材の一次主冷却系への漏えいは、一次ナトリウムオーバフロータンク及
び二次ナトリウムオーバフロータンクの液位監視によって検知する。
(3) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の二次主冷却系の設計は妥当であると判断した。
(三) 残留熱除去に係る系統
(1) 本件安全審査においては、残留熱除去に係る系統の除熱能力及び信頼性に
ついて検討し、残留熱除去に係る系統が、原子炉停止時に、燃料の許容設計限界を
超えず、原子炉冷却材バウンダリの健全性を損なわないように、炉心からの核分裂
生成物の崩壊熱及び他の残留熱を除去できるか否か、また、一次冷却材漏えい事故
等の想定される事故に対して、燃料の重大な損傷を防止できるか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。誕
(イ) 炉心からの核分裂生成物の崩壊熱及び他の残留熱は、原子炉の通常停止直
後においては、一次主冷却系、二次主冷却
系を経て、蒸発器により除去され、発生蒸気は復水器により処理される。その後、
原子炉を低温停止状態に移行する段階においては、補助冷却設備空気冷却器により
大気に伝達することによって、熱除去が行われる。また、運転時の異常な過渡変化
時及び事故時の原子炉停止時には、核分裂生成物の崩壊熱及び他の残留熱は、一次
主冷却系、二次主冷却系の一部、補助冷却設備を経て、補助冷却設備空気冷却器に
よって大気に伝達され、原子炉冷却材バウンダリの健全性を損なうことなく、原子
炉を低温状態に移行できる設計とされる。
(ロ) 補助冷却設備は、一次主冷却系、二次主冷却系に対応して、三系銃から構
成され、補助冷却設備の動的機器は一次及び二次主冷却系循環ポンプのポニーモー
タと共に非常用電源にも接続されている。また、補助冷却設備は、一次主冷却系設
備及び二次主冷却系設備とあいまって、自然循環により核分裂生成物の崩壊熱及び
他の残留熱を除去できる設計とされる。
(ハ) 後記(第六、二、4、(二)、(5))のとおり、一次冷却材漏えい事故
に対しても、ガードベッセル等により原子炉冷却材を確保し、補助冷却設備による
一系統の運転によっても必要な熱除去能力を有する設計とされる。
(ニ) 主冷却系の一部が使用できないメンテナンス時の核分裂生成物の崩壊熱及
び他の残留熱の除去においては、複数の補助冷却設備、あるいは補助冷却設備及び
メンテナンス冷却系により大気に伝達することによって熱除去が行える設計とされ
る。メンテナンス冷却系の動的機器は非常用電源にも接続される。
(ホ) 残留熱除去に係る系統の信頼性を評価した結果、残留熱除去機能の喪失に
至る確率は十分に低く、系統は高い信頼性を有する。
(3) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の残留熱除去に係る系統の設計は妥当であると判断した。
(四) 冷却水系
 本件安全審査においては、冷却水系の熱除去能力等について検討し、冷却水系
が、通常運転時、運転時の異常な過渡変化時及び事故時に、重要な熱構築物等の全
熱負荷を最終的な熱の逃がし場に確実に伝達できるか否かを審査した。
 そして、本件安全審査においては、重要な構築物等の冷却水系として、原子炉補
機冷却水設備及び原子炉補機冷却海水設備が設けられること、原子炉補機冷却水設
備は、原子炉補機等と原子炉補機冷却水を冷却する原子炉補機冷却海水設備との
間にある中間冷却設備であり、制御用空気圧縮機水中燃料貯蔵設備等の除熱を行う
設計とされ、原子炉補機冷却海水設備は、原子炉補機冷却水熱交換器、ディーゼル
発電機、機器冷却設備冷凍機、コンクリート冷却設備冷凍機及び空調用冷凍機の除
熱を行い、最終的な熱の逃がし場である海水に熱を放出する設計とされること、こ
れらの冷却水系は独立性及び多重性を有し、また動的機器は非常用電源にも接続さ
れることを確認し、本件原子炉施設の冷却水系は、通常運転時、運転時の異常な過
渡変化時及び事故時においてその機能を果たし得るものであり、その設計は妥当で
あると判断した。
4 原子炉格納施設
(一) 原子炉格納容器及び付属設備
(1) 本件安全審査においては、原子炉格納容器の設計が、次の事項を満たすか
否かを審査した。
(イ) 原子炉格納容器は、想定される事故条件のもとでの圧力、温度に耐え、か
つ、その場合にも所定の漏えい率を超えないこと。
(ロ) 原子炉格納容器は、定期的に所定の圧力で原子炉格納容器全体の漏えい率
試験及び検査ができること。
(ハ) 原子炉格納容器は、電線、配管等の貫通部及び出入口の重要な部分の漏え
い率試験及び検査ができること。
(ニ) 原子炉格納容器のバウンダリは、通常運転時、運転時の異常な過渡変化
時、保修時、試験時及び事故時において、脆性的挙動を示さず、かつ、急速な伝播
型破断を生じないこと。
(ホ) 原子炉格納容器を貫通する配管系は、原子炉格納容器の機能を確保するた
めに必要な隔離能力を有すると共に、ベローを有する配管貫通部は、漏えい検出又
は漏えい試験ができること。
(ヘ) 原子炉格納容器を貫通する配管に設けられる隔離弁は、定期的な動作試験
が可能であり、かつ、弁の漏えい率が許容設計限界内にあることを確認できるこ
と。
(ト) 原子炉冷却材バウンダリに連絡するか、原子炉格納容器内に開口し、原子
炉格納容器内を貫通している各配管は、事故時に必要する配管及び計測配管のよう
な特殊な細管を除き、動力源の単一故障によっても自動隔離機能を喪失しない隔離
弁を設けること。
(4) 原子炉格納容器内側又は外側において閉じた系は、原則として、少なくと
も一個の自動隔離弁を実用上可能な限り原子炉格納容器に接近して設けること。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 本件原子炉施設の原子炉格納容器は、種々の条件を考慮し、最
高使用圧力〇・五キログラム毎センチメートルG、最高使用温度一五〇℃で設計さ
れるが、事故想定後原子炉格納容器内圧が負圧となった場合でも原子炉格納容器の
健全性を確保するため、原子炉格納容器設計外圧よりも小さい設定値で自動的に弁
を用いて外気を導入するバキュームブレーカが設けられる。
(ロ) 原子炉格納容器と外部遮へい建物との間の配管、エアロック等の格納容器
貫通部を含む区画はアニュラス部とし、事故時に原子炉格納容器から漏出する放射
性物質を保持するのに十分な気密構造とされる。
(ハ) 原子炉格納容器の漏えい率は、最高使用圧力、常温窒素雰囲気において1
%/d以下となる設計とされる。
(ニ) 原子炉格納容器は、定期的に漏えい率が設計値を超えないことを確認する
ために、全体漏えい率試験が行える設計とされる。(ホ) 原子炉格納容器を貫通
する電線、配管、エアロック等の重要な部分については、個々に試験が行える設計
とされる。また、原子炉格納容器を貫通する配管系は、事故条件のもとでの圧力、
温度に耐えられるように設計される。また、ベローを有する配管貫通部は、テスト
タップを取り付け、漏えい等試験が行える設計とされる。
(ヘ) 原子炉格納容器を貫通する配管系に設けられる隔離弁は、定期的な動作試
験ができる設計とされると共に、弁の漏えい等試験が実施できるように、テストタ
ップが設けられる。また、原子炉格納容器を貫通し、原子炉冷却材バウンダリに連
絡するか、原子炉格納容器内に開口する配管には、原則として、原子炉格納容器内
外にそれぞれ一つずつの自動隔離弁が設けられる。右隔離弁は、実用上可能な限り
原子炉格納容器に接近して設けられ、単一故障を想定しても所定の機能が失わない
ようにされる。これらの隔離弁は、一次冷却材漏えい事故時等に必要とされる配管
等を除いて、隔離信号により隔離される。
(ト) 原子炉格納容器を貫通している系統で隔離弁を設置していない配管は、事
故時にその機能を必要とする系統であり、バキュームブレーカ用格納容器床上圧力
計配管、安全保護系格納容器床上圧力計配管及び二次主冷却系配管である。両圧力
計配管は、事故時にその機能を必要とする計測用細管であって、内部にはシリコン
油が満たされており、かつ、原子炉格納容器、ハウンダリとして設計されることか
ら、特に隔離弁を設けておらず、二次主冷却系配管は、事故時に炉心崩壊熱等を除
熱する
のに必要な配管であって、原子炉格納容器の内側の配管は原子炉格納容器バウンダ
リとして設計され、原子炉格納容器外側も開口していない閉回路で、かつ、二次主
冷却材圧力は一次主冷却材圧力よりも高いことから、隔離弁を設けていない。
(4) 原子炉格納容器の内側において閉じた系には、原子炉格納容器外側に実用
上可能な限り原子炉格納容器に接近した位置に隔離弁が設けられる。
(リ) 原子炉格納容器は、耐震設計上Asクラスに属し、設計用限界地震による
地震力に対してその安全機能が保持できるように設計され、脆性的挙動及び急速な
伝播型破断を防止するために、原子炉格納容器本体及び貫通部は最低使用温度より
一七℃低い以上温度で破壊靭性試験を行い、これに適合する材料が使用される。
(3) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設の原子炉格納容器の設計は妥当であると判断した。
(二) アニュラス浄化系
(1) 本件安全審査においては、アニュラス部の負圧達成能力、微粒子用フィル
タユニットによるナトリウム・エアロゾル除去能力、よう素用フィルタユニツトに
よるよう素除去能力等について検討し、アニュラス循環排気装置が、原子炉施設の
破損、故障等に起因して、原子炉内の燃料の破損等による多量の放射性物質の放散
の可能性がある事故時において、原子炉格納容器からの漏えい気体中に含まれるよ
う素を除去し、現境に放出される放射性物質の濃度を減少させることができるか否
かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 本件原子炉施設のアニュラス循環排気装置は、それぞれ一〇〇パーセント
容量の微粒子用フィルタユニット、よう素用フィルタユニットが設置され、非常用
電源にも接続される循環排気ファン等から構成される二系統からなり、外部電源喪
失及び系統内の単一故障を想定しても、その機能を果たし得る設計とされる。
(ロ) アニュラス部は常時負圧に保たれているが、よう素用フィルタユニット
は、バイパスして排気することにより、バイパスラインからよう素用フィルタユニ
ットヘの系統切替えは八分以内に自動でできるように設計される。また、粒子用フ
ィルタユニットのナトリウムエアロゾル除去効率及びよう素用フィルタユニットの
よう素除去効率は九九パーセント以上となる設計とされる。この系統切替時間と除
去効率は、後記(第六、二、4
、第七、一、3及び同4)の解析結果からみても妥当である。
(ハ) アニュラス循環排気装置は、原子炉運転中でも、一系統ずつの起動試験及
び性能チェックが可能なように設計される。
(3) 本件安全審査においては、以上の事項を確認したことから、本件原子炉施
設のアニュラス循環排気装置の設計は妥当であると判断した。
5 燃料取扱い及び廃棄物処理系
(一) 燃料取扱い及び貯蔵設備
(1) 本件安全審査においては、燃料取扱い及び貯蔵設備の設計が、次の事項を
満たすか否かを審査した。
(イ) 燃料貯蔵設備は、適切な格納機能、貯蔵容量を有し、また、想定されるい
かなる場合でも未臨界性を有すること。
(ロ) 燃料取扱設備に対しては、適切な試験、検査ができると共に、燃料落下防
止対策が講じられていること。
(ハ) 使用済燃料貯蔵設備は、放射線遮へい、冷却材の冷却及び浄化並びに漏え
い防止及び検知機能を有し、想定される燃料落下時にも損傷しないこと。
(ニ) 燃料の取扱場所は、崩壊熱の除去能力の喪失に至る状態及び過度の放射線
レベルが検出でき、かつ、その事態を適切に従事者に伝えるか又は自動的に対処で
きること。
(2) そして、本件安全審査においては次の事項を確認した。
(イ) 新燃料貯蔵ラック、燃料池及び炉外燃料貯蔵槽の貯蔵ラックは、所定の位
置以外には燃料集合体を挿入できない構造とされ、各ラックのセルに5体ずつ適切
に収納される。
(ロ) 新燃料は、新燃料貯蔵ラック及び炉外燃料貯蔵槽に、使用済燃料は炉外燃
料貯蔵槽及び燃料池に貯蔵されるが、これらの貯蔵施設の容量は、新燃料貯蔵ラッ
クで約五〇体、炉外燃料貯蔵槽で約二五〇体、燃料池で約一四〇〇体であり、通常
運転時に必要となる新燃料及び使用済燃料の適切な容量を貯蔵できる設計である。
(ハ) 新燃料貯蔵室は、水が充満するのを防止するために排水口が設けられる
が、容量一杯の新燃料を貯蔵した状態で、貯蔵ラックが純水で満たされるという厳
しい異常状態を想定しても、実効増倍率は〇・九五以下に保たれる設計とされる。
また、新燃料貯蔵室には、水消火設備を設けない設計とされるが、いかなる密度の
水分で満たされた場合でも臨界未満になる設計とされる。
(ニ) 使用済燃料等を貯蔵する燃料池及び炉外燃料貯蔵槽の貯蔵ラックは、貯蔵
燃料の臨界を防止するために、適切な燃料集合体間距離を取ることにされており、
容量一杯の燃料を貯蔵し
ても、実効増倍率は〇・九五以下に保たれる設計とされる。
(ホ) 燃料取扱器等の安全上重要な機器は、定期的な試験、検査が可能な設計と
される。
(ヘ) 使用済燃料貯蔵設備の上は、使用済燃料輸送容器等の重量物が通過できな
いようになっており、また、燃料取扱設備は、取扱中の燃料集合体の落下を防止す
る対策がとられる。
(ト) 炉外燃料貯蔵槽は、燃料貯蔵容器上部に気密及び遮へいのための炉外燃料
貯蔵遮へいプラグが設けられ、また燃料池は、側面にコンクリート壁による遮へい
が設けられ、使用済燃料の上部には十分な水深があることから、燃料取扱い及び貯
蔵時に適切な遮へい効果を有する。
(チ) 炉外燃料貯蔵冷却設備は、独立の三系統の冷却系からなり、全貯蔵容量の
使用済燃料を貯蔵したとしても、崩壊熱の除去及び純化が十分となる設計とされ、
一系統のみの運転でも炉外燃料貯蔵槽の出口ナトリウム温度を約三〇〇℃以下に保
つことができる。
(リ) 燃料池水冷却浄化装置は、ポンプ及び冷却器の多重性を有し、全貯蔵容量
の使用済燃料を貯蔵したとしても、崩壊熱の除去及び浄化が十分できる設計とさ
れ、燃料池水平均温度を五二℃以下に保つことができる。なお、冷却材の温度が異
常に上昇した場合には、燃料取扱設備操作室に警報を発する設計とされ、冷却材の
漏えい防止及び漏えい検知について設計上配慮される。炉外燃料貯蔵層及び燃料池
は、燃料集合体の取扱中の万一の落下を想定しても、著しい冷却材の減少を引き起
こすような損傷は生じない設計とされる。使用済燃料の原子炉容器から炉外燃料貯
蔵槽までの移送、炉外燃料貯蔵槽から燃料池までの移送は、いずれにおいても冷却
系は取扱中の燃料からの崩壊熱を十分除去できる設計とされる。燃料取扱設備室の
空気は、フィルタユニットを内蔵する換気装置によって浄化され、排気筒から排気
筒モニタによって放射能を監視しながら排気される。
(ヌ) 燃料取扱事故が発生した場合には、十分信頼性のある検出器により事故が
検出され、燃料取扱設備の排気は、排気系統を切り換え、よう素除去効率九五パー
セントのフィルタを内蔵するフィルタユニットによって浄化されて排気筒から排出
される。燃料取扱事故時の換気装置の機能は、後記(第六、二、4、(三)、
(1))の燃料取扱事故の解析結果からみても妥当である。
(ル) 使用済燃料貯蔵エリアには、放射線監視のためのエリアモニタが設置され
、万一、放射能レベルが異常に上昇した場合には、中央制御室に警報を発する設計
とされる。
(3) 本件安全審査においては、以上の事項を確認したことから、燃料取扱場所
の放射能レベル検出及び空気浄化は適切に行われるとして、本件原子炉施設の燃料
取扱い及び貯蔵設備の設計は妥当であると判断した。
(二) 放射性気体廃棄物処理設備
(1) 本件安全審査においては、放射性気体廃棄物の発生量と処理能力、放出管
理、換気設備の性能等について検討し、放射性気体廃棄物処理設備が、適切なろ
過、貯留、減衰、管理等を行うことにより周辺環境に放出される放射性物質の濃度
及び量を合理的に達成できる限り低減できる設計であるか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 一次アルゴンガス系設備の圧力制御に伴い排出される廃ガス等の放射性希
ガスを含んだ廃ガスは、活性炭吸着塔装置にて、キセノンは約三〇日間、クリプト
ンは約四〇時間保持できる設計とされる。  
(b) 換気設備の系統には、微粒子フィルタを設置することにより、放出放射性
物質の量を低減する設計とされる。
(ハ) 放射性気体廃棄物処理設備及び換気設備からの放射性気体廃棄物は、放射
性物質の濃度を監視し、排気筒から放出されることとされる。
(ニ) 放射性気体廃棄物による一般公衆の被曝線量は、後記(第五、一、2、
(三))のとおり、放出される放射性液体廃棄物によるものと合計しても、「許容
被曝線量等を定める件」の定める「公衆の許容被曝線量」を十分下回っており、合
理的に達成できる限り低くするための設計上の対策が取られている。
(3) 本件安全審査においては、以上の事実を確認したことから、本件原子炉施
設の放射性気体廃棄物処理設備の設計及び処理方法は妥当であると判断した。 
(三) 放射性液体廃棄物処理設備
(1) 本件安全審査においては、放射性液体廃棄物の発生量と処理能力、放出管
理等について検討し、放射性液体廃棄物処理設備が、適切なろ過、蒸発処理、脱塩
処理貯留、減衰、管理等を行うことにより、周辺環境に放出される放射性物質の濃
度及び線量を合理的に達成できる限り低減できる設計であるか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 放射性液体廃棄物処理設備には、処理する廃液の性状に応じて、廃液受入
タンク、洗濯廃液受入タンク
、廃液蒸発濃縮装置、洗濯廃液蒸発濃縮装置、脱塩塔等が設けられるが、これらの
設備は、処理容量等からみて、発生廃液を十分処理する能力を有する。
(ロ) 右設備は、適切な材料の選定、タンク水位等の警報、インタロック等によ
る漏えいの発生防止、漏えい検知器等による漏えいの早期検知及び主要な機器を独
立した区画に設けるか、周辺に堰を設けるか等による漏えいの拡大防止等が行える
設計とされる。
(ハ) 右設備で処理された処理水は、その一部が機器洗浄水として再使用される
が、洗濯廃液の処理水等放射能レベルの著しく低いものは、あらかじめ放射性物質
の濃度が十分低いことを確認した後、モニタによって監視しながら復水器冷却水と
混合希釈して放出する。
(ニ) 放射性液体廃棄物放出による一般公衆の被曝線量は、後記(第五、一、
2、(三))のとおり、放出される放射性気体廃棄物によるものと合計しても、
「公衆の許容被曝線量」を十分下回っており、合理的に達成できる限り低くするた
めの設計上の対策もとられている。
(3) 本件安全審査においては、以上の事実を確認したことから、本件原子炉施
設の放射性液体廃棄物処理設備の設計及び処理方法は妥当であると判断した。
(四) 放射性固体廃棄物処理設備
(1) 本件安全審査においては、従事者の被曝低減対策、放射性固体廃棄物の発
生量、固体廃棄物貯蔵庫の貯蔵及び遮へい能力等について検討し、放射性固体廃棄
物処理設備が、遮へい、遠隔操作等によって、従事者の被曝線量を合理的に達成で
きる限り低減できる設計であるか否か、また、放射性個体廃棄物貯蔵設備が、発生
する放射性固体廃棄物を貯蔵する容量が十分であると共に、放射性固体廃棄物の貯
蔵による本件敷地周辺の空間線量率を合理的に達成できる限り低減できる設計であ
るか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 濃縮廃液及び使用済樹脂は、アスファルト固化装置によりアスファルトと
混合加熱し、水分を蒸発して、ドラム詰めされる。ドラム充填室には、従事者の被
曝線量を低減できるよう、遮へい壁鉛ガラス等が設けられるが、ドラム缶の移動及
びドラム詰めば遠隔操作で行える設計とされる。圧縮可能な雑固体廃棄物は、ベイ
ラにて圧縮処理し、ドラム詰めされる。また、使用済活性炭はドラム詰めされ、使
用済排気用フィルタ類は梱包される。
(ロ) 固体廃棄物貯蔵庫は、推定される放射性固体廃棄物の約一五年分を貯蔵保
管でき、必要に応じて増設される。また、使用済制御棒集合体等は、その放射能を
減衰させるため、水中燃料貯蔵設備及び固体廃棄物貯蔵プールに貯蔵保管される。
(ハ) 放射性固体廃棄物の貯蔵保管に当たっては、従事者の被曝線量を低減する
ため、必要なものについては十分な遮へいを設けると共に、遠隔操作が可能なよう
に設計される。
(ニ) 固体廃棄物貯蔵庫からの直接線量及びスカイシャイン線量は、原子炉格納
容器内線源等によるものと合計して、人の居住の可能性のある本件原子炉施設敷地
境界外において、合理的に達成できる限り低くなるように設計され、管理される。
(3) 本件安全審査においては、以上の事実を確認したことから、本件原子炉施
設の放射性固体廃棄物処理設備及び放射性固体廃棄物貯蔵設備の設計及び処理方法
は妥当であると判断した。
6 放射線防護及び処理施設
(一) 放射線防護設備
(1) 本件安全審査においては、遮へい設計方針、機器の配置、放射性物質の漏
えい防止対策及び換気能力等について検討し、放射線防護設備が、従事者等が立入
場所において不必要な放射線被曝を受けないように、作業性等を考慮して所要の措
置を講じた設計であるか否かを確認した。
(2) そして、本件安全審査においては、次の事項を確認した。
ω遮へいについては、従事者等が受ける被曝線量が、法令で定められた許容値を超
えないようにすることはもちろん、不必要な放射線被曝を防止するため、従事者等
の関係各場所への立入頻度、滞在時間等を考慮し、原子炉本体遮へい、一次冷却系
遮へい、原子炉格納容器外部遮へい、燃料取扱及び貯蔵設備遮へい等が設けられ
る。
(ロ) 機器の配置については、放射性物質を内蔵するタンク、ポンプ、熱交換器
等は、原則として区分された区域に配置し、制御盤等の保修頻度の高い電気計装品
は、放射線量率の低い区域に配置される。また、放射線量率の高い区域に設けられ
る機器の操作は、遠隔又は自動操作ができるように設計される。
(ハ) 放射性物質の漏えい防止対策については、一次冷却材等の放射性物質の濃
度の高い液体が可能な限り漏えいしない設計とされ、万一、漏えいが生じた場合で
も、汚染が拡大しないよう、機器が独立した区画内に配置され、又はこれらの機器
の周辺には堰が設けられる。また、主要な床ドレンには漏えい検知器が設置される
ことによ
り、漏えいの早期発見が可能な設計とされる。
(ニ) 換気設備は、原子炉格納施設、原子炉補助建物、中央制御室等の各区域の
換気に必要な容量を有し、作業環境の空気を清浄に保つことができる設計となって
いる。また、各換気設備のフィルタは、点検及び交換ができる設計とされる。
(3) 本件安全審査においては、以上の事実を確認したことから、本件原子炉施
設の放射線防護設備の設計は妥当であると判断した。
(二) 放射線監視及び管理設備
(1) 本件安全審査においては、放射線管理設備が、従事者等を放射線被曝から
防護するため、放射線被曝を十分に監視及び管理できると共に、必要な情報を中央
制御室又は適当な管理場所に通報できる設計であるか否か、また、本件敷地周辺の
放射線を監視するため、通常運転時、運転時の異常な過渡変化時及び事故時におい
て、原子炉格納容器、放射性物質の放出経路、本件敷地周辺等を適切にモニタリン
グできるか否かを審査した。
(2) そして、本件安全審査においては、次の事項を確認した。
(イ) 従事者等の放射線被曝の監視及び管理について、管理区域を設定して人の
出入りを管理すると共に、これらの区域内においては、外部放射線量率及び空気中
の放射性物質の濃度等を監視し、その結果を管理区域内等の諸管理に反映する。
(ロ) 管理区域内への立入り及び物品の搬出入を管理するための出入管理設備及
び汚染管理設備が設けられるほか、エリアモニタリング設備、プロセスモニタリン
グ設備、放射線サーベイ設備及び個人管理関係設備が設けられる。
(ハ) エリアモニタリング設備は、中央制御室及び管理区域内の主要箇所の空間
線量率を、また、プロセスモニタリング設備は、主要系統の放射能レベルを中央制
御室に指示記録し、異常時には中央制御室及びその他必要な箇所に警報を発する設
計とされる。
(ニ) 本件敷地周辺の放射線監視については、放出源の監視用として、原子炉施
設内にプロセスモニタリング設備(排気筒モニタ、排水モニタ)が設けられ、野外
監視用として、野外管理用モニタリング設備が設けられる。
(ホ) 原子炉格納容器内雰囲気のモニタリングは、格納容器ガスモニタ及び格納
容器ダストモニタによって連続的に行い、また、原子炉格納容器内の雰囲気ガスを
サンプリングすることにより、放射性物質の濃度等を測定することもできる設計と
される。また、一次冷却材及び一次アルゴンガス中
の放射性物質の濃度は、サンプリング測定できる設計とされる。更に、放射性物質
の放出径路である排気筒、復水器冷却水放水路にモニタを設置するほか、必要箇所
においてサンプリング測定できる設計とされる。排気筒のモニタリング、原子炉格
納容器内雰囲気ガスのサンプリング等による監視及び測定は、事故時においても対
応しうる設計とされる。
(ヘ) 野外監視用としては、発電所周辺にモニタリングポスト及びモニタリング
ポイントが設置される。また、放射性物質の異常放出等があった場合には、モニタ
リングカーにより放射線測定等を行い、放出された放射性物質の周辺環境に及ぼす
影響を監視できる。
(ト) 事故時に必要な放射線監視設備は、非常用電源に接続される。
(3) 本件安全審査においては、以上の事実を確認したことから、本件原子炉施
設の放射線監視及び管理設備の設計は妥当であると判断した。
7 本件安全審査の結論
 本件安全審査においては、本件原子炉施設の安全設計は妥当であると判断した。
そして、更に、本件原子炉の施設の平常運転に伴う一般公衆の被曝線量評価(後記
第五)を行って本件原子炉施設の平常運転時における安全性を確認し、また、運転
時の異常な過渡変化、事故、技術的には起こるとは考えられない事象の各解析評価
(後記第六)を行って、本件原子炉施設の事故防止対策に係る安全性を確認した。
8 設置変更許可申請
 なお、本件許可処分の後、申請者は、昭和六〇年二月一八日付け及び昭和六一年
九月二九日付けでそれぞれ原子炉設置変更許可申請をし、昭和六一年三月二五日付
け及び昭和六二年二月六日付けでそれぞれ右設置変更が許可され、それに基づい
て、①一次アルゴンガス系設備に設けられる常温活性炭吸着塔の放射能減衰能力を
向上し(他方で、希ガス除去・回収設備は削除された)、②右に述べた液体廃棄物
処理設備の廃液蒸発濃縮装置からの濃縮廃液や使用済樹脂をアスファルト固化する
としていたものを、プラスチック固化することとし、③本件原子炉施設の従業員が
使用した衣類等の洗濯については洗濯廃液蒸発濃縮装置を削除し、ドライクリーニ
ングを採用するなどの設備変更が行われた。これらについては、設置変更許可にに
際しての安全審査において、平常運転霞における被曝低減対策に係る安全性が確保
されると評価されている。
二 当裁判所の判断
1 原子炉施設の安全性の確保とは、前記(第一、三、2)の
とおり、原子炉施設の有する潜在的危険性を顕在化させないよう、放射性物質の環
境への放出を可及的に少なくし、これによる災害発生の危険性を社会通念上容認で
きる水準以下に保つことである。したがって、本件原子炉施設の安全設計が妥当で
あるといえるためには、その基本設計ないし基本的設計方針において、第一に、原
子炉の平常運転に伴って環境へ放出される放射性物質による公衆の被曝線量を十分
低く抑えることができるよう、平常運転時の被曝低減対策が講じられ、安全性を確
保しうるものとなっていることが必要であり、第二に、原子炉の平常運転を乱す異
常な事象が発生することのないよう、また、仮にこれが起きた場合であっても異常
を拡大させることなく、また、放射性物質が環境に放出されることのないように
し、公衆の被曝線量を十分低く抑えることができるよう、各種の事故防止対策が講
じられ、安全性を確保しうるものとなっていることが必要である。
2(一) そして、平常運転時の被曝低減対策としては、本件原子炉施設の平常運
転時における原子炉施設に内包される放射性物質としては、①燃料としての核燃料
物質、②燃料の核分裂反応によって生じる核分裂生成物、③炉心燃料集合体等の炉
心構成要素の構造材等が中性子により放射化されることによって生じる放射化生成
物があるから、その基本設計ないし基本的設計方針において、
(1) 放射性物質が燃料被覆管内から一次系中に現れることをできるだけ防止
し、また、一次系中に現れた放射性物質については、これをできるだけ一次系内に
閉じ込めることができること
(2) 一次系外に現れた放射性物質を、その形態に応じて適切に処理し得る放射
性廃棄物処理施設が設けられ、一次系外に現れる放射性物質の環境への放出をでき
る限り低く抑えることができること
(3) 平常運転に伴って環境に放出される放射性物質の放出量及び環境における
濃度、線量率等を適切に監視することができる放射線監視及び管理設備が設けられ
ていること
が確認されれば、原子炉の平常運転に伴って環境へ放出される放射性物質による公
衆の被曝線量を十分低く抑えることができ、平常時の被曝低減対策が講じられ、安
全性が確保されているものと評価することができる。
(二) また、事故防止対策としては、その基本設計ないし基本的設計方針におい
て、
(1) 所要の異常発生防止対策が講じられること、すなわち、原子炉が
安定した運転を維持しえ、また、燃料被覆管、原子炉冷却材バウンダリ及び原子炉
カバーガス等のバウンダリの各々の健全性が確保できること
(2) 所要の異常拡大防止対策が講じられること、すなわち、原子炉施設におい
て何らかの異常が発生した場合にも、所要の措置が取れるように、その異常の発生
を確実に検知し得ること、何らかの異常が発生した場合に、その異常が拡大した
り、さらには、放射性物質が環境へ異常に放出するおそれのある事態に発展するこ
とを未然に防止するために、原子炉を速やかに停止し、原子炉が緊急停止した後も
炉心を冷却できること
(3) 所要の放射性物質異常放出防止対策が講じられること、すなわち、仮に放
射性物質を環境に異常に放出するおそれのある事態が発生した場合においてもな
お、放射性物質の環境への異常な放出を防止できることが確認されれば、各種の事
故防止対策が講じられ、安全性を確保しうるものと評価することができる。
3 そこで、本件安全審査をみるに、本件安全審査においては、前記一の内容等か
ら、次の事項が確認されたということができる。
(一) 平常時の被曝低減対策について
(1) 放射性物質の一次系中への出現の抑制と一次系内への閉じ込めについて
は、
①燃料被覆管の健全性、炉心構成要素等の構造材等の健全性が確認されたことで放
射性物質が燃料被覆管内から破壊・腐食等によって一次系中に現れるのを抑制でき
ることが確認されたといえ(なお、炉心構成要素の構造材等が中性子により放射化
されることによって生じる放射化生成物が一次冷却材に溶け込むことも考えられる
が、これについては、炉心構成要素の構造材にナトリウムとの共存性に優れたステ
ンレス鋼を用い、一次冷却材ナトリウムの純度管理を行い得るコールドトラップ等
を設けて右構造材等を腐食の生じ難い状態に保つ(乙一六・八―一―二五頁)こと
により抑制される。)、②一次系が十分な強度を持たせた機器、配管等から構一成
されること(3、(一)、(1)及び同(2))、一次アルゴンガス系に放射能を
減衰できる常温活性炭吸着塔の設置が確認されたこと(5、(二)、(2))によ
って、一次系中に現れた放射性物質をできるだけ一次系内に閉じ込めることができ
ることが確認されたといえる。
(2) 放射性廃棄物処理施設については、気体廃棄物処理設備、液体廃棄物処理
設備、固体廃棄物処理設備の健全性が確認されたこと(
一、5、(二)ないし(四))によって、一次系外に現れる放射性物質の環境への
放出をできる限り低く抑えることができることが確認されたといえる。
(3) 放射線監視及び管理設備については、その性能及び健全性が確認されたこ
と(6、(二))によって、放射線物質の放出量及び放出後の環境中における濃
度、線量率等を監視することができることが確認されたといえる。
(二) 事故防止対策について
(1) 異常発生防止対策については、原子炉がすべての運転範囲で固有の負の反
応度フィードバック特性を有する設計であること(1、(一)、(1))、燃料被
覆管や原子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリの健全性を確
保するために必要な諸変数が適切な範囲に維持され、かつ、監視できる設計である
こと(1、(二)、(2))から、原子炉の運転は安定した状態に維持されること
が確認された。また、燃料被覆管(1、(一)、(4))、原子炉冷却材バウンダ
リ(3、(一)、(1))、原子炉カバーガス等のバウンダリ(3、(一)、
(2))の各健全性が確認された。これによって、所要の異常発生防止対策が講じ
られていることが確認されたといえる。
(2) 異常拡大防止対策については、異常の発生を確実に検知し得る設計である
こと(1、(二)、(2))、何らかの異常が発生した場合に、原子炉を速やかに
停止し、原子炉が緊急停止した後も炉心を冷却できること(1、(二)、(1)、
2、(一)、同(三)及び3、(三))等安全保護系の信頼性が確認されたことか
ら、所要の異常拡大防止対策が講じられていることが確認されたといえる。
(3) 放射性物質異常放出防止対策については、工学的安全施設として、原子炉
が緊急停止した後に炉心を冷却するための補助冷却設備が設置されること(3、
(三))、一次冷却材の漏えいが生じた場合であっても、漏えいしたナトリウムを
受け止め、炉心の冷却の維持に必要な冷却材を確保するためのガードベッセルが設
置されること(3、(三))、原子炉バウンダリから漏えいした放射性物質を封じ
込めるために、原子炉格納容器、外部遮へい建物及び両者の間の負圧の密閉部分
(アニュラス部)からなる原子炉格納施設が設置されること(4、(一))、アニ
ェラス部を常に負圧に保ち、原子炉格納容器からアニュラス部に漏えいした放射性
物質を除去するために、アニュラス循環排気装置が設置さ
れること(4、(二))、配管の破損等による一次アルゴンガス漏えい事故が生じ
た場合であっても、常温活性炭吸着塔内に吸着した放射性物質を環境に異常に放出
することを防止するための一次アルゴンガス系収納施設が設置されること(乙一
六・八―七―一五頁)が確認され、その信頼性が確認されたことから、所要の放射
性物質異常放出防止対策が講じられていることが確認されたといえる。
4 このようにみると、本件原子炉施設の安全設計についての本件安全審査におけ
る調査審議及び判断の過程に、重大かつ明白な瑕疵といえるような看過し難い過
誤、欠落があるとは認められないというべきである。
三 原告らの主張について
1 多重防護の考え方について
 原告らは、本件安全審査における多重防護の考え方では安全は確保できない旨主
張する。しかし、前記(第一、四、2、(二))のとおり、①異常事象の発生を防
止し(異常の発生防止)、次に、②仮に異常事象が発生したとしても、それが拡大
し事故(周辺環境へ放射性物質を大量に放出するに至るおそれのある事態)に発展
するこ脚とを防止し(異常事象の拡大及び事故への発展の防止)、更には③万一事
故に発展したとしても周辺環境へ放射性物質が大量に放出されることを防止する
(放射性物質の異常放出の防止)という考え方に立脚した設計がされていれば、本
件原子炉施設の安全性を確保することができるといえるところ、本件安全審査にい
う「多重防護」も右の考え方をいうのであるから、安全性の確保について十分な合
理性を有するものである。
 したがって、原告らのこの点についての主張は理由がない。
2 原子炉の安定した運転の維持について
(一) ボイド係数について
 原告らは、本件原子炉施設は、ナトリウムの沸騰によりボイド係数が正となるか
ら、原子炉の安定した運転の維持は困難であり、本質的に欠陥を有する旨主張す
る。
 本件原子炉施設において、ナトリウムが沸騰した場合のボイド係数は炉心中央付
近で正であることは当事者間に争いがない。しかし、前記(一、1、(一)、
(2))のとおり、本件安全審査においては、ナトリウムが沸騰しないように設計
されていることを確認しており、これを敷衍すると次のとおりである。
① 乙一六・八―三―三〇ないし三三頁、五二頁、五四頁によれば、本件安全審査
においては、原子炉の主たる出力を担う炉心燃料集合体からの発熱が、ブランケッ
ト燃料集
合体からの発熱の約九倍以上あるので、炉心燃料集合体に対しては高い圧力でナト
リウムを供給してナトリウムの流量を大きくし、ブランケット燃料集合体に対して
は低い圧力でナトリウムを供給してナトリウムの流量を小さくするよう、原子炉容
器内には、炉心燃料集合体にナトリウムが流入する高圧プレナムとブランケット燃
料集合体にナトリウムが流入する低圧プレナムとが設けられていること、炉心燃料
集合体及びブランケット燃料集合体からの発熱は、いずれも周辺領域から中心領域
に近づくにしたがって大きくなるため、炉心燃料集合体を装荷する領域について
は、内側炉心五領域と外側炉心三領域との八流量領域に、また、ブランケット燃料
集合体を装荷する領域については、三流量領域にそれぞれ分割した上、炉心燃料集
合体については、エントランスノズルが挿入される連結管に設ける流量調節機構
(スリット)並びにエントランスノズルのオリフィス孔との組合せにより、また、
ブランケット燃料集合体については、連結管下端に設ける流量調節機構により、分
割した領域ごとに発熱に応じたナトリウムの流量を確保すること、これにより、定
格出力時における炉心燃料集合体部及びブランケット燃料集合体部の各ナトリウム
の最高温度は、それぞれ約六五九℃及び約六九六℃と、いずれもナトリウムの沸点
(大気圧下で約八八〇℃)に対して十分余裕あるものとなることを確認したことが
認められ、その合理性に疑いを入れるような証拠はない。したがって、本件原子炉
施設においてナトリウムが沸騰しボイドが生じることは想定し難い。
② また、沸騰以外にナトリウム中にボイドが生じる要因としては、カバーガスの
ナトリウム中への混入等が考えられるところ、本件安全審査においては、後記(第
六、二、4、(一)、(3))のとおり、ナトリウム液面真下に液面の波立ちを防
止するディッププレートが設けられることによって、ナトリウム液面の波立ちは生
じにくく、このため、液面上のカバーガスがナトリウムに混入することはないこ
と、仮に何らかの原因によりナトリウム中に気泡が混入したとしても、炉内構造物
等にガス抜き孔が設けられることから、混入した気泡はカバーガス中に排出され、
原子炉容器下部プレナムでの気泡の滞留は防止されること、ナトリウムを充てんす
る際にナトリウムと共にガスが混入したとしても、一次主冷却系配管、弁及び中間
熱交換器に設けられた
ガス抜きラインによってガス抜きが行われ、右ガスがナトリウム中に残存すること
がないことを確認しており、これを不合理とする証拠はない。
③ そして、前記(1、(一)、(1))に加え、証人P6の証言(P6調書
(一)九丁裏、一〇丁表)、乙一六・八―三―二六頁、五〇頁及び乙イ二によれ
ば、本件安全審査においては、ドップラ係数、燃料温度係数、冷却材温度係数等を
総合した出力係数がすべての運転範囲で常に負に保たれ、すべての運転範囲におい
て、原子炉固有の負の反応度フィードバック特性を有していることを確認したこと
が認められ、これを不合理とする証拠はない。
④ なお、本件安全審査においては、後記(第六、二、(一)、(3))のとお
り、「事故」として「気泡通過事故」(原子炉容器内の一次冷却材中に気泡が混入
し、燃料集合体下部のエントランスノズルを通して、一次冷却材と共に右気泡が炉
心内を通過するという事象を想定した解析評価について審査しているが、右解析評
価においては、炉内構造物等に設けられるガス抜き孔の効果を無視した場合に滞留
することとなる最大量の気泡が通過するものとして、原子炉容器下部プレナム中の
高圧プレナムの連結管間隙空間容積のうちスリット上端より上の部分の体積に相当
する二〇リットルの気泡を考えるものとし、また、右気泡が炉心支持板の下部から
一斉に燃料集合体へ上昇するなどの厳しい前提条件を仮定しても、解析の結果、ナ
トリウムの最高温度は過度に上昇することはなく、ナトリウムは沸騰しないとの結
果が得られており、その妥当性を確認している。
 さらに、後記(第六、一及び同二)のとおり、本件安全審査においては、「運転
時の異常な過渡変化」として、「出力運転中の制御棒の異常な引き抜き」、「一次
冷却材流量減少」及び「蒸気発生器伝熱管小漏えい」等を、また、「事故」とし
て、「制御棒急速引抜事故」及び二次冷却材漏えい事故」等を想定した解析評価に
ついて審査しているが、解析の結果、いずれの事象においても、ナトリウムは沸騰
しないとの結果が得られており、その妥当性を確認している。
 また、後記(第六、三)のとおり、本件安全審査においては、「技術的には起こ
るとは考えられない事象」として、「一次主冷却系配管大口径破損事象」及び「一
次冷却材流量減少時反応度抑制機能喪失事象」を想定した解析評価について審査し
ているが、解析の結果、ナトリウムの沸
騰は生じるものの、炉心は冷却され、かつ、原子炉格納容器の健全性は損なわれな
いこと等から、放射性物質の放散は適切に抑制されるとの結果が得られており、そ
の妥当性を確認している。
 このようにみると、本件原子炉施設においてボイド係数を問題にする必要はない
というべきである。
 原告らは、チェルノブイリ四号炉において、反応度事故が発生したことを指摘す
る。しかし、後記(第八、二)のとおり、右の事故の原因は、チェルノブイリ四号
炉はRMBKであるため常にボイドが存在するのに、ボイド係数が大きな正の値と
なり、ボイド係数に燃料温度係数等を総合した出力係数が、定格出力運転時には負
の値であるものの、低出力運転時には正の値となる炉心特性を有していたこと及び
運転員の規則違反にあるところ、右事故の原因は、本件原子炉施設に共通するもの
ではなく、右事故の発生は本件原子炉施設の安全性を左右するものではない。
 したがって、原告らのこの点についての主張は理由がない。
(二) 即発中性子の寿命と遅発中性子の割合について
 原告らは、本件原子炉施設は、軽水炉と比べると、即発中性子の寿命が短く、か
つ、遅発中性子の割合が少ないから、即発臨界に至る可能性が高い旨主張する。
 この点、本件原子炉施設における即発中性子の寿命(一〇〇万分の一秒)は、軽
水炉のそれ(一万分の一秒)より短いこと、本件原子炉施設におけるすべての中性
子に占める遅発中性子の割合(〇・〇〇三四ないし〇・〇〇三八)は、軽水炉のそ
れ(〇・〇〇五ないし〇・〇〇七)の半分程度であることは、当事者間に争いがな
い。
 しかし、そのことから直ちに本件原子炉施設が軽水炉に比べて即発臨界に至る可
能性が高いということはできない。
 すなわち、原子炉において核分裂反応に伴って発生する中性子には、核分裂反応
に際し即発的に発生する即発中性子と、ある程度遅れて発生する遅発中性子とがあ
り、原子炉が臨界状態で運転されているときには、即発中性子だけで臨界状態とさ
れているのではなく、遅発中性子が寄与することにより臨界状態とされているとこ
ろ、即発中性子の寿命は、軽水炉であれ高速増殖炉である本件原子炉施設であれ、
一万分の一秒以下であるため、即発中性子を利用して原子炉を制御することはでき
ず、原子炉の制御は、遅発中性子を利用して行われることは当事者間に争いがな
い。
 そうすると、即発中性子の寿命の長短は、原子
炉制御の困難さとは直接関連するものではなく、他方、遅発中性子の寿命は、軽水
炉においても、本件原子炉施設においても、平均して一〇秒程度であるから、この
点で本件原子炉施設の制御が軽水炉より困難であるということはできない。
 もっとも、軽水炉においても、本件原子炉施設においても、炉心に投入される反
応度がすべての中性子に占める遅発中性子の割合と同じ値になった場合には、いわ
ゆる即発臨界となり、もはや原子炉の制御を行うことはできないところ、本件原子
炉施設の遅発中性子割合は、軽水炉のそれの半分程度であるから、数値的には、即
発臨界に至るまでの反応度は軽水炉より小さく、容易に即発臨界に至ることにな
る。しかし、右遅発中性子の割合を念頭に置いて、炉心に投入される反応度がすべ
ての中性子に占める遅発中性子の割合の値に比し十分に小さくなるように設計すれ
ば、余裕を持って反応度を制御することができる。
 そして、証人P6の証言(P6調書一・二丁裏・二二丁表)によれば、本件原子
炉施設において制御棒操作により炉心に投入される反応度は、最大の場合であって
も、一秒当たり〇・〇〇〇〇八△k/k以下であり、すべての中性子に占める遅発
中性子の割合の値に比し約一〇〇分の二以下と十分に小さくなっていること、すな
わち、即発臨界となるときの反応度の大きさ(一ドル=一〇〇セント)に比し、一
秒当たり約二セント(〇・〇〇〇〇八÷〇・〇〇三四ないし〇・〇〇三八)と十分
に小さな値であることを確認したことが認められ、その合理性に疑いを入れるよう
な証拠はない。
 そうすると、本件原子炉は制御棒の操作により十分な時間的余裕をもって反応度
を制御できるといえるから、本件原子炉施設が軽水炉に比べて即発臨界に至る可能
性が高いということはできない。
 そして、前記(一、1、(二)、(1))に加え、乙一六・八1一-四五頁、四
九頁、八―九―一頁、一七ないし二一頁によれば、本件安全審査においては、本件
原子炉施設の通常運転時に原子炉出力を変更する場合や、運転状態を乱すような何
らかの外乱が入った場合、原子炉出力等を安定に制御し、併せて、炉心の中性子
束、一次冷却系の流量、原子炉容器出口のナトリウム温度等の重要な諸変数を適切
な範囲に維持するために、原子炉制御設備が設置されることを確認したことが認め
られ、その合理性に疑いを入れるような証拠はない。
 また、前記(一、1、(一)、(1))のとおり、本件安全審査においては、本
件原子炉施設は、原子炉固有の負のフィードバック効果を有するので、何らかの原
因によって通常運転を逸脱するような異常な正の反応度が投入された場合にも、こ
れによる原子炉出力の上昇は抑制されること、右反応度の異常に伴って中性子束が
異常に上昇した場合には、中性子束検出器がこれを検出し、原子炉トリップ信号が
自動的に発せられ、原子炉停止系が作動することによって直ちに炉心へ制御棒が挿
入されて原子炉が自動停止し、次いで補助冷却設備によって炉心が冷却されるこ
と、検出器には、中性子束検出器のほか、一次主冷却系循環ポンプ.回転数検出器
や一次主冷却系流量検出器等があり、一次主冷却系循環ポンプの回転数又は一次主
冷却系の流量等と中性子束との不一致を検知した場合にも、原子炉トリップ信号が
自動的に発せられることを確認したことが認められ、その合理性に疑いを入れるよ
うな証拠はない。
 このようにみると、本件原子炉は、その基本設計ないし基本的設計方針におい
て、即発臨界に至る可能性は極めて低いということができる。したがって、原告ら
のこの点についての主張は理由がない。
(三) 原子炉固有の負のフィードバック効果について
 原告らは、出力係数は計算値にすぎないから、本件原子炉施設がすべての運転範
囲で原子炉固有の負のフィードバック効果を有するとはいえない旨主張する。
 しかし、前記(一、1、(一)、(1))のとおり、本件安全審査においては、
本件原子炉施設が原子炉固有の負のフィードバック効果を有することを確認してお
り、他方、右出力係数の妥当性に疑いを入れるような証拠は全くないから、原告ら
のこの点についての主張は理由がない。
3 燃料被覆管の健全性について
(一) スエリング、圧力の上昇等について
 原告らは、本件原子炉施設の燃料被覆管の健全性は維持しえない旨主張し、その
根拠として、①燃料ペレットのスエリングに伴う燃料被覆管の膨張、②燃料被覆管
のスエリング、③核分裂生成物(FP)ガスによる燃料被覆管内の圧力の上昇、④
燃料被覆管の温度変化による熱応力、⑤燃料集合体内部の温度差や冷却材の流動圧
による炉心燃料要素の湾曲、⑥右湾曲によるラッパ管への接触によって発生する燃
料被覆管の損傷、⑦右湾曲によって発生する冷却材の流路の閉塞に伴う温度上昇、
⑧燃料ペレットの融点の低下、⑨焼きしまり及びク
ラックによる溶融等を指摘する。
 以下、原告らの主張する点それぞれについて検討する。
(1) ①ないし⑦の主張について
 証人P6の証言(P6調書一・二六丁表)及び乙一六・八―三―四頁、七ないし
九頁によれば、本件安全審査においては、燃料ペレットの熱膨張やスエリングによ
って、燃料被覆管が過大な力を受けないように、燃料ペレツトと燃料被覆管との間
には適切な間隔が設けられること、燃料の核分裂反応が進み、燃料ペレットが膨ら
んで燃料被覆管との間隙がなくなった時点では、燃料被覆管自体がスエリング及び
クリープによってその内径が増加するため、燃料被覆管が燃料ペレットから過大な
力を受けることはないこと、燃料一被覆管のスエリングは、照射実績により、直接
燃料被覆管の健全性を損なうものではないことが示されていること、燃料被覆管の
内部にガスプレナムという空間が設けられること、燃料被覆管は、応力や圧力、通
常運転時及び運転時の異常な過渡変化時における温度変化に十分耐えうる強度を有
するステンレス鋼製とされ、湾曲拘束による応力等に対して十分な強度を有するこ
とを確認しており、その合理性に疑いを入れるような証拠はない。
 また、本件安全審査においては、前記(2、(一))のとおり、各燃料集合体の
発熱量に見合うように、燃料集合体ごとに冷却材の流量が適切に配分されることを
確認しており、また、乙一六・八―三―五頁、一〇頁によれば、燃料被覆管を冷却
する冷却材の流路を確保するため、各燃料被覆管にはそれぞれワイヤスペーサが巻
かれることにより、たとえ燃料被覆管が湾曲しても、燃料集合体のラッパ管に接触
したり冷却材の流路が閉塞することのないことを確認したことが認められ、その合
理性に疑いを入れるような証拠はない。
 そうすると、本件原子炉施設においては、原告の主張する①ないし⑨の事象のう
ち、①ないし⑦の事象が起こることは想定し難いということができる。
(2) ⑧燃料ペレットの融点の低下について前記(一、1、(一)、(2))に
加え、乙一六・八―三―二頁、七頁、八頁によれば、本件安全審査においては、①
本件原子炉施設の通常運転時における燃
料ペレットの最高温度は、燃料温度が最高となる燃焼開始直後でも約二三五〇℃で
あり、過出力状態においても約二六〇〇℃であること、②一方、本件原子炉施設で
使用されるプルトニウム・ウラン混合酸化物燃料ペレットの融点は、未照射燃料で
は約二七四〇℃であり、燃焼初期には燃焼に伴うプルトニウムの濃度変化や酸素と
金属元素との比率の変化によって融点が低下するが、その場合も二六五〇℃以上で
あること、③燃焼が進んだ段階では、融点は二六五〇℃より低下するものの、融点
の低下よりも燃焼に伴う燃料の線出力密度の減少による燃料ペレット温度の低下の
方が大きいので、最も厳しい条件となるのは燃焼初期であり、このときの燃料ペレ
ットの設計温度を二六五〇℃とすることによって、すべての運転範囲において燃料
ペレットの溶融を防ぐことができることを確認したことが認められ、その合理性に
疑いを入れるような証拠はない。
 したがって、本件原子炉施設においては、燃焼に伴う燃料ペレットの融点の変化
により、燃料が溶融し、燃料被覆管の健全性が損なわれることは想定し難いという
ことができる。
 なお、乙一六・八追補―Ⅳ―一ないし四頁によれば、本件原子炉施設の燃料ペレ
ットの設計上の設計最高温度は、未照射のプルトニウム・ウラン混合酸化物燃料の
融点に関し、E・A・エイトケンとS・K・エバンスによって行われたプルトニウ
ム濃度及び酸素と金属元素との比率を変えた測定の結果(一九六九(昭和四四)、
一九七一(昭和四六)年)や、核分裂生成物の蓄積の影響に関し、P7らによって
行われた模擬核分裂生成物を添加したプルトニウム・ウラン混合酸化物燃料に対す
る一トン当たり一七万メガワット日相当の燃焼度までの融点の測定の結果(一九六
九年)を基に、燃焼度が一トン当たり五万メガワット日までは二六五〇℃、燃焼度
が一トン当たり五万メガワット日以上は右温度から一トン当たり一万メガワット日
ごとに七℃の割合で低下するとした上で、測定の誤差等をも考慮して設定されたも
のであり、また、右温度制限値は、実際に照射されたプルトニウム・ウラン混合酸
化物燃料(最大燃焼度一トン当たり約二〇万メガワット日)について測定された米
国のデータと比較しても保守側にあることを確認したことが認められる。
(3) ⑨燃料ペレツトの焼きしまり及びクラックについて
 原告らは、燃焼が進むと、燃料ペレットに焼きしまり又は温度差等を原因とする
クラック(ひび割れ)が生じ、これによって燃料被覆管が損傷する旨主張する。
 この点、甲イ二八には、燃焼が進むと、燃料ペレットは体積を減じ、変形して被
覆管内部に隙間ができ、外圧によって被覆管がつぶれて
ペレットはクラックを起こし、このクラックが拡大する旨の記載がある。
 しかし、右記載は、理論的な可能性を指摘したものにすぎず、右記載から直ちに
本件原子炉施設の燃料ペレットにおいて同様の事態が生じるということはできな
い。また、乙イ七一によれば、本件安全審査においては、燃焼初期に発生する燃料
ペレットの焼きしまり及びクラック等については、本件原子炉施設と同一の仕様の
燃料ペレットを用いた日本原子力研究所の材料試験炉JMTRにおける照射試験に
より、照射によって燃料カラム長(燃料被覆管内に複数ある燃料ペレットの最上端
から最下端までの長さ)及び径方向に燃料の健全性にとって問題となるような収縮
が生じることはないことを確認したことが認められ、その合理性に疑いを入れるよ
うな証拠はない。
 また、乙一六・八―三―七頁、八頁、六四頁及び乙イ五六によれば、本件安全審
査においては、燃焼が進んだ段階での燃料のふるまいについても、本件原子炉とほ
ぼ同一の仕様の燃料要素を用いた英国のドーンレイ炉、仏国のラプソディー炉及び
「常陽」における照射実績から、本件原子炉の定格線出力密度(一センチメートル
当たり約三六〇ワット)を上回る一センチメートル当たり四七〇ワット以上の線出
力密度及び本件原子炉の最高燃焼度(一トン当たり約九万八〇〇〇メガワット日)
を上回る一トン当たり約一一万メガワット日の燃焼度においても、燃料要素の健全
性が確保されることを確認したことが認められる。
 したがって、本件原子炉施設においては、燃料ペレットの焼きしまり及びクラッ
ク等の燃料のふるまいが原因となって燃料が溶融し、燃料被覆管の健全性が損なわ
れることは想定し難いということができる。
(二) 一次冷却材流量減少時の健全性について
 原告らは、本件原子炉において、何らかの原因で一次冷却材の流量が減少した場
合、燃料が溶融して再臨界を起こす危険性がある旨主張し、その根拠として、本件
原子炉施設の燃料の最高温度が燃料の融点に近い上、燃焼開始後に右融点が低下す
ることを指摘する。
 しかし、後記(第六、一及び同二)のとおり、本件安全審査においては、本件原
子炉ではすべての運転範囲において燃料の溶融が防がれることを確認しており、ま
た、「運転時の異常な過渡変化」として「一次冷却材流量減少事象」を、「事故」
として二次冷却材漏えい事故」を想定した解析評価について審査しているが、解析
の結果、いずれの事象においても、燃料温度は融点を十分に下回るとの結果が得ら
れており、その妥当性を確認している。
 したがって、本件原子炉施設においては、一次冷却材の流量減少によって燃料が
溶融することは想定し難いということができる。
4 原子炉冷却材バウンダリの健全性について
(一) 配管等の健全性について
(1) 熱応力やクリープ疲労等に対する配管の健全性について
 原告らは、本件原子炉施設は、軽水炉と比べると、配管の受ける熱応力が大き
く、このため、配管の肉厚を薄くし、配管の引き回しを長くしているが、これらの
措置によっては配管にかかる熱応力を吸収することは困難であり、また、原子炉の
運転、停止、異常時の温度上昇、緊急停止等によって繰り返し配管に熱応力が加え
られると、これによる繰り返しひずみとクリープとの相互作用によって配管の疲労
寿命が低下し、配管が破損、破断する旨主張する。
 しかし、前記(一、3、(一)、(1))に加え、乙一六・八―一―二五頁、六
六頁、六七頁、七〇頁、八―四―二ないし四頁、八―五―二頁によれば、本件安全
審査においては、原子炉冷却材バウンダリを構成する機器及び配管には、高温での
強度に優れたステンレス鋼が使用されること、原子炉冷却材バウンダリに及ぶ熱的
過渡変化が抑制されるように、本件原子炉施設の通常運転時には、冷却材の温度を
ほぼ一定に維持できるように原子炉制御設備が設置されると共に、本件原子炉施設
の起動時又は停止時には、冷却材ナトリウムの昇温速度又は降温速度を制限するこ
とを確認したことが認められ、その合理性に疑いを入れるような証拠はない。
 そうすると、本件原子炉施設には、機器や配管等について、クリープ破断、過大
なクリープ変形、疲労破損、クリープ疲労破損等の防止について適切な配慮がされ
ているということができ、本件原子炉施設の配管が熱応力やクリープ疲労等によっ
て破損、破断することは想定し難いということができる。
 なお、乙一六・一〇―三―四頁によれば、本件安全審査においては、一次主冷却
系設備及び二次主冷却系設備の各配管を引き回すに当たっては、エルボ(曲げ管)
を用い、エルボの撓性(たわめることができる性質)により配管の熱膨張による変
形が吸収されるようになっていることを確認したことが認められる。
 したがって、原告らのこの点についての主張は理由がない。
(2) ナトリウム中の
不純物による腐食や浸炭、脱炭に対する配管の健全性について
 原告らは、①冷却材として使用されるナトリウムが酸化ナトリウム等となって配
管の材料であるオーステナイト系ステンレス鋼を激しく腐食させ、②一次主冷却系
においては、配管の材料であるオーステナイト系ステンレス鋼中の炭素がナトリウ
ム中に溶解して高温部から低温部に移行し、二次主冷却系においては、蒸発器の伝
熱管の材料であるクロム・モリブデン鋼から脱炭した炭素がナトリウム中に溶解
し、その配管の材料であるオーステナイト系ステンレス鋼に浸炭するとし、右の腐
食や浸炭、脱炭によって配管等が破損したり、破断したりする旨主張する。
 以下、原告らの主張する点それぞれについて検討する。
(イ) ナトリウム中の不純物による配管の腐食について乙一六・八―一―二五
頁、八―五―二頁、八―八―三頁、六頁、三五頁、三七頁によれば、本件安全審査
においては、ナトリウム中の不純物を除去するためにコールドトラップが設置さ
れ、これによって、本件原子炉施設の通常運転中のナトリウム中酸素濃度は一〇P
Pm(一PPmは一〇〇万分の一)以下に保たれることを確認したことが認めら
れ、その合理性に疑いを入れるような証拠はない。したがって、ナトリウム中に不
純物が生じ、右不純物による腐食によって配管が破損したり、破断したりすること
は想定し難いということができる。
(ロ) 浸炭、脱炭について
 浸炭や脱炭は、活性炭素濃度の相違(これは、温度や材料の種類により異な
る。)により、ナトリウムを介して炭素が移行し、ナトリウム接液部の構造材の表
面近傍の炭素濃度が変化することであり、これが起こると材料の強度特性に影響を
及ぼすおそれがある。
 この点、弁論の全趣旨によれば、一次主冷却系設備の材料であるオーステナイト
系ステンレス鋼は、浸炭する傾向となること、また、二次主冷却系設備の配管や過
熱器の伝熱管の材料であるオーステナイト系ステンレス鋼と、蒸発器の伝熱管の材
料であるクロム・モリブデン鋼とにおける活性炭素濃度の相違により、オーステナ
イト系ステンレス鋼は浸炭し、また、クロム・モリブデン鋼は脱炭される傾向にあ
ることが認められる。しかし、本件原子炉施設において、浸炭や脱炭が材料の強度
特性に影響を及ぼす程度に至ることをうかがわせるに足りる証拠はなく、これら浸
炭、脱炭による材料の強度特性への影響を考慮し配管の具体的
な設計において、浸炭、脱炭による強度低下を考慮した設計とすることは十分可能
であるということができるから、浸炭、脱炭は、本件安全審査の対象となる本件原
子炉施設の基本設計ないし基本的設計方針の合理性を左右するものではないという
べきである。
 したがって、原告らのこの点についての主張は理由がない。
(二) 配管における破損の様相について
(1) 原告らは、一次主冷却系設備や二次主冷却系設備における配管の破損は、
ナトリウムと構造材との共存性、熱応力、クリープ疲労、地震による外力等、複雑
な原因が組み合わさって起こるものであるから、本件原子炉施設においても瞬時両
端完全破断が起こる旨主張する。
 しかし、証人P8(P8調書一・四一丁表ないし四二丁表、八八丁表)は、一次
主冷却系設備の配管及び二次主冷却系設備の配管については、右(一)のとおり、
それが破損する可能性は低く抑えられているし、万一、破損が生じるとしても、右
破損は、熱膨張や過渡的な熱応力の繰り返しによるものが支配的であるため、肉厚
を貫通した疲労き裂の形態をとるため、冷却材の漏えいは配管の表面部に生じた微
小な開口部からの漏えいとなる上、配管内は低圧であるから、急速な破断に進展す
るおそれはなく、また、右漏えいは、ナトリウム漏えい検出器により早期に検出さ
れ、原子炉を停止するなどの所要の措置が採られることから、漏えい先行型破損
(LBB)の様相となる旨証言しており、右証言は十分合理的であり、信用でき
る。
 したがって、配管の瞬時両端完全破断が起こることは想定し難いから、原告らの
この点についての主張は理由がない。
(2) 原告らは、一九八六(昭和六一)年一二月にアメリカのサリー原子力発電
所二号炉(PWR)で発生した二次系給水ポンプ入口配管の大口径破断事故を根拠
に、本件原子炉施設においても、一次主冷却系設備の配管において大口径破断が起
こる可能性がある旨主張する。この点、後記(第八の二)のとおり、右事故の原因
は、不十分な水質管理の下に生じた腐食と不適切な配管の接続によって生じた冷却
水の流れの急変による侵食とが重なって配管の内面が著しく減肉され、破断するに
至ったことにある。しかし、サリー二号炉はPWRであるところ、PWRは、配管
内の圧力が一〇〇気圧を超えるが、本件原子炉施設の一次主冷却系の配管内の圧力
は八気圧程度であり、PWRと比べて十分の一にも及ばない
ことは当事者間に争いがない。そうすると、前記(一、3、(一)、(1))のと
おり、本件安全審査においては、一次主冷却系設備の配管の健全性を確認している
が、仮に破断が起こることを仮定しても、大口径破断を起こすことは考えられな
い。
 したがって、右サリー二号機の事故は、本件安全審査の合理性を左右するもので
はない。
(3) 原告らは、平成三年六月に本件原子炉施設の二次主冷却系配管が設計とは
逆方向に変位した事象、一九九〇(平成二)年四月にスーパーフェニックスで発生
した二次系ナトリウム漏えい事故、一九六六(昭和四一)年一〇月のフランスの実
験炉ラプソディでの二次系ナトリウム注入配管破裂事故、一九六七(昭和四二)年
五月の英国の高速実験炉DFRでの一次冷却系配管からのナトリウム漏えい事故
等、国内外の高速増殖炉において発生した事故例を挙げ、本件原子炉施設の一次、
二次主冷却系設備の配管においても瞬時両端完全破断が起こる可能性がある旨主張
する。
 しかし、乙イ四七・三・四・四―三頁及び乙イ四八・三・四・四―一頁及び乙ニ
二の一(証人P9調書一)一七丁表、一八表によれば、本件原子炉施設で生じた事
象は、二次主冷却系設備の配管が原子炉格納容器を貫通する部位に気密性をもたせ
るために設けられたベローズ(蛇腹状の伸縮可能な継手)を製作するに当たって、
その剛性を計算値よりも硬く製作したために生じたものであったことが認められる
ところ、右は機器の製作の問題であり、本件原子炉施設の基本設計ないし基本的設
計方針に関連するものではないから、本件安全審査の合理性を左右するものではな
い。
 また、甲イ五一及び甲イ九三によれば、原告らの主張する海外の高速増殖炉にお
ける事故は、いずれも二次主冷却系設備の配管が瞬時に両端完全破断したものでは
ないことが認められるから、これらの事故等が発生した事実から本件原子炉施設に
おいて一次、二次主冷却系設備の配管が瞬時に両端完全破断する可能性があるとい
うことはできない。
 したがって、原告らのこの点についての主張は理由がない。
(三) 配管、機器等の保守点検について
 原告らは、一次冷却材のナトリウムが放射化されるため原子炉の停止中も一次主
冷却系設備の配管には近づくことができず、また、原子炉の停止中も凝固を避ける
ためにナトリウムを高温に保つので、配管等の保守点検作業が不可能である旨主張
する。
 しかし、具体
的な保守点検作業の方法は本件安全審査の対象となるものではないから、原告らの
右主張は、その前提において失当である。
5 原子炉カバーガスのバウンダリの健全性についてト原告らは、フランスのスー
パーフェニックスにおいて一九九〇(平成二)年六月に発生した原子炉容器内のナ
トリウム液面を覆っているアルゴン・カバーガス中に空気が混入した事故が発生し
たことを挙げ、本件原子炉施設においても同様の事故が起こる旨主張する。
 この点、後記(第八、五)のとおり、右事故の原因は、フィルタカートリッジ系
カバーガスの放射能測定系のポンプシール膜が部分的に裂け、空気がカバーガスに
混入し、その結果、一次系ナトリウムが酸素等により汚染し、プラギング温度が上
昇したことにあるが、これに対し、乙一六・八―八―一〇頁、三八頁によれば、本
件安全審査においては、本件原子炉施設の一次アルゴンガス系内の圧力は、右アル
ゴンガス系が配置される各部屋の雰囲気の気圧よりも若干高くなるように保持され
ることを確認したことが認められ、その合理性に疑いを入れるような証拠はない。
 したがって、本件原子炉施設において、仮に右アルゴンガス系の設備に破損が生
じたとしても、アルゴン・カバーガス中に空気が混入することは想定し難い。した
がって、原告らのこの点についての主張は理由がない。
6 蒸気発生器について
 原告らは、本件原子炉施設の蒸気発生器につき、①蒸気発生器の伝熱管は、応力
腐食割れ、腐食、脱炭、浸炭などにより損傷する、②蒸気発生器の伝熱管に採用さ
れているヘリカルコイル型は、溶接時における残留応力が問題であると共に、伝熱
管の組立てが困難である、③供用期間中の検査に使用するとされている探傷用プロ
ーブが、本件原子炉施設の総合機能試験の際に一部の伝熱管に挿入できなかったこ
とからすると、伝熱管内には四ミリメートル以上の溶接の垂れ込みがあるなどと主
張して、本件原子炉施設においては蒸気発生器伝熱管破損事故が発生するおそれが
ある旨主張する。また、原告らは、④本件安全審査において水漏えい検出設備であ
る水素計の設置箇所や機能が審査されていないのは不当である旨主張する。この点
についての当裁判所の判断は、原告らの主張が多岐にわたるので、蒸気発生器伝熱
管破損事故に関する原告らの主張に対する判断と併せて、後記(第六、七)におい
て別項を設けて判断する。
7 原子炉停止系の信頼
性について
(一) 共通原因故障について
 原告らは、本件原子炉施設には、原子炉停止系として作動原理を同じくする調整
棒及び後備炉停止棒の二系統のスクラム機構しかないので、調整棒と後備炉停止棒
とにコモンモード・フェイリア(共通原因故障)が発生した場合には原子炉が停止
不能の状態に陥る旨主張する。そして、この点、甲イ一三、甲イ一三九及び甲二六
の二(証人P10調書五)三七頁ないし三九頁には、他の原子炉施設において共通
原因故障が現実に発生した旨の証言ないし記載がある。
 しかし、前記(一、2、(一)及び同(三))に加え、乙一六・八―一―五二
頁、五四頁、六一頁、六二頁、八―三―一五ないし一八頁、八―九―三〇頁、三一
頁、乙イニ及び乙イ七九によれば、本件安全審査においては、①本件原子炉施設の
原子炉停止系は、互いに独立した主炉停止系と後備炉停止系とから構成されてお
り、このうちいずれか一方の系統が作動しさえすれば本件原子炉を確実に停止する
ことができること、②原子炉停止系を作動させる安全保護系を構成する検出器、論
理回路及び原子炉トリップ遮断器は、同じ機能を有するものが二つ以上設けられて
おり(多重性)、かつ、右検出器等は、その各々が環境条件の変動(機器がさらさ
れる雰囲気の温度、湿度の上昇等)や運転状態の変動(機器に供給される電源の喪
失等)があっても、同時に故障したり、一つの機器に故障が生じても、その影響を
受けて他の機器が故障したりすることがないように考慮した対策が講じられている
(独立性)こと、③原子炉の緊急停止に際しては、重力により制御棒が炉心内に挿
入されるが、加速機構も働き、主炉停止系の制御棒はガス圧力により、後備炉停止
系の制御棒はばねの力により、それぞれ炉心内に加速挿入される設計となっている
こと、④原子炉停止系の制御棒を保持する電磁石及び右加速機構は、個々の制御棒
駆動機構ごとに個別に備え付けられ、独立性を有していることを確認したことが認
められ、その合理性に疑いを入れるような証拠はない。
 したがって、本件原子炉施設においては、原子炉停止系及び安全保護系が共通の
原因によって故障が生じることはなく、本件原子炉施設が停止不能の状態に陥るこ
とは想定し難いということができるから、原告らのこの点についての主張は理由が
ない。
(二) 自己融着について原告らは、ナトリウム中での自己融着によって制御棒が
固着し、原
子炉の緊急停止が阻害される旨主張する。
 自己融着とは、同一の金属材料が高温下で互いに強い力で接触した場合に、材料
間の原子の拡散により融着する現象であり、金属材料の一般的性質である。しか
し、仮に本件原子炉施設において自己融着が起こるとしても、それは適切な設備の
保守、点検により十分回避することが可能であるといえるから、自己融着は本件安
全審査の対象となる本件原子炉施設の基本設計ないし基本的設計方針の妥当性を左
右するものではないというべきである。
 したがって、原告らのこの点についての主張は理由がない。
(三) セイラム一号炉、浜岡一号炉の事故について
 原告らは、一九八三(昭和五八)年二月に米国のセイラム一号炉(PWR)にお
いて、制御棒が電流遮断器(本件原子炉施設の原子炉トリップ遮断器に相当す
る。)の固着により自動的に挿入されなかった事象や、昭和六三年二月に中部電力
株式会社の浜岡一号炉(BWR)において、原子炉再循環ポンプが停止した時に原
子炉が緊急停止しなかったことを挙げて、本件原子炉施設においても、原子炉の緊
急停止に失敗するおそれがある旨主張する。
 しかし、乙イ七四によれば、浜岡一号炉では、もともと原子炉再循環ポンプの停
止信号によって直接原子炉を緊急停止する仕組みにはなっていないことが認めら
れ、これに反する甲イ一二は採用できない。したがって、原告らの主張はその前提
を欠くものである。
 また、後記(第八、一三)のとおり、セイラム一号炉の固着の原因は、電流遮断
器可動部(ラッチ部)の潤滑が適切でなかったという保守点検上の過誤によるもの
であった。
 したがって、右事故は本件原子炉施設の基本設計ないし基本設計方針と関連する
ものではなく、本件安全審査の合理性を左右するものではない。したがって、原告
らのこの点についての主張は理由がない。
(四) 地震時の電源喪失について
 原告らは、地震などによって停電が起こった場合は、制御棒を挿入する原子炉緊
急停止装置が同時に故障し、原子炉の緊急停止に失敗する旨主張する。この点、甲
イ一九九にはこれに沿う記載があり、また、甲ニ六の一(証人P10調書四)四五
頁、四六頁にも同旨の証言がある。
 しかし、前記(一、2、(一)及び同(三))に加え、乙一六・八―一―三五
頁、一一三頁、八―九―二八頁、二九頁、四二頁、八―一〇―五ないし七頁及び乙
イ五によれば、本件安全審査において
は、①一定以上の地震動を検知した場合や外部電源を喪失した場合には、安全保護
系の原子炉トリップ信号(「地震加速度大」信号、「常用母線電圧低」信号)によ
り、原子炉は緊急停止すること、②原子炉緊急停止装置は、安全上特に重要な施設
としてAsクラスの耐震設計が行われ、系統的にも多重性、独立性を有しているこ
と、③主炉停止系及び後備炉停止系の各制御棒については、全体モックアップ試験
を行って、地震時でもこれを挿入し得ることが総合的に確認されたこと、④外部電
源喪失に対しても、非常用電源設備が備えられているほか、原子炉緊急停止装置に
は、電源を喪失した場合、制御棒保持用マグネットが消磁して即時に制御棒が自動
的に炉心に挿入されるというフェイルセイフ機能があることを確認したことが認め
られ、その合理性に疑いを入れるような証拠はない。
 したがって、本件原子炉施設においては、設計用限界地震を想定しても、緊急停
止機能が失われることはなく、地震とそれに伴う外部電源の喪失によって、原子炉
を緊急停止することができなくなることは想定し難いということができるから、原
告らのこの点についての主張は理由がない。
(五) 制御棒駆動電動機の駆動荷重増加について
 なお、本件原子炉施設の試運転中の平成四年九月二八日に、主炉停止系の一三本
ある制御棒駆動機構のうち、微調整棒用の駆動機構三本において、制御棒を駆動す
る電動機の駆動荷重が増加するという事象が生じ、平成六年一一月一一日及び平成
七年五月二四日にも右三本のうち一本に同様の事象が発生した。
 しかし、乙イ七三によれば、右荷重増加の原因は、制御棒駆動機構の駆動軸と上
部案内管部の遮へい体との間隙に、ナトリウム化合物が付着したことによるもので
あり、右ナトリウム化合物はアルゴンガス中の不純物とナトリウム蒸気等の反応に
より生成されたものと推定されるところ、右事象は、①増加した荷重の程度が荷重
限界を下回るものであったこと、②荷重の増加が一時的なものであり、すぐに通常
の荷重に復帰したこと、③主炉停止系の他の制御棒駆動機構一〇本及び後備炉停止
系の制御棒駆動機構六本には、右のような事象は生じてなかったことから、原子炉
の安全性に影響を及ぼすものではなかったことが認められる。したがって、右事象
の発生は、本件安全審査の合理性を左右がするものではないというべきである。
8 緊急炉心冷却装置(ECCS)に
ついて
 原告らは、緊急炉心冷却装置が存在しない本件原子炉施設は、安全性が確保され
ない旨主張する。
 この点、軽水炉においては、緊急炉心冷却装置の設置が要求されているが(「安
全設計審査指針」指針四〇参照)、乙ニ二の一(証人P9調書一)三六丁裏、三七
丁表によれば、これは、軽水炉では、冷却材(軽水)が高温、高圧で使用されるた
め、冷却材が漏えいした場合、圧力が低下することにより冷却材が沸騰(減圧沸
騰)し、炉心から冷却材が喪失する事態となる可能性があるためであることが認め
られる。
 しかし、前記(2、(1))のとおり、本件原子炉施設においては、冷却材ナト
リウムはいかなる運転範囲においても沸騰することはなく、また、証人P8の証言
(P8調書一・八八丁裏、八九丁表)、乙一六・八―一1―二九頁、乙イ四及び乙
二―二の一(証人P9調書一)三六丁裏ないし三九丁裏によれば、後記(第六、
二、4、(二)、(5)、(ロ))にも示すとおり、本件安全審査においては、配
管の高所引回し及びガードベッセルの設置により、冷却材が漏えいした場合であっ
ても、冷却材は最低限保持されなければならない液位(エマージェンシ・レベル)
以上に保持されること、冷却材の漏えい時に、配管のむち打ちや流出流体のジェッ
ト力によってガードベッセル等が損傷を受けることはないことを確認したことが認
められ、その合理性に疑いを入れるような証拠はない。
 したがって、本件原子炉施設において冷却材が喪失する事態に陥ることは想定し
難いから、本件原子炉施設に緊急炉心冷却装置がないからといって、その安全性が
確保されないものではなく、原告らのこの点についての主張は理由がない。
9 「フェイルセイフ」及び「フール・プルーフ」について
 原告らは、本件原子炉施設には、フェイルセイフ(故障、誤動作が生じたときに
機器は安全側に作動するという原則)、フール・プルーフ(人為的ミスにより重大
な事態を引き起こすことがあり得ないという原則)が成り立たない旨主張する。
 しかし、前記(一、2、(3))のとおり、本件安全審査においては、安全保護
系について、フェイルセイフの設計とされることを確認したことが認められ、これ
が不合理であるとする証拠はない。したがって、本件原子炉施設においてフェイル
セイフが成り立たないということはできない。
 フール・プルーフについては、確かに、後記第八のチェルノブイ
リ事故、TMI事故等にみられるように、基本設計において安全性が確保し得るも
のとされた原子炉施設であっても、その後の段階である建設、運転等において重大
な瑕疵があれば、基本設計上は予想されていなかった重大な事故が発生する可能性
があることは否定することができない。すなわち、運転段階においていかなる人為
ミスが生じた場合であっても、絶対に事故を起こさない設計とすることは理想であ
るとしても、現実的には不可能ということができ、本件原子炉施設の安全性を確保
するためには、一定水準以上の運転管理等が行われることが必要と解される。しか
し、そのことは、明らかに本件原子炉施設の基本設計ないし基本的設計方針とは直
接関係しないから、本件安全審査の合理性を左右するものではない。したがって、
原告らのこの点についての主張は理由がない。
四 まとめ
 以上のとおり、本件原子炉施設の安全設計についての本件安全審査における調査
審議及び判断の過程に、重大かつ明白な瑕疵といえるだけの看過し難い過誤、欠落
があるとは認められないというべきである。
第五 本件原子炉施設の平常運転時における安全性
一 本件安全審査の内容
 乙七ないし一〇、乙一四の一ないし三、乙一六、乙二二、乙二三及び乙イ六並び
に弁論の全趣旨によれば、本件原子炉施設の平常運転時における公衆の被曝線量評
価(平常運転時における安全性)についての本件安全審査の内容につき、次のとお
りと認められる。
1 意義
 平常運転時における公衆の被曝線量評価は、平常運転時における被曝低減対策と
しての安全設計の妥当性を確認した上で、その妥当性を別個の側面から確認するた
めに、本件原子炉施設の通常運転時に周辺環境に放出される放射性物質による一般
公衆の被曝線量が、「許容被曝線量等を定める件」の定める「公衆の許容被曝線
量」を十分下回るだけでなく、合理的に達成できる限り低く保たれ得ること(AL
ARAの考え方を満たすこと)を定量的に確認するために行うものである。
2 本件許可申請における本件原子炉施設周辺の一般公衆の被曝線量の評価内容本
件安全審査においては、本件許可申請における本件原子炉施設周辺の一般公衆の被
曝線量評価について、次のとおりと確認した。
(一) 大気中に放出される放射性物質の年間放出量
(1) 気体廃棄物中の放射性物質は、核分裂生成物である放射性希ガス及び放射
性よう素並びに一次冷却材中の不純
物及び炉上部カバーガスのアルゴン等の放射化反応により生成する放射性アルゴン
である。
(2) 年間放出量の計算は次の項目に分けて行われている。
(イ) 気体廃棄物処理設備から放出される希ガス及びよう素
 気体廃棄物処理設備に収集される気体廃棄物は、一次アルゴンガス系設備の圧力
制御に伴い排出される廃ガス、燃料取扱い及び貯蔵設備のガス置換に伴い排出され
る廃ガス、使用済燃料の洗浄廃ガス、遮へいプラグ周りの機器のガス置換に伴い排
出される廃ガス等であり、気体廃棄物処理設備に移行する希ガス及びよう素の量
は、各廃ガスごとに、廃ガス中に混入する一次アルゴンガスの量、一次アルゴンガ
ス中の希ガス及びよう素の濃度等を考慮して計算されている。さらに、燃料取扱い
及び貯蔵設備からの廃ガスについては、燃料取扱時に欠陥燃料から燃料移送ポット
内に放出される希ガス及びよう素についても考慮して計算されている。
 気体廃棄物処理設備から排気筒を経て放出される希ガスの量は、気体廃棄物処理
設備に移行したキセノン、クリプトンが、活性炭吸着装置においてそれぞれ三〇日
間、四〇時間保持されるものとして計算されている。よう素については、希ガスと
同様に活性炭吸着搭に導かれ、ほとんど除去されるので放出量の計算に当たっては
無視されている。
(ロ) 原子炉格納施設の換気により放出される希ガス及びよう素原子炉格納施設
の換気により放出される気体廃棄物中の放射性物質は、機器、弁等から原子炉格納
容器内に漏えいした炉上部カバーガス中に含まれる希ガス及びよう素であり、その
希ガス及びよう素の量は、炉上部カバーガスの漏えい率、炉上部カバーガス中の放
射性物質の濃度、原子炉停止時の換気回数、原子炉運転時の換気量、原子炉格納容
器内での減衰時間等を考慮して、原子炉停止時と原子炉運転中に分けて計算されて
おり、原子炉停止時の換気回数は、先行軽水炉の最近の運転実績等を参考にして年
一〇回としている。
(ハ) 原子炉補助建物の換気により放出される希ガス及びよう素
 原子炉補助建物の換気により放出される気体廃棄物中の放射性物質は、一次アル
ゴンガス系設備及び気体廃棄物処理設備から原子炉補助建物に漏えいした一次アル
ゴンガス、放射性廃ガス等の中に含まれる希ガス及びよう素であり、換気により放
出される希ガス及びよう素の量は、一次アルゴンガス、放射性廃ガス等の漏えい率
及び漏えいしたガス中の
放射性物質の濃度等を用い、原子炉補助建物における減衰効果を無視して計算され
ている。
(ニ) 共通保修設備から放出されるよう素
 共通保修設備から放出される気体廃棄物中の放射性物質は、機器洗浄廃ガスの中
に含まれるよう素(機器洗浄の際に機器表面に付着していた一次冷却材から移行し
たもの)であり、その量は、一次冷却材中のよう素の洗浄廃ガスヘの移行率等を考
慮して計算されている。
(3) 計算の結果、希ガスの年間放出量は約二三〇〇キπリー、よう素の年間放
伽出量は、よう素一三一約○・○〇四四キュリー、よう素一三三約○・○○〇四キ
ュリーであるとされた。なお、他に放射化生成物としてアルゴン三七、アルゴン三
九、アルゴン四一が生成されるが、これらの年間放出量はそれぞれ約五キュリー、
約四〇キュリー、約一〇キュリーであり、希ガスの年間放出量に含めて評価されて
いる。
(二) 海洋中に放出される放射性物質の年間放出量
(1) 液体廃棄物は機器、使用済燃料等の洗浄の際に生じる廃液、各建物機器か
らのドレン、床ドレン、防護衣類等を除染する際に生ずる洗濯廃液等であり、これ
らの中に含まれる主な放射性物質は、一次冷却材中に漏えいした核分裂生成物、一
次冷却材中の放射性腐食生成物及び放射化ナトリウムである。
 発生した液体廃棄物は、その性状に応じて分離回収された後、液体廃棄物処理設
備で蒸発濃縮、脱塩等の処理が行われ、処理水は放射性物質の濃度、水質等を考慮
して再使用、再処理又は所外放出される。
(2) 環境に放出される液体廃棄物の量は、処理モード、処理設備の性能、処理
水の再使用の割合等を考慮して計算されており、その結果、液体廃棄物の年間放出
量の計算値は約三五〇〇立方メートルで、その中に含まれる放射性物質の量はトリ
チウムを除いて約○・一四キュリーとされた。ただし、液体廃棄物中の放射性物質
による被曝線量の計算を行うに当たっては、処理水の再使用の条件等を考慮して、
放射性物質の年間放出量はトリチウムを除いて二キュリー、トリチウムについては
海外高速炉の実状を参考として二五〇キュリーとされた。
(三) 被曝線量の計算
(1) 気体廃棄物中の希ガスによる全身被曝線量
 気体廃棄物中の希ガスによる全身被曝線量の計算は、排気筒から放出され拡散移
動する放射性雲からのガンマ線による外部全身被曝線量を対象に行われ、計算に当
たっては、希ガスの年間放出量及びガ
ンマ線の実効エネルギーを基礎に、連続放出、間けつ放出の放出モードを考慮し
て、気象資料の統計整理により得られた風向別大気安定度別風速逆数の総和及び平
均を用いて「線量評価指針」に示された方法により、周辺監視区域外における希ガ
スのガンマ線による全身被曝線量が計算された。計算の結果、希ガスのガンマ線に
よる全身被曝線量は、周辺監視区域外の最大となる場所において年間約○・〇七四
ミリレムであるとされた。
(2) 液体廃棄物中の放射性物質による全身被曝線量
 液体廃棄物中の放射性物質による全身被曝線量の計算は、放射性物質が海産物を
介して人体に摂取される場合の内部全身被曝線量を対象に行われ、計算に当たって
は、人体の放射性物質の摂取率は、海水中の放射性物質濃度、海産物の濃縮係数、
海産物摂取量等を考慮して、「線量評価指針」に示された方法により、周辺監視区
域外における全身被曝線量が計算された。なお、海水中の放射性物質濃度について
は、復水器冷却水放水口濃度が用いられた。計算の結果、液体廃棄物中の放射性物
質による全身被曝線量は年間約○・〇六六ミリレムであるとされた。
(3) 甲状腺被曝線量の計算
 甲状腺被曝線量の計算は、気体廃棄物中のよう素及び液体廃棄物中のよう素に着
目し、これが呼吸、葉菜及び海産物を介して、成人、幼児及び乳児にそれぞれ摂取
される場合の内部甲状腺被曝線量を対象に行われた。気体廃棄物中のよう素による
甲状腺被曝経路は、呼吸摂取、葉菜摂取及び牛乳摂取があるが、本件原子炉施設近
辺においては乳牛が飼育されておらず、また、牧草地もないことから、被曝経路と
しては、呼吸摂取と葉菜摂取が扱われた。
 人体のよう素摂取率は、空気中又は海水中のよう素濃度、呼吸率、空気中のよう
素が葉菜に移行する割合、海産物の濃縮係教、食物摂取量等を考慮して、「線量評
価指針」に基づき計算されたが、右計算に当たっては、よう素の地表空気中濃度
は、年間放出量と、気象資料の統計整理により得られた風向別大気安定度別風速逆
数の総和及び平均を用いて求め、海水中のよう素濃度は、復水器冷却水放水口濃度
が用いられた。また、人体に摂取されたよう素の甲状腺に移行する割合は、摂取食
物中に含まれる安定よう素の量によって変化することを考慮し、各被曝経路におけ
る安定よう素摂取量に応じて計算された。
 計算の結果、よう素に起因する甲状腺被曝線量は、本件敷地境界外
の最大となる場所において、幼児及び乳児がよう素を呼吸及び葉菜を介して摂取
し、かつ、海草類を摂取するとした場合が最大となり、その値は年間約○・六六ミ
リレムであるとされた。
3 本件安全審査における評価
 本件安全審査においては、本件許可申請における本件原子炉施設周辺の一般公衆
の被曝線量評価について、次のとおり、妥当であると判断した。
(一) 計算方法の妥当性
 放射性物質の環境への放出については、海外高速炉における燃料被覆管の欠陥の
程度等の実績を参考とし、放射性物質が原子炉から排気口又は放水口に至るまでの
過程について解析し、放出径路ごとに計算されている。
 大気中に放出された放射性物質による一般公衆の被曝線量は、本件敷地における
一年間の気象資料を用いて算出された空気中濃度を基に計算され、また、海洋中に
放出された放射性物質による一般公衆の被曝線量は、復水器冷却水放水口濃度を用
いて計算されている。
 放射性物質の環境への放出量及び一般公衆の被曝線量の計算は、「線量評価指
針」を参考とし、その評価に際しては、LMFBRの設計の特徴を考慮して行われ
ている。
 以上のような本件許可申請における計算方法は、「線量評価指針」の考え方を参
考としており、また、炉型の違いにより同指針の方法が直接適用できない放出放射
性物質の発生源の計算については、本件原子炉施設の設計条件、運転計獅画及び関
連する試験研究の成果に基づいて行われており、妥当である。
(二) 計算結果の妥当性
 計算された周辺監視区域外での被曝線量の最大値は、全身被曝線量が年間約○・
一四ミリレム、甲状腺被曝線量が年間約○・六六ミリレムであり、本件原子炉施設
は、通常運転時における環境への放射性物質の放出量について、「許容被曝線量等
を定める件」の定める「公衆の許容被曝線量」を下回るのみならず、ARALAの
考え方を満たすような設計上の対策が講じられていると判断した。
 なお、右で評価された被曝線量のほかに、本件原子炉施設からの直接線量及びス
カイシャイン線量並びにベータ線による皮膚被曝線量、海水浴中に受ける被曝線
量、大気中に放出された粒子状放射性物質に起因する被曝線量等があるが、直接線
量及びスカイシャイン線量は、本件敷地境界外で合理的に達成できる限り低くなる
ように原子炉施設を設計し、管理することとしていること、これらの線量は、距離
が離れるに従って急激に減少す
るという性質を持っているため、一般公衆の被曝線量に寄与する地点は周辺監視区
域近傍に限られること、ベータ線による皮膚被曝線量等については、「発電用軽水
型原子炉施設の安全審査における一般公衆の被曝線量評価について」に示されてい
るように、一般に極めて小さい寄与しか与えないことから、これらによる線量を考
慮しても、周辺監視区域外における被曝線量は、「許容被曝線量等を定める件」の
定める「公衆の許容被曝線量」を十分下回っている。
(三) 結論
 以上から、本件安全審査においては、調査審議の結果、本件原子炉施設の平常運
転時における安全性について、本件原子炉施設が具体的審査基準に適合し、その基
本設計ないし基本的設計方針において、平常運転時における公衆の被曝線量を十分
低く抑えることができ、原子炉等による災害の防止上支障がないものとした。
二 当裁判所の判断
 被曝線量評価において用いられた計算方法には、特段不合理な点があるとは認め
られない。
2 そして、右解析の結果得られた周辺監視区域外での被曝線量の最大値は、全身
被曝線量が年間約○・一四ミリレム、甲状腺被曝線量が年間約○・六六ミリレムで
あり、いずれも、「許容被曝線量等を定める件」の定める「公衆の許容被曝線量」
年間○・五レムはもちろん、現在妥当性を有する「線量当量限度を定める件」の定
める「公衆の許容被曝線量」年間〇・二レムをも十分に下回っている。また、右被
曝線量は、「発電用軽水炉施設周辺の線量目標値に関する指針について」の定める
放射性希ガスからのガンマ線による全身被曝線量及び液体廃棄物中の放射性物質に
起因する全身被曝線量の合計値について年間五ミリレム、放射性よう素に起因する
甲状腺被曝線量について年間一五ミリレムの線量目標値をも下回っており、ALA
RAの考え方も満たしているといえる。そうすると、平常運転時における公衆の被
曝線量を十分低く抑えることができるとの結論においても、特段不合理な点は認め
られないというべきである。
3 したがって、本件安全審査における平常運転時における安全性についての調査
審議及び判断の過程に、重大かつ明白な瑕疵といえるような看過し難い過誤、欠落
があるとは認められない。
三 原告らの主張について
1 気体廃棄物の評価について
(一) 燃料被覆管の欠損率について
 原告らは、評価条件として、燃料被覆管の欠損率(欠陥率)を一パーセントとす
る根
拠はない旨主張する。
 しかし、前記(第四、三、3)のとおり、本件原子炉施設の燃料被覆管は健全性
が維持され得る。  
 さらに、これに加え、乙一六・八―九―八頁、九頁、二八頁、四二頁によれば、
本件安全審査においては、本件原子炉施設には、燃料の破損の発生及び破損燃料の
存在位置を検知し得る破損燃料検出装置が設置され、かつ、燃料破損時に設定値を
超えると、炉心を保護するため、「破損燃料検出」の原子炉トリップ信号が自動的
に発せられ、原子炉は緊急停止する設計になっていることを確認したことが認めら
れる。そうすると、燃料被覆管の欠陥率が一パーセントの状態(これは、乙一六・
八―三―二八頁によれば、燃料要素約三万三〇〇〇本のうちの約三三〇本が破損し
た状態に当たる。)で運転されるということは、ほとんど起こり得ないことという
ことができ、右評価条件は十分保守的であるといえる。したがって、原告らのこの
点についての主張は理由がない。
(二) 粒子状放射性物質について原告らは、気体廃棄物中に存在するコバルト六
〇、マンガン五四、ストロンチウム九〇、セシウム:二七等の粒子状放射性物質を
評価していないのは不当である旨主張する。
 しかし、乙イ六九によれば、右核種は、原子炉施設の平常運転時の気体廃棄物中
にはほとんど存在しないことが認められるから、被曝評価に与える影響は小さいも
のと認められる。したがって、右核種の評価を行わないことが、原子炉施設の平常
運転時における周辺公衆の被曝線量評価の目的に照らして不合理であるとはいえな
い。
 なお、乙一六・九―四―一四頁、一八頁、九―五―六ないし八頁によれば、液体
廃棄物による被曝評価においては、右核種は、その放出及び放出経路が評価された
上で考慮されていることが認められる。
(三) 希ガスの放出回数について
 原告らは、原子炉格納施設の換気による希ガスの放出回数を年間一〇回とする根
拠はない旨主張する。
 しかし、乙一六・八―一四―三頁によれば、右換気は、原子炉停止時に申請者の
従業員が原子炉格納容器内に立ち入る際にされるものであることが認められるとこ
ろ、前記(一、2、(一)、(2)、(ロ))のとおり、本件安全審査において
は、右換気回数は、先行軽水炉の最近の運転実績等を参考にして想定したものであ
ることを確認している。また、弁論の全趣旨によれば、我が国の原子力発電所の年
間停止回数の平均値は二回
未満であることが認められる。したがって、右評価条件は十分保守的ということが
でき、原告らのこの点についての主張は理由がない。
(四) 計算過程について原告らは、①気体廃棄物中の希ガスによる全身被曝線量
評価は、適切な現地実験を行わずに、パスキル拡散式を用いて計算していること、
②大気中の濃度計算では、風がほとんどない静穏時の拡散有風時に置き換えて計算
していることなど、計算過程に問題があり不当である旨主張する。
 しかし、乙四・一二六頁、一七頁、一三七ないし一三九頁、一四六頁によれば、
右線量評価は、「気象指針」に準拠したものであることが認められるから、何ら不
当な点はない。したがって、原告らのこの点についての主張は理由がない。なお、
乙四・一四六頁によれば、「気象指針」が静穏時の風速を秒速○・五メートルとし
て有風時の拡散式を適用することとしているのは、静穏時に適用できる適切な拡散
式が現在存在しないところ、一般的に静穏時とされている場合でも、感度のよい風
速計で見ると秒速○・五メートル以上の風速を示していることが多く、静穏時にお
いても大気による拡散希釈は行われているものと考えられる上、静穏時における放
射性雲からのガンマ線被曝も極端に高い観測値が得られていないことによるもので
あることが認められ、右拡散式に特段不合理な点は認められない。
2 液体廃棄物の評価について
(一) 原告らは、放射性液体廃棄物の年間放出量について、①共通保修設備廃液
の二〇パーセントが処理後再使用しないまま放出されるとしていること、②液体廃
棄物中の放出核種とその構成比、③トリチウムの放出量を二五〇キュリーとしてい
ることの三点は、根拠がなく恋意的である旨主張する。
 しかし、①については、乙一六・九―四-―一一頁、一二頁によれば、本件安全
審査においては、そもそも共通保修設備廃液は、蒸発濃縮後、濃縮廃液は固体廃棄
物として処理し、蒸留水は脱塩塔で更に浄化した後、原則として再使用されること
を確認したことが認められ、その合理性に疑いを入れるような証拠はない。したが
って、その二〇パーセントが放出されるとした評価条件は十分保守的ということが
できる。②については、乙一六・九―四―一二頁、二三頁によれば、本件安全審査
においては、燃料被覆管の欠陥率一パーセント等の条件を前提に、各種放射性廃棄
物処理設備の性能等を考慮した上で核種と構成比が算定さ
れていることを確認したことが認められ、その合理性に疑いを入れるような証拠は
ない。③については、前記(一、2、(二)、(2))のとおり、本件安全審査に
おいては、海外の高速炉の実情を参考にして設定されたものであることを確認した
ことが認められ、その合理性に疑いを入れるような証拠はない。
(二) なお、原告らは、①被曝線量評価に用いられている濃縮係数は、仮定的な
ものであり、これに基づいた被曝線量評価は現実性がない、②海産物摂取量につい
て、周辺住民の中でも標準的なものを対象とし、極端な摂取をする極めて少数の住
民を対象としていないのは、安全側に立った評価とはいえない、③放射性液体廃棄
物による外部被曝線量評価を行っていないのは過小評価であるなどと主張するが、
これらはすべて「線量評価指針」に準拠したものであり、右評価条件を設定した
「線量評価指針」が合理的であることは、前記(第二、三、4)のとおりである。
 したがって、原告らのこれらの主張はいずれも理由がない。
3 プルトニウムについて
 原告らは、本件原子炉施設において燃料として用いられているプルトニウム(プ
ルトニウム二三九。以下同じ。)は、放射性物質の中で最も毒性の強い物質であ
り、これを十分管理することはできないから、本件原子炉施設の安全性は確保され
ない旨主張する。
 しかし、前記(第一、三、2)のとおり、原子炉施設の安全性の確保とは、原獅
子炉施設の有する潜在的危険性を顕在化させないよう、放射性物質の環境への放出
を可及的に少なくし、これによる災害発生の危険性を社会通念上容認できる水準以
下に保つことであるから、本件原子炉施設においてこれが満たされている限り、本
件原子炉施設の安全性は確保されているということができる。したがって、本件原
子炉施設において燃料としてプルトニウムを用いているということだけで、本件原
子炉施設の安全性が確保されないということはできない。
 ところで、プルトニウムは、①天然には存在しない人工放射性核種である、②ア
ルファ線放射性核種であり、比放射能(単位質量あたりの放射能)がウラン二三五
より高い、③半減期が二万四一〇〇年と長いという特徴を有することは当事者間に
争いがない。
 しかし、前記(第一、三、1、(二)、(2))のとおり、放射線には、アルフ
ァ線、ベータ線、中性子線、ガンマ線、エックス線といった種類があるが、右種別
のほかに人
工放射性核種の放射線と自然放射性核種の放射線とで違いがあるという証拠はな
い。そして、乙ロ三によれば、放射線の種類の相違による人体に与える影響の相違
は、被曝の影響を全ての放射線に共通する尺度で評価するために用いられる線量当
量の単位(レム又はシーベルト)を定めるに当たって、吸収線量及び生体の組織に
よる相違とともに考慮されていることが認められる。
 また、右のとおり線量当量は吸収線量を考慮に入れた単位であるところ、前記
(第一、三、1、(二)、(4))のとおり、吸収線量(単位はラド又はグレイ)
とは、照射された放射線が物質に当たった時に、その物質にそのエネルギーが吸収
される量であるから、放射線の照射量を決定する要素として半減期の長さも考慮さ
れているということができる。
 そうすると、原子炉施設の安全性が確保されているか否かを判断するためには、
右線量当量を単位として放射性物質の環境への放出量を評価し、その影響がこれを
無視することができる程度まで低いか否かを問題とすれば足り、それ以上に、プル
トニウムが人工放射性核種であること、アルファ放射性核種であることや半減期の
長さを独立に評価する必要はない。
 なお、②の点については、乙ロ一八によれば、プルトニウムの比放射能は、ウラ
ン二三五と比べれば高いが、天然に存在するラジウム、ラドンのそれよりは低いか
ら、プルトニウムだけが特別に危険であるとはいえない。
 したがって、原告らのこの点についての主張は理由がない。
四 まとめ
 以上のとおり、本件安全審査においては、調査審議の結果、本件原子炉施設の平
常運転時における安全性について、本件原子炉施設が具体的審査基準に適合し、そ
の基本設計ないし基本的設計方針において、平常運転時における公衆の被曝線量を
十分低く抑えることができ、原子炉等による災害の防止上支障がないものとした本
件安全審査における調査審議及び判断の過程に重大かつ明白な過誤、欠落があると
は認められない。
第六 本件原子炉施設の事故防止対策に係る安全性
 運転時の異常な過渡変化の解析評価に関する本件安全審査
 乙七ないし一〇、乙一四の一ないし三、乙一六、乙二二、乙二三及び乙イ六並び
に弁論の全趣旨によれば、運転時の異常な過渡変化の解析評価についての本件安全
審査の内容につき、次のとおりと認められる。
1 意義
 運転時の異常な過渡変化の解析評価は、事故防止対策としての
安全設計がされていることを前提として、原子炉施設の運転状態において、原子炉
施設寿命期間中に予想される機器の単一故障又は誤動作若しくは運転員の単一誤操
作などによって、原子炉の通常運転を超えるような外乱が原子炉施設に加えられた
状態及びこれらと類似の頻度で発生し、原子炉施設の運転が計画されていない状態
に至る事象を想定し、これらの事象が発生した場合における安全保護系、原子炉停
止系等の設計の妥当性を確認するために行うものである。
2 本件安全審査の審査方針
 本件安全審査においては、運転時の異常な過渡変化として選定された事象が妥当
であるか否かを審査した上、「評価の考え方」に基づき、「安全評価審査指針」等
を参考として、それぞれの事象について次の項目を具体的な判断基準として取り上
げ、申請者の実施した運転時の異常な過渡変化の解析を審査、評価した。
(一) 燃料被覆管が、プレナムガスの内圧により破損しないよう、被覆管肉厚中
心温度は八三〇℃以下であること。
(二) 冷却材が沸騰しないよう、炉心ナトリウム温度は沸点未満であること。
(三) 燃料被覆管が燃料溶融により破損しないよう、燃料温度は融点未満である
こと。
(四) 原子炉冷却材バウンダリの温度は、六〇〇℃、最高使用温度(℃)の一・
四倍のいずれをも超えないこと。
3 本件許可申請における解析対象
 本件許可申請においては、運転時の異常な過渡変化として、次の事象が取り上げ
られている。
(一) 炉心内の反応度又は出力分布の異常な変化
 ①未臨界状態からの制御棒の異常な引き抜き、②出力運転中の制御棒の異常な引
き抜き、③制御棒落下、
(二)炉心内の熱発生又は熱除去の異常な変化
 ①一次冷却材流量減少、②一次冷却材流量増大、③外部電源喪失、④二次冷却材
流量減少、⑤二次冷却材流量増大、⑥給水流量喪失、⑦給水流量増大、⑧負荷の喪

(三) ナトリウムの化学反応蒸気発生器伝熱管小漏えい
4 本件許可申請における運転時の異常な過渡変化の解析内容本件安全審査におい
ては、本件許可申請における運転時の異常な過渡変化の解析内容について、次のと
おりと確認した。
(一) 炉心内の反応度又は出力分布の異常な変化
(1) 未臨界状態からの制御棒の異常な引き抜き
(イ) 事象の内容
 制御棒駆動機構の誤動作又は運転員の誤操作により未臨界状態から制御棒が連続
的に引き抜かれ、中性子束が急速に上昇する場合を想定
する。
(ロ) 解析条件
(a) 過渡変化の初期状態として、原子炉は未臨界状態にあるものとする。
(b) 初期の原子炉熱出力は定格値の一・一パーセントとし、原子炉核出力は定
格値の一〇のマイナス六乗パーセントとする。
(c) 炉心の冷却材流量は定格値の四九パーセント、原子炉容器入口ナトリウム
の初期温度は三〇〇℃とする。
(d) 最大の反応度価値を持つ調整棒一本が最大速度で引き抜かれるものとし、
反応度挿入率は三セント毎秒とする。
(ハ) 解析結果
 異常発生後、「出力領域中性子束高(低設定)」の信号により、原子炉は自動停
止する。この事象による最大到達原子炉出力は定格値の約四八パーセント、燃料最
高温度は約五九〇℃、被覆管肉厚中心最高温度は約三六〇℃、炉心のナトリウム最
高温度は約三六〇℃にとどまる。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材、ハウンダリの温
度は、制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となる
ことはない。
(2) 出力運転中の制御棒の異常な引き抜き
(イ) 事象の内容
 原子炉出力制御系の誤動作又は運転員の誤操作などにより、原子炉出力運転状態
から制御棒が連続的に引き抜かれ、中性子束が急速に上昇する場合を想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 最大の反応度価値を持つ調整棒一本が最大速度で引き抜かれるものとし、
反応度挿入率は三セント毎秒とする。
(ハ)解析結果
 異常発生後、「出力領域中性子束高(高設定)」の信号により、原子炉は自動停
止する。この事象による原子炉の最大出力は定格値の約一一八パーセントであり、
燃料最高温度は約二四五〇℃、被覆管肉厚中心最高温度は約七〇〇℃である。ま
た、炉心のナトリウム最高温度は約六九〇℃にとどまり、被覆管肉厚中心温度及び
ナトリウム温度については、初期原子炉出力が定格値の九一パーセントの場合が最
も厳しくなるが、それぞれ約七二○℃、約七一〇℃である。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材バウンダリの温度
は、制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となるこ
とはない。
(3) 制御棒落下
(イ) 事象の
内容価原子炉出力運転中に、制御棒駆動装置の故障又は誤動作によって、制御棒一
本が引抜位置から炉心内に落下した場合を想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 調整棒一本の落下による原子炉出力の減少幅が小さく、原子炉が自動停止
に至らない場合として、マイナス二○セントの反応度が挿入されるものとする。
(c) 制御棒落下による最大線出力の増加率は一〇パーセントとする。
(d) 原子炉出力制御系は自動運転されているものとする。
(ハ) 解析結果調整棒が落下し、負の反応度が挿入されるので、原子炉出力及び
原子炉容器出口ナトリウム温度を設定値に制御する原子炉出力制御系の動作によっ
て微調整棒が引き抜かれ、初期運転状態の近傍に復帰する。この事象による原子炉
の最大出力は定格値の約一〇四パーセントである。燃料最高温度は約二五六〇℃、
被覆管肉厚中心最高温度は約七一〇℃である。また、炉心のナトリウム最高温度は
約六九〇℃となる。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となること
はない。
(二) 炉心内の熱発生及び熱除去の異常な変化①一次冷却材流量減少
(イ) 事象の内容
 原子炉出力運転中に一次主冷却系循環ポンプ主モータの電源喪失等により、炉心
流量が減少する場合を想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 定格出力運転中に一次主冷却系循環ポンプ一台の主モータがトリップし、
同ポンプはポニーモータによる低速運転に移行するものとする。
(ハ) 解析結果
 一次冷却系循環ポンプのトリップが発生すると、そのループの冷却材流量が減少
し、「一次主冷却系循環ポンプ回転数低」信号により原子炉は自動停止する。原子
炉容器出口ナトリウム温度は約五四〇℃まで、原子炉容器入口ナトリウム温度は約
四三〇℃までの上昇にとどまる。被覆管肉厚中心最高温度は約七一〇℃にとどま
り、炉心のナトリウム最高温度は約七〇〇℃となる。また、燃料温度は初期値より
わずかに上昇するだけである。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却
材、バウンダリの温度は、制限値を十分に下回るので、原子炉冷却材バウンダリの
安全性が問題となることはない。
(2) 一次冷却材流量増大
(イ) 事象の内容
 原子炉出力運転中に一次主冷却系流量制御系の故障等によって、炉心流量が異常
に増大し、原子炉出力が上昇する場合を想定する。(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 一次冷却材流量は、同流量制御系の故障により、ループの一次主冷却系循
環ポンプの回転数の上限値に対応する流量まで増大するものとする。
(c) 原子炉出力制御系は自動運転されているものとする。
(d) 制御棒引き抜き阻止による原子炉出力の抑制は無視するものとする。
(ハ) 解析結果
 一次冷却材流量の増大により、中間熱交換器一次側出口ナトリウム温度が異常に
上昇し、「中間熱交換器一次側出口ナトリウム温度高」信号により原子炉は自動停
止する。原子炉容器出口ナトリウム温度は、定格運転時に比べてほとんど上昇しな
い。原子炉容器入口ナトリウム温度は約四三〇℃までの上昇にとどまる。また、燃
料最高温度は約二四八○℃、被覆管肉厚中心最高温度は約六九〇℃にとどまる。炉
心のナトリウム最高温度は約六八○℃にとどまり、沸点に達しない。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となること
はない。
(3) 外部電源喪失
(イ) 事象の内容
 送電系統又は所内電源設備の故障等により、外部電源が喪失し、運転状態が乱さ
れる場合を想定する。
(ロ) 解析条件 
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 最も厳しい場合として、所内常用電源の供給がすべて失われるものとす
る。
(ハ) 解析結果
 電源喪失が発生すると、一次、二次主冷却系循環ポンプの駆動力が喪失し、「常
用母線電圧低」信号により原子炉は自動停止する。原子炉容器出口ナトリウム温度
は約五四〇℃まで、原子炉容器入口ナトリウム温度は約四三〇℃までの上昇にとど
まる。また、被覆管肉厚中心最高温度は約七三〇℃、炉心のナトリウム最高温度は
約七二〇℃にとどまる。燃料温度は初期値よりわずかに上昇するだけである。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回
っており、燃料の健全性が損なわれることはない。また、原子炉冷却材バウンダリ
の温度は、制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題と
なることはない。
(4) 二次冷却材流量減少
(イ) 事象の内容原子炉出力運転中に、二次主冷却系循環ポンプ主モータの電源
喪失等により、二次冷却材流量が減少し、原子炉容器入口ナトリウム温度が上昇す
ることを想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 定格出力運転中に二次主冷却系循環ポンプ一台がトリップし、同ポンプは
ポニーモータによる低速運転に移行するものとする。
(ハ) 解析結果
 二次主冷却系循環ポンプのトリップが発生すると、「二次主冷却系循環ポーンプ
回転数低」信号により原子炉は自動停止する。原子炉容器出口ナトリウム温度は定
格運転時に比べてほとんど上昇せず、原子炉容器入口ナトリウム温度についても約
四三〇℃までの上昇にとどまる。被覆管肉厚中心最高温度は約六八○℃であり、炉
心のナトリウム最高温度は約六七〇℃である。また、燃料温度は初期値以上に上昇
することはない。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材バウンダリの温度
は、制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となるこ
とはない。
(5) 二次冷却材流量増大
(イ) 事象の内容
 原子炉出力運転中に、二次主冷却系循環ポンプの可変速流体継手付M―Gセット
の故障等により、二次冷却材流量が増大し、原子炉容器入口ナトリウム温度が低下
し、原子炉出力が上昇する場合を想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 二次冷却材流量は、同流量制御系の故障により一ループの二次主冷却系循
環ポンプの回転数の上限値に対応する流量まで増大するものとする。
(c) 原子炉出力制御系は自動運転されているものとする。
(ハ) 解析結果
 二次冷却材流量の増大により、蒸発器出口ナトリウム温度が異常に上昇し、「蒸
発器出口ナトリウム温度高」信号により原子炉は自動停止する。原子炉容器出口ナ
トリウム温度は定格運転時に比べほとんど上昇しない。原子炉容器入口ナトリウム
温度は約四四〇℃までの上昇にとどまる。また、燃料最高温度は約二三六〇℃、被
覆管肉厚中心最高温度
は約六八○℃にとどまる。炉心のナトリウム最高温度は約六七〇℃にとどまる。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材バウンダリの温度
は、制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となるこ
ともない。
(6) 給水流量喪失
(イ) 事象の内容
 主給水ポンプの故障等により、給水流量が喪失し、蒸気発生器での除熱が不足
し、原子炉容器入口ナトリウム温度が上昇することを想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。鋤主給水ポンプが二台同時
にトリップするものとする。
(ハ) 解析結果
 主給水ポンプ二台がトリップすると、蒸気発生器の給水流量が減少し、蒸気発生
器での除熱量が減少するため、蒸発器出口ナトリウム温度が上昇し、「蒸発器出口
ナトリウム温度高」信号により原子炉は自動停止する。原子炉容器出口ナトリウム
温度は定格運転時に比べてほとんど上昇しない。原子炉容器入口ナトリウム温度は
約四五〇℃までの上昇にとどまる。また、被覆管肉厚中心最高温度は、約六八○℃
にとどまり、炉心のナトリウム最高温度は約六七〇℃までの上昇にとどまる。な
お、燃料温度は初期値以上に上昇することはない。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となること
はない。
(7) 給水流量増大
(イ) 事象の内容
 給水設備の故障等により、給水流量が増大し、原子炉容器入口ナトリウム温度が
低下し、原子炉出力が増加する場合を想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 給水流量は主給水ポンプ二台の回転数の上限値に対応する流量まで上昇す
るものとする。この時、蒸発器出口蒸気温度の制御は行われないものとする。ま
た、蒸発器出口蒸気温度の低下による給水遮断は生じないものとする。
(c) 原子炉出力制御系は自動運転されているものとする。
(ハ) 解析結果
 蒸気発生器の給水流量が定格値の約一三〇パーセントまで増大し、蒸気発生器に
おける熱交換量が増加するため、蒸発器出口ナトリウム温度及び中間熱交換器一次
側出口ナトリウム温度がそれ
ぞれ約:℃、約八℃低下する。この結果、原子炉容器出口ナトリウム温度は一時的
に降下するが、原子炉出力制御系の動作により、過渡変化の始まる前の温度近傍に
復帰する。原子炉出力は定格値の約一〇八パーセントまで上昇して整定する。原子
炉容器入口ナトリウム温度も定格値以上に上昇することはない。また、燃料最高温
度は二四五〇℃、被覆管肉厚中心最高温度は約六八○℃、炉心のナトリウム最高温
度は約六七〇℃にとどまる。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が損なわれることはない。また、原子炉冷却材ハウンダリの温度
は、制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が問題となるこ
とはない。
(8) 負荷の喪失
(イ) 事象の内容
 外部送電系統の故障やタービン制御系統の誤動作あるいはタービンの故障により
タービン負荷が喪失し、給水ポンプがトリップして蒸気発生器の除熱が不足し、原
子炉容器入口ナトリウム温度が上昇する場合を想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 負荷が完全に喪失するものとし、このとき主給水ポンプがトリップするも
のとする。
(c) 一次主冷却系の除熱に対して厳しい条件として、負荷喪失によるタービン
のトリップ及び「タービントリップ」信号に基づく原子炉の自動停止は無視する。
 また、この場合タービンバイパス弁及び主蒸気逃し弁は働かないものとし、過熱
器出口安全弁及び蒸発器出口安全弁が作動するものとする。
(ハ) 解析結果
 定格値の一〇〇パーセントから○パーセントヘの負荷喪失が発生すると、タービ
ンの余剰蒸気は過熱器出口安全弁及び蒸発器出口安全弁から系外へ放出される。主
給水ポンプの停止に伴い蒸気発生器への給水流量が減少し、蒸気発生器の除熱能力
が減少するため蒸発器出口ナトリウム温度が上昇し、「蒸発器出口ナトリウム温度
高」信号により原子炉は自動停止する。原子炉容器出口ナトリウム温度は、定格運
転時に比べほとんど上昇しない。原子炉容器入口ナトリウム温度は約四五〇℃まで
の上昇にとどまる。また、被覆管中心温度は約六八○℃、炉心のナトリウム最高温
度は約六七〇℃までの上昇にとどまる。なお、燃料温度は初期値以王に上昇するこ
とはない。
 したがって、燃料、被覆管及び冷却材の温度はいずれも制限値を十分下回ってお
り、燃料の健全性が
損なわれることはない。また、原子炉冷却材バウンダリの温度は、制限値を十分に
下回るので、原子炉冷却材バウンダリの健全性が問題となることはない。
(三) ナトリウムの化学反応
(1) 蒸気発生器伝熱管小漏えい
(イ) 事象の内容
 蒸気発生器の伝熱管で水の小漏えいが生じ、ナトリウム中への水漏えいにより微
小な規模のナトリウム・水反応が生じる場合を想定する。
(ロ) 解析条件
(a) 原子炉は定格出力運転状態にあるものとする。
(b) 解析対象ループは、水素の輸送遅れ時間を考慮し、二次主冷却系配管長が
最長のループとする。
(c) 水漏えいの位置は水漏えい検出器での遅れ時間を考慮し、蒸発器の管束部
上部とする。
(d) 水漏えい率範囲は○・一グラム毎秒以下とする。
(ハ) 解析結果
 水漏えい検出設備により、水漏えいを早期に検出し、十分な時間的余裕をもって
運転員が水漏えい信号を発し、それに基づいて、水・蒸気側の遮断、内部保有水の
ブロー等のプラント自動停止操作が行われ、ナトリウム・水反応は停止される。隣
接伝熱管の損耗は無視でき、その健全性が損なわれることはない。
 また、この場合、プラント自動停止操作が行われると、二次主冷却系循環ポンプ
がトリップされ、「二次主冷却系循環ポンプ回転数低」信号により、原子炉は自動
停止し、炉心及び原子炉冷却材バウンダリにとっては、前記((4))の「二次冷
却材流量減少事象」と同様な過渡変化となる。燃料の健全性並びに原子炉冷却材バ
ウンダリの健全性が問題となることはない。
5 本件安全審査における評価
(一) 事象選定の妥当性
 運転時の異常な過渡変化として取り上げられている事象については、「評価の考
え方」に基づき、「安全評価審査指針」等を参考として、事象選定解析の結果をも
考慮して炉心内の反応度又は出力分布の異常な変化、炉心内の熱発生又は熱除去の
異常な変化、ナトリウムの化学反応それぞれに対して、過渡変化の結果が厳しくな
る事象が選定されており、事象の選定は妥当であると判断した。
(二) 解析方法の妥当性
(1) 事象の解析に当たって考慮する範囲については、サイクル期間中の炉心燃
焼度変化や燃料交換等による長期的な変動及び運転中予想される異なった運転モー
ドが考慮されており、計測制御系、安全保護系等の作動状況及び運転員の操作の態
様が考慮されている。解析に使用されているモデル及びパラメータについては、そ
れぞれの事象に応じて評価の結果が厳しくなるように選定されており、また、パラ
メータに不確定因子が考えられる場合には、安全余裕が見込まれている。
(2) 解析に当たっては、作動を要求される安全系の機能別に結果を最も厳しく
する単一故障が仮定されており、事象の影響を緩和するのに必要な運転員の手動操
作のための時間的余裕は適切に見込まれている。また、各事象の解析に使用されて
いる計算コードは、実験結果等との比較によりその使用の妥当性が確認されてい
る。したがって、解析に用いられている条件及び手法は妥当であると判断した。
(三) 解析結果の妥当性
 いずれの事象の解析結果においても、被覆管肉厚中心温度炉心ナトリウム温度、
燃料、原子炉冷却材バウンダリの温度はいずれも制限値を十分下回っていると判断
した。
(四) 結論
 以上から、本件安全審査においては、本件原子炉施設は、自己制御性と安全保護
機能の動作があいまって、運転中に起こる異常な過渡変化を安定に収束し、燃料及
び原子炉冷却材バウンダリの健全性を保持できる設計であると判断した。
二 各種事故解析に関する本件安全審査
 乙七ないし一〇、乙一四の一ないし三、乙一六、乙二二、乙二三及び乙イ六並び
に弁論の全趣旨によれば、各種事故解析についての本件安全審査の内容につき、次
のとおりと認められる。
1 意義
 各種事故の解析評価は、事故防止対策としての安全設計がされていることを前提
として、発生頻度は極めて小さいが、万一発生した場合には、原子炉施設からの放
射能の放出の可能性がある事象を選定し、これらの事象の発生及び拡大を防止する
ために、各種の対策が取られていることを確認した上で、万一これが発生した場合
にも、その拡大を防止し、周辺への放射能の異常な放出を抑止するための十分な安
全防護対策がされているといえるか否か、安全防護機能の設計の妥当性を確認する
ために行うものである。
2 本件安全審査の審査方針
 本件安全審査においては、事故として選定された事象が妥当であるか否かを審査
した上、それぞれの事象について、事故の発生及び拡大を防止するための対策が取
られていることを確認し、また、「評価の考え方」に基づき、「安全評価審査指
針」を参考にして、次の項目を具体的な判断基準として取り上げ、事故の解析を審
査、評価した。
(一) 炉心は大きな損傷に至ることなく、かつ、十分な冷却が可能であること。
(二) 原子炉冷却材バウンダリの温度は、六五〇℃、最高使用温度(℃)の一・
六倍のいずれをも超えないこと。
(三) 格納容器バウンダリの温度及び圧力は最高使用温度(一五〇℃)及び最高
使用圧力(○.五キログラム毎平方センチメートルG)以下であること。 
(四) 周辺の公衆に対し著しい放射線被曝のリスクを与えないこと。
3 本件許可申請における解析対象
(一) 炉心内の反応度の増大に至る事故
 ①制御棒急速引抜事故、②燃料スランピング事故、③気泡通過事故
(二) 炉心冷却能力の低下に至る事故
 ①冷却材流路閉塞事故、②一次主冷却系循環ポンプ軸固着事故、③二次主冷却系
循環ポンプ軸固着事故、④主給水ポンプ軸固着事故、⑤一次冷却材漏えい事故、⑥
二次冷却材漏えい事故、⑦主蒸気管破断事故、⑧主給水管破断事故
(三) 燃料取扱いに伴う事故
 ①燃料取替取扱事故
(四) 廃棄物処理設備に関する事故
 ①気体廃棄物処理系破損事故
(五) ナトリウムの化学反応
 ①ダンプタンクからのナトリウム漏えい事故、②オーバフロー系からのナトリウ
ム漏えい事故、③コールドトラップからのナトリウム漏えい事故、④蒸気発生器伝
熱管破損事故
(六) 原子炉カバーガス系に関する事故
 ①一次アルゴンガス漏えい事故
4 本件許可申請における各種事故の解析内容
(一) 炉心内の反応度の増大に至る事故
(1) 制御棒急速引抜事故
(イ) 事故の内容原子炉の起動時又は出力運転中に、何らかの原因で、調整棒一
本が技術的に考え得る最大度で連続的に引き抜かれることにより、異常な反応度が
挿入され、原子炉出力及び炉心各部の温度が上昇する事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 制御棒駆動機構は、駆動モータの回転数に対応する引抜速度以上の急速な
引き抜きは、制御回路及び駆動モータ単体の容量の限界により起こらないようにす
る。
(ろ) 制御棒は同時に一本しか引き抜けず、かつ、急速に引き抜くことができな
いように制限する設計とする。
(b) 万一事故が発生した場合も、原子炉自動停止により終結する。
(ハ) 事故解析
(a) 未臨界状態からの制御捧急速引抜事故
(い) 解析条件
① 事故発生時の初期状態として、原子炉は未臨界状態にあるものとする。
② 初期の原子炉熱出力は、定格値の
一・一パーセント、原子炉核出力は定㎜格値の一〇のマイナス六乗パーセントとす
る。
③ 炉心の冷却材流量は定格値の四九パーセント、原子炉容器入口のナトリウムの
初期温度は三〇〇℃とする。
④ 制御棒急速引抜事故による反応度挿入率は、調整棒駆動モータの物理的に考え
得る最大速度に対応する反応度に余裕を見込んで七セント毎秒とする。
(ろ)解析結果
 事故発生後、「出力領域中性子東高(低設定)」の信号により、原子炉は自動停
止する。この場合の最大出力は定格値の約八二パーセント、燃料最高温度は約六九
〇℃、被覆管肉厚中心最高温度及びナトリウム最高温度は共に約三八○℃までの上
昇にとどまる。
 したがって、燃料及び被覆管の各温度は過度に上昇することはなく、炉心冷却能
力が失われることはない。
(b)出力運転中の制御棒急速引抜事故の解析
(い) 解析条件
① 原子炉出力は定格出力の一〇二パーセントとする。
② 制御棒急速引き抜きによる反応度挿入率は、調整棒駆動モータの物理的に考え
得る最大速度に対応する反応度に余裕を見込んで、七セント毎秒とする。
(ろ) 解析結果
 事故発生後、「出力領域中性子束高(高設定)」の信号により、原子炉は自動停
止する。この場合の最大出力は定格値の約一二一パーセント、燃料最高温度は約二
四二〇℃、被覆管肉厚中心最高温度は約七〇〇℃、ナトリウム最高温度は約六八○
℃までの上昇にとどまる。なお、被覆管肉厚中心温度及びナトリウム温度について
は、初期原子炉出力が定格値の約八六パーセントの場合が最も厳しくなり、それぞ
れ約七二〇℃、約七一〇℃となる。
 したがって、燃料、被覆管及びナトリウムの各温度は過度に上昇することはな
く、炉心の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれること
はない。
(2) 燃料スランピング事故
(イ) 事故の内容原子炉出力運転中に、何らかの熱的あるいは機械的原因で燃料
ペレットが燃料被覆管内で下方に密に詰まる事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 燃料製作時には、燃料焼結、成形に十分に注意を払う。また、燃料体の製
造及び検査を厳格に行う。
(ろ) 被覆管を高精度で製作し、燃料ペレットとの間
には必要以上に間隙が生じないようにする。
(は) 燃料集合体の運搬及び取扱時には十分な注意を払い、燃料集合体に損傷が
加わらないようにする。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) 保護動作の設定値に達しない程度の軽微な原子炉出力の上昇に備えて、原
子炉容器出口ナトリウム温度を一定に制御する原子炉出力制御系の動作やセットバ
ック動作により、原子炉出力が異常に上昇することを防止する設計とする。
(ろ) 運転状態の監視及び炉心の異常監視を行うために、炉心燃料集合体の出口
に温度計等を設置し、異常が発生すれば中央制御室に警報が発せられ、運転員の注
意を喚起する。
(は) 原子炉出力が異常に上昇した場合、原子炉自動停止により終結する。
(ハ) 事故解析
(a) 解析条件
① 原子炉出力は定格出力の一〇二パーセントとする。
② スランピング現象は、最大の反応度価値をもつ一体の燃料集合体内の全燃料要
素で同時に発生するものとする。
③ スランピングにより、燃料は理論密度の一〇〇パーセントになって炉心下部に
落下するものとする。上部軸方向ブランケットは、最初の位置にそのまま残るもの
とする。
④ スランピングによる反応度挿入はステップ状とする。
(b) 解析結果
 事故発生後、「原子炉容器出口ナトリウム温度高」信号により、原子炉は自動停
止する。燃料集合体のスランピングによる挿入反応度の最大値は約一七セントであ
り、この場合、原子炉の最大出力は定格値の約一一五パーセントにとどまり、燃料
最高温度は約二五八○℃であり、融点に達しない。被覆管肉厚中心最高温度は約七
二〇℃、ナトリウム最高温度は約七一〇℃にとどまり、沸点に達しない。
 したがって、燃料、被覆管及びナトリウムの各温度は過度に上昇することはな
く、炉心の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれること
はない。
(3) 気泡通過事故
(イ) 事故の内容
 何らかの原因により、原子炉容器内の一次冷却材中に気泡が混入し、燃料集合体
下部のエントランスノズルを通して、気泡が冷却材と共に炉心内を通過する事故を
想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 原子炉容器出口ノズルは液面下約五メートルに設置し、また、原子炉容器
上部プレナム中にディッププレートを設置することにより、液面の波立ちを生じに
くくし、カバーガスを巻き込むことがないようにする。
(ろ) 一次冷却材充てんの際、一次主冷却系配管、弁及び中間熱交換器に設けら
れたガス抜きラインによりガス抜きを行いうる設計とし、残存ガスの混入を防止す
る。また、炉内構造物等には、ガス抜き穴を設け、下部プレナムでのガスの滞留を
防止する。
(は) 原子炉容器入口ノズルから原子炉容器下部プレナムへ流入したナトリウム
は、高圧プレナム又は低圧プレナムを経て燃料集合体その他の炉心構成要素へと至
るが、その間に下部プレナム中での旋回流の効果並びにフローホール、プレナム、
連結管、燃料集合体エントランスノズル等に設けたオリフィス孔などを通過するた
め、仮に大きな気泡が炉容器入口ノズルから混入したとしても、燃料集合体等に至
るまでには微細な気泡に分断されて炉心部が気泡で覆われることのない設計とす
る。
(b) 万一事故が発生した場合も、原子炉自動停止により終結する。
(イ)事故解祈
(a)解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 気泡の大きさは、最大量として、高圧プレナム内の連結管の形状から二〇リッ
トルとし、これが一斉に全炉心を通過するものとする。
③ 気泡によって覆われた燃料要素と気泡との熱伝達に関しては、燃料要素の温度
が高くなるように断熱とする。
(b) 解析結果
 事故発生後、「出力領域中性子束高(高設定)」の信号により原子炉は自動停止
する。原子炉の最大出力は定格値の約一六三パーセントに達するが、燃料最高温度
は初期温度よりわずかに上昇するだけであり、融点を十分下回る。被覆管肉厚中心
最高温度は約六八○℃、ナトリウム最高温度は約六七〇℃であり、沸点には達しな
い。
 したがって、燃料、被覆管及びナトリウムの各温度は過度に上昇することはな
く、炉心の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれること
はない。③炉心冷却能力の低下に至る事故
(1) 冷却材流路閉塞事故
(イ) 事故の内容
 原子炉出力運転中に、炉心の冷却材中の不純物が蓄積したり、炉心に異物が詰ま
ったりして局部的に冷却材の流路が閉塞し、燃料要素が過熱される事
故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 燃料要素の材料選定、設計、製作、据付、試験、検査等は、諸規格、基準
に適合させるようにし、また、品質管理や工程管理を十分に行う。
(ろ) 一次冷却材の純度は、適切な管理の下に、十分な純度を維持する。
(は) 炉心燃料集合体は、冷却材の流入口において各方向に多数の穴を開け、各
方向の穴が同時に塞がることがないようにする。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) 運転状態の監視及び炉心の異常監視のために炉心燃料集合体の出口に温度
計等を設置し、異常が発生すれば中央制御室に警報が発せられ、運転員の注意を喚
起する。
(ろ)燃料被覆管が破損した場合には、燃料要素より放出される核分裂生成物を破
損燃料検出装置で検出する。
(ハ)事故解析
(a)解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 燃料集合体内の一サブチャンネルが瞬時に完全閉塞された場合を想定する。
③ 閉塞物質の物性値は構造材の値を使用する。
④ 閉塞の軸方向位置は炉心部上端とする。
⑤ 冷却材の流れによる軸方向の熱移行は考慮しないものとする。⑥ 核分裂生成
ガスのジェット衝突領域での被覆管外表面熱伝達係数は実験データに基づき1W/
cm2℃とする。
(b) 解析結果
 閉塞された流路に接する燃料要素の被覆管肉厚中心最高温度は約七三〇℃であ
り、また、仮にある燃料要素が破損して、隣接燃料要素に核分裂生成ガスがジェッ
ト衝突した場合を想定しても、被覆管肉厚中心最高温度は約七六〇℃であって、被
覆管破損の制限値以下である。そして、核分裂生成ガス放出の継続時間は高々数分
間程度であり、その後は被覆管温度は初期の温度に復帰する。
 したがって、燃料集合体内の一サブチャンネルが閉塞された場合においても、被
覆管の温度は過度に上昇することはなく、仮にある燃料要素が破損し核分裂生成ガ
スが放出することを想定した場合においても、隣接燃料要素の健全性が損なわれる
ことはない。
(2) 一次主冷却系循環ポンプ軸固着事故
(イ) 事故の内容
 原子炉出力運転中に、一台の一次主冷却系循環ポンプの回転軸が何らかの原因で
瞬時に固着することにより、一次冷却材流量が急減し、炉心冷却
能力が低下する事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。 
(い) 二次主冷却系循環ポンプの材料選定、設計、製作、据付、試験、検査等
は、諸規格、基準に適合させるようにし、また、品質管理や工程管理を十分に行
う。
(ろ) 一次主冷却系循環ポンプ及びモータの故障を検出して警報を出して運転員
の注意を喚起すると共に、異常が継続した場合には自動的にポンプを停止する設計
とする。
(b) 万一事故が発生した場合も、原子炉自動停止により終結する。また、事故
ループの一次主冷却系での逆流を防止するため、原子炉容器入口に近い配管部に逆
止弁を設ける。
(ハ)事故解析
(a)解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 事故を想定するループの一次主冷却系循環ポンプは、最も厳しい場合を仮定し
て瞬時に回転を停止するものとする。
(b) 解析結果事故が発生すると、そのループの流量は急速に減少し、「一次主
冷却系循環ポンプ回転数低の信号により、原子炉は自動停止する。原子炉トリップ
信号により、健全な一次、二次主冷却系循環ポンプもトリップされ、炉心流量が減
少し、原子炉出力も低下する。健全なループの一次、二次主冷却系循環ポンプの回
転数がコーストダウンし、所定の値になった時点で、健全な二つのループの一次、
二次主冷却系循環ポンプはポニーモータによる低速運転に自動的に引き継がれ、炉
心流量は定格値の約五パーセントが確保される。原子炉容器出口ナトリウム温度
は、事故発生直後一時的に約五四〇℃まで上昇するが、
 原子炉容器入口ナトリウム温度は約四四〇℃までの上昇にとどまる。燃料最高温
度は初期温度よりわずかに上昇するだけであり、融点を十分下回る。被覆管肉厚中
心最高温度は約八○○℃であり、被覆管破損の制限値以下である。炉心のナトリウ
ム最高温度は約七九〇℃であり、沸点に達しない。
 したがって、燃料、被覆管及びナトリウムの各温度は過度に上昇することはな
く、炉心の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれること
はない。
(3) 二次主冷却系循環ポンプ軸固着事故
(イ) 事故の内容原子炉出力運転中に、何らかの原因で一台の二次主冷却系循環

ンプの回転軸が瞬時に固着することにより、二次冷却材流量が急減し、中間熱交換
器での除熱能力が低下する事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 二次主冷却系循環ポンプの材料選定、設計、製作、据付、試験、検査等
は、諸規格、基準に適合させるようにし、また、品質管理や工程管理を十分に行
う。
(ろ) 二次主冷却系循環ポンプ及びモータの故障を検出して警報を出し、運転員
の注意を喚起すると共に、異常が継続した場合には自動的にポンプを停止する設計
とする。
(b) 万一事故が発生した場合も、原子炉自動停止により終結する。
(ハ) 事故解析
(a) 解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 事故を想定するループの二次主冷却系循環ポンプは、最も厳しい場合を仮定し
て瞬時に回転を停止するものとする。
(b) 解析結果事故が発生すると、そのループの流量は急速に減少し、「二次主
冷却系循環ポンプ回転数低」の信号により原子炉は自動停止する。原子炉トリップ
信号により健全な一次、二次主冷却系循環ポンプもトリップされ、炉心流量の減少
及び原子炉出力の低下が生じる。健全なループの一次、二次主冷却系循環ポンプの
回転数がコーストダウンし、所定の値になった時点で一次、二次主冷却系循環ポン
プはポニーモータによる低速運転に自動的に引き継がれ、炉心流量は定格値の約四
パーセントが確保される。
 原子炉容器出口ナトリウム温度は初期値よりほとんど上昇せず、原子炉容器入口
ナトリウム温度は約四五〇℃までの上昇にとどまる。被覆管肉厚中心最高温度は約
七三〇℃であり、被覆管破損の制限値以下である。炉心のナトリウム最高温度は約
七三〇℃であり、沸点に達しない。また、燃料温度は初期値から上昇することはな
い。
 したがって、燃料、被覆管及びナトリウムの各温度は過度に上昇することはな
く、炉心の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれること
はない。
(4) 主給水ポンプ軸固著事故
(イ) 事故の内容
 原子炉出力運転中に、何らかの原因で一台の主給水ポンプの回転軸が瞬時に固着
することにより、給水流量が急減し、蒸気発生器での除熱能力が低下する事故を
想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 主給水ポンプの材料選定、設計、製作、据付、試験、検査等は、諸規格、
基準に適合させるようにし、また、品質管理や工程管理を十分に行う。
(ろ) 主給水ポンプの故障を検出して警報を出し、運転員の注意を喚起すると共
に、異常が継続した場合には自動的にポンプを停止する設計とする。
(b) 万一事故が発生した場合も、原子炉自動停止により終結する。
(ハ) 事故解析
(a) 解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 軸固着が生じた主給水ポンプは、最も厳しい場合を仮定して瞬時に回転を停止
するものとする。
(b) 解析結果
 事故が発生すると、各ループの蒸気発生器給水流量が減少し、これに伴い、蒸発
器及び過熱器での除熱量が減少するので、蒸発器出口ナトリウム温度が上昇し、
「蒸発器出口ナトリウム温度高」信号により原子炉は自動停止する。そして、原子
炉トリップ信号により、一次、二次主冷却系循環ポンプがトリップする。一次、二
次主冷却系循環ポンプの回転数がコーストダウンし、所定の値になった時点で、一
次、二次主冷却系循環ポンプはポニーモータによる低速運転に自動的に引き継が
れ、炉心流量は定格値の約七パーセントが確保される。
 この事故において、原子炉容器出口ナトリウム温度は初期値よりほとんど上昇せ
ず、原子炉容器入口ナトリウム温度は約四四〇℃までの上昇にとどまる。被覆管肉
厚中心最高温度は約六八○℃であり、被覆管破損の制限値以下である。炉心のナト
リウム最高温度は約六七〇℃であり、沸点に達しない。また、燃料温度は初期値よ
りほとんど上昇することはない。
 したがって、燃料、被覆管及びナトリウムの各温度は過度に上昇することはな
く、炉心の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度
は制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれること
はない。
(5) 一次冷却材漏えい事故
(イ) 事故の内容
 原子炉出力運転中に、何らかの原因で原子炉冷却材バウンダリの配管が破損し、
一次冷却材が漏えいする事故を想定する。配管破損の形態としては、一次主冷却系
配管における割れ状の漏えい口又は一次主冷却系配管に接続するドレン系統等の小
口径配管におけ
る最大規模の漏えい口を想定する。
(ロ) 事故発生及び拡大防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 一次主冷却系の配管、機器の材料選定、設計、製作、据付、試験、検査等
は、諸規格、基準に適合させるようにし、また、品質管理や工程管理を十分に行
う。
(ろ) 一次主冷却系の配管、機器には、高温強度とナトリウム環境効果に対する
適合性が良好なステンレス鋼を使用する。
(は) 一次主冷却系の配管は、エルボを用いて引き回し、十分な撓性を備えたも
のとする。
(に) 冷却材温度変化による熱応力等を制限すると共に、このような応力を考慮
した設計とする。
(ほ) 一次主冷却系の配管、機器は、設計地震力に十分耐えるように設計され
る。
(へ) 一次冷却材の純度管理により腐食を防止する。
(と) 一次主冷却系の配管、機器は、内部の冷却材流速が適切で、過大な圧力損
失や浸食のおそれのない設計とする。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るだめ、次の対策が講
じられる。
(い) 原子炉冷却材バウンダリを構成する配管、機器には、ナトリウム漏えい検
出器を設置する。
(ろ) ナトリウム漏えい量に対応し、「原子炉容器ナトリウム液位低」信号、
「ガードベッセル内漏えいナトリウム液位高」信号、「原子炉格納容器床下雰囲気
温度高」信号のいずれかによって原子炉を自動停止するようにする。
(は) 一次主冷却系の循環に支障を来すことなく安全に炉心の冷却が行えるよう
に、原子炉容器出口ノズルの上端より上方に適切な余裕をもって、最低限保持され
なければならない液位(エマージェンシ・レベル)を規定し、この液位以上に原子
炉容器内ナトリウム液位が保持される設計とする。
(に) 漏えいしたナトリウムの熱的影響を緩和するため、①原子炉容器室及び一
次主冷却系室内は低酸素濃度の窒素雰囲気に保ち、ナトリウムが漏えいした場合の
燃焼反応を抑制する、②漏えいしたナトリウムがコンクリートと直接接触すること
を防止するために、床面等に鋼製のライナあるいは貯留槽を設置する、③内部コン
クリートの長期にわたる温度上昇を抑制するために、コンクリート冷却設備を設置
する、④原子炉容器室において、ガードベッセル外の配管部から漏えいしたナトリ
ウムは、配管周りに設置した覆いにより、ガードベッセル内に導き、更に、ガ
ードベッセルからの溢流分がある場合には、溢流管により貯留槽に収納し、長期的
に保持する対策を行う、⑤一次主冷却系室において、ガードベッセル外の配管部か
ら漏えいしたナトリウムは、中間床の開口部を介して下部室の床ライナ上に貯留し
て長期的に保持する、などの対策を行うことにする。
(ほ) 万一、原子炉格納容器雰囲気中へ放射性物質が漏えいした場合において
も、原子炉格納容器により閉じ込められ、わずかにアエユラス部へ漏えいした放射
性物質は、同部を常時負圧に維持することにより直接大気中へ漏えいすることのな
いようにする。
(ハ) 事故解析
(a) 炉心冷却能力の解析
(い) 解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 配管の破損位置は、破損口の内側圧力が最も高く、最大の流出速度を与える原
子炉容器入口ノズル付近とする。
③ 破損口の大きさは割れ状の漏えい口として十分大きな二二平方センチメートル
とする。
④ 外部電源は使用できないものとする。
⑤ 単一故障として、一系統において、ポニーモータによるポンプ低速運転への引
き継ぎは行われないこと、二台ある汲み上げポンプのうちの一台が機能しないこと
を仮定する。
(ろ) 解析結果
 事故直後のナトリウムの流出流量は約八〇キログラム毎秒と、炉心での通常運転
時流量約四二七〇キログラム毎秒に比較してわずかであり、炉心冷却に対する影響
は小さい。
 ナトリウムの流出に伴って原子炉容器のナトリウム液位が低下し、事故発生約一
九〇秒後に、「原子炉容器ナトリウム液位低」信号により、原子炉は自動停止し、
原子炉トリップ信号により一次及び二次主冷却系循環ポンプはトリップする。ナト
リウムの流出流量は循環ポンプがトリップしてコーストダウンするに従って減少
し、ポンプが低速運転に移行した時点で約三四キログラム毎秒である。炉心流量は
ポンプのコーストダウンに従って減少し、事故後約二三〇秒で定格流量の約六パー
セントに落ち着く。事故後二三〇秒の時点では、炉心の崩壊熱は原子炉定格出力の
約四パーセントであるので、炉心の冷却は十分に行われ、また、原子炉冷却材バウ
ンダリの温度は過度に上昇することはない。被覆管肉厚中心最高温度は約七四〇℃
であり、被覆管破損の制限値以下である。炉心のナトリウム最高温度は約七三〇℃
であり、沸点に達しない。また、燃料最高温度は初期値よりほとんど上昇すること
はない。
 したが
って、燃料、被覆管及びナトリウムの各温度は過度に上昇することはなく、炉心の
冷却能力が失われることはない。また、原子炉容器のナトリウム液位は、ガードベ
ッセル又は配管の高所引き回しによってエマージェンシ・レベル以上に維持され、
冷却材の循環に支障を来すことはない。
(b) 漏えいナトリウムによる熱的影響の解析
(い) 解析条件
① 原子炉出力運転中に、ナトリウムが二二平方センチメートルの破損口から漏え
いして部屋の床ライナ上に溜まるものとし、ナトリウムの流出過程を考慮する。
② 破損位置はホットレグ(中間熱交換器入口)配管とするが、ナトリウム漏えい
量については、ナトリウム液位が整定するまでの漏えいが最大となる位置を想定
し、更にオーバフロレ系によるナトリウム汲み上げの影響も考慮して二一〇立方メ
ートルとする。漏えいナトリウムの温度は一次主冷却系ホットレグ温度に余裕をみ
て五三一℃とする。
③ 室内の初期酸素濃度は3v/oとする
④ 室内は内外圧差100mmaqに対して100%/d の通気率があるものと
する。また、外部は空気雰囲気とする。
⑤ 漏えいナトリウムと酸素との反応式2Na+1/2O2Na2O+104ca
l/molとする
(ろ) 解析結果
 漏えいナトリウムが落下する中間床鋼板及び貯留される床ライナの最高温度はい
ずれも約四一〇℃であり、設計温度五三〇℃以下にとどまる。建物コンクリートの
最高温度は約一二〇℃であり、事故発生三〇日後には六四℃以下に低下し、コンク
リートの健全性を損なうことはない。原子炉格納容器の内圧上昇は約〇・〇二八キ
ログラム毎平方センチメートルであり、最高使用圧力〇・五キログラム毎平方セン
チメートルGを十分下回り、温度上昇もわずかである。なお、この場合のナトリウ
ム燃焼量は約二・七トンである。
 したがって、原子炉格納容器の健全性が問題となることはない。(c) 核分裂
生成物の放出量及び被曝線量の評
(い) 解析条件
①事故発生直前まで、原子炉は定格出力の一〇二パーセントで長時間にわたって運
転されていたものとする。
② 通常運転時に一パーセントの燃料欠陥率を想定する。
③ 漏えいナトリウムを貯留する部屋に放出される核分裂生成物の量は、希ガスは
漏えいナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量、よう
素は燃焼ナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量とす
る。
漏えいナトリウム量は二一〇立方メートル、燃焼ナトリウム量は二・七トンとす
る。④ 漏えいナトリウムを貯留する部屋に放出されたよう素のうち、九五パーセ
ントはエアロゾルの形態をとり、残り五パーセントはエアロゾルの形態をとらない
ものとする。
⑤ 漏えいナトリウムを貯留する部屋に放出されたエアロゾル状よう素はプレート
アウト等による減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果
を考えない。
⑥ 漏えいナトリウムを貯留する部屋から原子炉格納容器床上への漏えい率は10
0%/d(100mmaq時)として事故時圧力により換算するが、最低漏えい率
は100%/dとする。
⑦ 原子炉格納容器床上へ漏えいしたエアロゾル状よう素プレートアウト等による
減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
⑧ 原子炉格納容器からの漏えい率は、この事故時の原子炉格納容器圧力に対応す
る漏えい率を下回らない値とする。
⑨ 原子炉格納容器からの漏えいは、九七パーセントがアニュラス部に生じ、残り
三パーセントはアニュラス部外に生じるものとする。
⑩ アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率は九九
パーセントとする。
⑪ よう素用フィルタユニットヘの系統切替達成までの一〇分間はよう素除去効果
は考慮しないものとする。
⑫ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑬ 事故の評価期間は原子炉格納容器内圧が原子炉格納容器からの漏えいが無視で
きる程度に低下するまでの期間として、三〇日間とする。
⑭ 環境への核分裂生成物の放出は、排気筒より行われるものとする。
⑮ 環境に放出された核分裂生成物の大気中の拡散については「気象指針に従って
評価するものとする。
(ろ) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約〇・〇三一キュリー(よう素
一三一等価量、以下同じ。)、希ガス約六八キュリー(ガンマ線エネルギー〇・五
MeV換算値、以下同じ。)である。この大気中に放出された核分裂生成物の放射
性雲による被曝線量及び原子炉格納容器内に浮遊する放射能による直接線量及びス
カイシャイン線量を計算した結果、本件敷地境界外で最大となる場所において小児
甲状腺約〇・〇〇〇二四レム、全身約〇・〇〇四一レムである。
(6) 二次冷却材漏えい事故
(イ) 事故の内容
 原子炉出力運転中に、何らかの原因で二次主冷却系配管が破損し、二次冷却材が
漏えいする事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 二次主冷却系の配管、機器の材料選定、設計、製作、据付、試験、検査等
は、諸規格、基準に適合させるようにし、また、品質管理や工程管理を十分に行
う。
(ろ) 二次主冷却系の配管、機器には、高温強度とナトリウム環境効果に対する
適合性が良好なステンレス鋼を使用する。
(は) 二次主冷却系の配管は、エルボを用いて引き回し、十分な撓性を備えたも
のとする。
(に) 冷却材温度変化による熱応力等による応力を制限すると共に、このような
応力を考慮した設計とする。
(ほ) 二次主冷却系の配管、機器は、設計地震力に十分耐えられる設計とする。
(へ) 二次冷却材の純度管理により腐食を防止する。
(と)二次主冷却系の配管、機器は、内部の冷却材流速が適切で過大な圧力損失や
浸食のおそれのない設計とする。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) 二次主冷却系の機器、配管を収納する部屋には、ナトリウムの漏えい検出
器及び火災検知器を設置する。
(ろ) ナトリウム漏えいに伴って、中間熱交換器での除熱能力が低下する場合に
は、「中間熱交換器一次側出口ナトリウム温度高」信号により原子炉は自動停止す
るようにする。
(は) 漏えいしたナトリウムとコンクリートが直接接触することを防止するため
に、床面に鋼製のライナを設置し、漏えいしたナトリウムは、貯留タンク内へ導く
か、ダンプタンク、オーバフロータンク、貯留タンクを設置している部屋の底部へ
導き貯留する設計とする。これらの部屋には燃焼抑制板を設置し、漏えいしたナト
リウムの燃焼による影響を抑制する。
(に) 火災検知器の信号で空調ダクトを全閉とし、また、火災検知器、ナトリウ
ム漏えい検出器等によって漏えいが確認された場合には手動でオーバフロータンク
からの汲み上げを停止する等、熱的影響の拡大を防止できるようにする。
(ほ) 各室への出入口近傍には、ナトリウム用消火設備を設置し、また、防護
服、防護マスク及び携帯用空気ボンベ等の消火支援器具を配置する。
(ハ) 事故解析
(a) 炉心冷却能力の解析
(い
) 解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 二次主冷却系循環ポンプと中間熱交換器入口の間で配管破損が生じるものと考
え、中間熱交換器二次側での除熱能力が瞬時に完全喪失するものとする。
(ろ) 解析結果
 中間熱交換器での二次側流量が喪失することにより、そのループの中間熱交換器
一次側出口ナトリウム温度が上昇し、「中間熱交換器一次側出口ナトリウム温度
高」の信号により原子炉は自動停止し、これに伴い、原子炉出力は急速に低下す
る。原子炉トリップ信号により、一次、二次主冷却系循環ポンプはトリップされ、
冷却材流量はコーストダウンする。ポンプの回転数が所定の値になった時点で、一
次、二次主冷却系循環ポンプはポニーモータによる低速運転に自動的に引き継が
れ、炉心流量は定格値の約四パーセントが確保される。
 原子炉容器出口のナトリウム温度は初期温度よりほとんど上昇しない。また、中
間熱交換器一次側出口のナトリウム温度は、約五三〇℃までの上昇にとどまる。被
覆管肉厚中心最高温度は約七七〇℃であり、被覆管破損の制限値以下である。炉心
のナトリウム最高温度は約七七〇℃であり、沸点に達しない。燃料最高温度は初期
値よりほとんど上昇することはない。
 したがって、被覆管及びナトリウムの各温度は過度に上昇することはなく、炉心
の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度は制限値
を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれることはない。
(b) 漏えいナトリウムによる熱的影響の解析
(い) 解析条件
① 原子炉出力運転中に、室内空間容積が最大の二次主冷却系配管室又は最小の過
熱器室でナトリウムが漏えいするものとする。漏えいナトリウムは室内雰囲気と反
応して燃焼するものとし、流出過程を考慮する。
② 破損口の大きさは割れ状の漏えい口として十分大きな一五平方センチメートル
とする。漏えいナトリウムの温度は五〇七℃とする。③ 室内の初期酸素濃度は2
1v/oとする。
(ろ) 解析結果
 二次主冷却系配管及び過熱器室の床ライナの最高温度は、約四一〇℃及び約四五
〇℃であり、いずれも設計温度五〇〇℃を下回る。建物コンクリートの温度は最高
約一二〇℃であり、コンクリートの健全性が損なわれることはない。また、ナトリ
ウムの燃焼に伴う雰囲気圧力の上昇は、それぞれ約〇・二六キログラム毎平方セン
チメートル及
び約〇・一一キログラム毎平方センチメートルであり、いずれも建物耐圧値の〇・
六キログラム毎平方センチメートルGを下回る。
 したがって、漏えいナトリウムの熱的影響により建物の健全性が問題となること
はない(なお、昭和六〇年二日一八日付け原子炉設置変更許可申請に際して、床ラ
イナの最高温度は五三〇度に変更された。)。
(7) 主蒸気管破断事故
(イ) 事故の内容
 原子炉出力運転中に何らかの原因で蒸気発生器とタービンの間の主蒸気管が破断
し、蒸気の流出から水・蒸気系の運転が行えなくなり、蒸気発生器での除熱能力が
低下する事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 主蒸気管の材料選定、設計、製作、据付、試験、検査等は、諸規格、基準
に適合させるようにし、また、品質管理や工程管理を十分に行う。
(ろ) 主蒸気圧力が異常に高くなることを防止するため、タービンバイパス弁、
主蒸気逃し弁、過熱器出口安全弁及び蒸発器出口安全弁を設ける。
(b) 万一事故が発生した場合も、原子炉自動停止により終結する。
(ハ) 事故解析
(a) 解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 主蒸気の流出量が最大となるように、三ループの主蒸気管の結合点とタービン
の間で主蒸気管の完全破断が生じるとする。
(b) 解析結果
 主蒸気管の破断により、タービン駆動の主給水ポンプの蒸気源が喪失し、蒸気流
量は事故発生直後一時的に増大した後減少する。この結果、蒸発器出口ナトリウム
温度は一時的に低下した後上昇し、「蒸発器出口ナトリウム温度高」信号により原
子炉は自動停止する。また、原子炉トリップ信号により、一次主冷却系循環ポンプ
はトリップされ、コーストダウンにより各流量が低下した後、一次、二次主冷却系
循環ポンプの回転数が所定の値になった時点で、一次、二次主冷却系循環ポンプは
ポニーモータによる低速運転に自動的に引き継がれ、炉心流量は定格値の約七パー
セントが確保される。
 原子炉容器出口ナトリウム温度は初期値よりほとんど上昇せず、原子炉容器入口
ナトリウム温度は約四六〇℃までの上昇にとどまる。被覆管肉厚中心最高温度は約
六八〇℃であり、被覆管破損の制限値以下である。炉心のナトリウム最高温度は約
六七〇℃であり、沸点に達しない。また
、燃料最高温度は初期値より上昇することはない。
 したがって、被覆管及びナトリウムの各温度は過度に上昇することはなく、炉心
の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度は制限値
を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれることはない。
(8) 主給水管破断事故
(イ) 事故の内容
 原子炉出力運転中に何らかの原因で主給水ポンプと蒸気発生器の間の主給水管が
破断し、蒸気発生器への給水量の減少から水・蒸気系の運転が行えなくなり、蒸気
発生器での除熱能力が低下する事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために、主給水管の材料選定、設計、製作、据
付、試験、検査等は諸規格、基準に適合させるようにし、また、品質管理や工程管
理を十分に行い、破断の可能性を少なくする対策が講じられるので、事故発生の可
能性は極めて低い。(b) 万一事故が発生した場合も、原子炉自動停止により終
結する。
(ハ) 事故解析
(a) 解析条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 給水の流出量が最大となるように、主給水ポンプと三ループの蒸気発生器給水
管分岐点の間で完全破断が生じるとする。
③ 蒸気発生器の水、蒸気側の除熱量が瞬時に零になるものとする。(b) 解析
結果
 主給水管の破断により、蒸発器出口ナトリウム温度が上昇し、その結果、「蒸発
器出口ナトリウム温度高」信号により原子炉は自動停止する。また、原子炉トリッ
プ信号により、一次、二次主冷却系循環ポンプはトリップされ、コーストダウンに
より各流量が低下した後、一次、二次主冷却系循環ポンプの回転数が所定の値にな
った時点で、一次、二次主冷却系循環ポンプはポニーモータによる低速運転に自動
的に引き継がれ、炉心流量は定格値の約七パーセントが確保される。
 原子炉容器出口ナトリウム温度は初期値よりほとんど上昇せず、原子炉容器入口
ナトリウム温度は約四六〇℃までの上昇にとどまる。被覆管肉厚中心最高温度は約
六八〇℃であり、被覆管破損の制限値以下である。炉心のナトリウム最高温度は約
六七〇℃であり、沸点に達しない。また、燃料最高温度は初期値より上昇すること
はない。
 したがって、被覆管及びナトリウムの各温度は過度に上昇することはなく、炉心
の冷却能力が失われることはない。また、原子炉冷却材バウンダリの温度は
制限値を十分に下回るので、原子炉冷却材バウンダリの健全性が損なわれることは
ない。
(三) 燃料取扱いに伴う事故
(1) 燃料取替取扱事故
(イ) 事故の内容
 燃料取替作業中に、燃料出入設備において取扱中の燃料移送ポットが何らかの原
因により破損し、燃料移送ポット中のナトリウムが全て喪失して、燃料被覆管の破
損を生じる事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生別
の可能性は極めて低い。
(い) 燃料取扱設備のうち、安全上重要な機器の材料選定、設計、製作、据付、
試験、検査等は、諸規格、基準に適合させるようにし、また、品質管理や工程管理
を十分に行い、破損や漏えいの起こる可能性を少なくする。
(ろ) 燃料吊上機構は、駆動源の喪失に対し現状維持の設計とする。
(は) 燃料をつかんでいる間グリッパが閉じないよう機械的インターロック装置
を設ける。
(に) 燃料吊上機構は、故障が生じないよう設計上考慮し、操作開始前に十分な
試験、検査を行う。
(ほ) 燃料出入設備による燃料取替作業中、使用済燃料はナトリウムの入った燃
料移送ポットに収容し、燃料移送ポットは気密性の高い燃料出入設備本体に収容
し、かつ、燃料出入設備本体には外部から冷却できる間接冷却装置を設け、取扱中
の燃料の温度が過度に上昇することのない設計とする。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) 燃料出入設備による燃料取替作業中に燃料が破損し、ガス状の核分裂生成
物が放出された場合に、燃料出入設備がこの漏えいを抑制する設計とする。
(ろ) 燃料出入設備通路ヘガス状の核分裂生成物が漏えいした場合においても、
燃料出入設備通路の雰囲気ガスは、燃料取扱設備室換気装置によって常時排気筒へ
導く設計とし、また「燃料出入設備気相部放射能高」信号により、換気装置の排気
フィルタユニット及び排気ファンを非常用に切り替え、フィルタにより浄化した後
排気筒へ導き、大気中へ放出される核分裂生成物の量を抑制する。
(ハ) 事故解析
(a) 解析条件
① 事故はサイクル末期の最大出力燃料集合体の移送時に生じたとする。
② 事故は原子炉停止の一〇日後に生じたとし、原子炉停止後の放射能の減衰は考
えるものとする。
③ 燃料被覆管の全てが破損し、燃料要素ガスプレナム中の核
分裂生成物が燃料出入設備内に放出されるものとする。
④ 燃料出入設備内の気相部より建物への漏えい率は、0・1%/dとする。
⑤ 「燃料出入設備気相部放射能高」の信号により、換気装置の排気フィルタユニ
ット及び排気ファンは非常用に切り替えられるものとする。
⑥ 燃料取扱設備換気装置のフィルタのよう素除去効率は九五パーセントとする。
⑦ 環境への核分裂生成物の放出は、排気筒より行われるものとする。
⑧ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(b) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約二二キュリー、希ガス約六八
キュリーであり、この大気放出に伴う被曝線量は、本件敷地境界外で最大となる場
所において、小児甲状腺約〇・一七レム、全身約〇・〇〇〇〇六一レムである。
(四) 廃棄物処理設備に関する事故
(1) 気体廃棄物処理設備破損事故
(イ) 事故の内容
 何らかの原因で気体廃棄物処理設備の一部が破損し、その系に保持されていた核
分裂生成物が系統外に放出される事故を想定する。(ロ) 事故発生及び拡大の防
止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 気体廃棄物処理設備の配管及び機器の材料選定、設計、製作、据付、試
験、検査等は諸規格、基準に適合させるようにし、また、品質管理、工程管理を十
分に行い、破損や漏えいの起こる可能性を少なくする。
(ろ) 廃ガス貯槽のガス圧が貯槽の最高使用圧力を下回るように、廃ガス圧縮機
の吐出圧力を決め、破損の可能性を少なくする。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) 廃ガス受入弁及び廃ガス貯槽出口弁を設け、放射性ガスの放出を抑制す
る。
(ろ) 気体廃棄物処理設備から原子炉補助建物内に核分裂生成物が放出されたと
しても、換気設備によって、常時排気筒に導く。
(は) 排気筒には、放射性ガスの監視装置を設け、周辺環境に対する最終の監視
を行う。
(ハ) 事故解析
(a) 解析条件
(い) 事故発生の直前まで、原子炉は定格出力の一〇二パーセントで長時間運転
されていたものとする。
(ろ) 通常運転時に一パーセントの燃料欠陥率を想定する。
(は) 廃ガス貯槽へは、廃ガス貯槽の貯留容量に見合う最大量の希ガスが流入し
たもの
と仮定し、その時点で、希ガス貯槽にたくわえられていた全ての核分裂生成物が瞬
時に原子炉補助建物内へ放出されるものとする。
(に) 原子炉補助建物内へ放出された核分裂生成物は、瞬時に大気へ放散される
ものとする。
(へ) 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」
に従って評価するものとする。
(b) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約〇・一九キュリー、希ガス約
九七〇キュリーであり、この大気放出に伴う被曝線量は、本件敷地境界外で最大と
なる場所において、小児甲状腺約〇・〇四二レム、全身約〇・〇〇四一レムであ
る。
(五) ナトリウムの化学反応
(1) ダンプタンクからのナトリウム漏えい事故
(イ) 事故の内容
 メンテナンス時に一次主冷却系室を空気雰囲気に置換した状態で、何らかの原因
により一次ナトリウム充填ドレン系のダンプタンクからの放射性物質を含んだナト
リウムが漏えいする事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために、一次ナトリウム充填ドレン系のダンプ
タンク及びその接続配管の材料選定、設計、製作、据付、試験、検査等剛は、諸規
格、基準に適合させるようにし、また、品質管理や工程管理を十分に行い、破損や
漏えいの起こる可能性を少なくする対策が講じられるので、事故発生の可能性は極
めて低い。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) ダンプタンクにナトリウムをドレンし、雰囲気を空気に置換した場合に
は、当該室のドアは常時閉とし、ナトリウム漏えい事故が生じた場合にも、雰囲気
を外気と遮断し、ナトリウムの燃焼を抑制する。
(ろ) ナトリウム漏えい検出器でナトリウム漏えいを早期に検出して中央制御室
に警報を発すると共に、火災感知器等によりナトリウムの燃焼を検知して、当該室
の雰囲気遮断弁を閉じる設計とする。(は) 漏えいしたナトリウムがコンクリー
トと直接接触することを防止するために、床面等に鋼製のライナを設置する。
(に) 原子炉格納容器雰囲気中に放射性物質が漏えいした場合においても、原子
炉格納容器の隔離を行い、大気中に放出される放射性物質の量を抑制する。
(ハ) 事故解析
(a) 漏えいナトリウムによる熱的影響の解析
(い) 解析条件
① ナトリウムの漏えい量は、一次ナトリウム充填ド
レン系のダンプタンク内に貯留されるナトリウムの最大量二〇〇立方メートルと
し、その温度は二〇〇℃とする。漏えいしたナトリウムは瞬時に床ライナ上に溜ま
り、プールを形成するものとする。
② 室内の初期酸素濃度は21v/o(空気雰囲気)とする。
③ 室内は内外圧差100mmaqに対して100%/dの通気率があるものとす
る。また、外部は空気雰囲気とする。
(ろ) 解析結果
 ナトリウムを貯留する一次主冷却系室床ライナの最高温度は約二九〇℃であり、
設計温度五三〇℃を十分に下回っている。原子炉格納容器の内圧上昇は約〇・〇〇
三キログラム毎平方センチメートルであり、最高使用圧力〇・五キログラム毎平方
センチメートルGを十分に下回っている。また、温度の上昇もわずかである。な
お、この場合のナトリウム燃焼量は約五・二トンである。
 したがって、原子炉格納容器の健全性が問題になることはない。(b) 核分裂
生成物の放出量及び被曝線量の評価
(い) 解析条件
① 原子炉停止直前まで、原子炉は定格出力の一〇二パーセントで長時間にわたっ
て運転されていたものとする。
② 通常運転時に一パーセントの燃料欠陥率を想定する。
③ 外部電源は使用できないものとする。
④ 原子炉停止後一〇日の時点でナトリウム漏えいを想定する。
⑤ 漏えいナトリウムを貯留する部屋に放出される核分裂生成物の量は、希ガスが
漏えいナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量、よう
素が燃焼ナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量とす
る。漏えいナトリウム量は二〇〇立方メートル、燃焼ナトリウム量は五・二トンと
する。⑥ 漏えいナトリウムを貯留する部屋に放出されたよう素のうち、九五パー
セントはエアロゾルの形態をとり、残り五パーセントはエアロゾルの形態をとらな
いものとする。
⑦ 漏えいナトリウムを貯留する部屋に放出されたエアロゾル状よう素はプレート
アウト等による減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果
を考えない。
⑧ 漏えいナトリウムを貯留する部屋から原子炉格納容器床上への漏えい率は10
0%/d(100mmaq時)として事故時圧力により換算するが、最低漏えい率
は100%/dとする。
⑨ 原子炉格納容器床上へ漏えいしたエアロゾル状よう素はプレートアウト等によ
る減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果
を考えない。
⑩ 原子炉格納容器からの漏えい率は、この事故時の原子炉格納容器圧力に対応す
る漏えい率を下回らない値とする。
⑪ 原子炉格納容器からの漏えいは九七パーセントがアニュラス部に生じ、残り三
パーセントはアニュラス部外に生じるものとする。⑫ アニュラス循環排気装置の
よう素用フィルタユニットのよう素除去効率は九九パーセントとする。
⑬ よう素用フィルタユニットヘの系統切替達成までの一〇分間はよう素除去効果
は考慮しないものとする。
⑭ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑮ 事故の評価期間は原子炉格納容器内圧が原子炉格納容器からの漏えいが無視で
きる程度に低下するまでの期間として、三〇日間とする。
⑯ 環境への核分裂生成物の放出は、排気筒より行われるものとする。
⑰ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(ろ) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約尾〇・〇一一キュリー、希ガ
ス約二・〇キュリーである。この大気中に放出された核分裂生成物の放射性雲によ
る被曝線量及び原子炉格納容器内に浮遊する放射能による直接線量及びスカイシャ
イン線量を計算した結果、本件敷地境界外で最大となる場所において、小児甲状腺
約〇・〇〇〇〇八四レム、全身約〇・〇〇〇〇四四レムである。
(2) オーバーフロー系からのナトリウム漏えい事故
(イ) 事故の内容
 原子炉の出力運転中に何らかの原因により一次ナトリウムオーバフロー系から放
射性物質を含んだナトリウムが漏えいする事故を想定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するため、一次ナトリウムオーバフロー系の配管及
び機器の材料選定、設計、製作、据付、試験、検査等は、諸規格、基準に適合させ
るようにし、また、品質管理や工程管理を十分に行い、破損や漏えいの起こる可能
性を少なくする対策が講じられるので、事故発生の可能性は極めて低い。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) ナトリウム漏えい検出器でナトリウムの漏えいを早期に検出して中央制御
室に警報を発するようにする。更に、オーバフロータンクの液位が異常に低下した
場合には、オーバフロータンク内の液面計
でナトリウムの漏えいを検出し、警報を発して運転員に注意を喚起し、運転員は、
これらの警報に基づき、一次ナトリウムオーバフロー系の電磁ポンプを停止させる
等の漏えい抑制措置をとるようにする。
(ろ) ナトリウム漏えい量が増加した場合、「原子炉格納容器床下雰囲気温度
高」信号等により、一次ナトリウムオーバフロー系の電磁ポンプによる汲み上げを
自動的に停止する。
(は) 原子炉格納容器雰囲気中に放射性物質が漏えいした場合においても、原子
炉格納容器を隔離し、大気中に放出される放射性物質の量を抑制する。
(に) 一次ナトリウムオーバフロー系の配管、機器を設置する部屋は、低酸素濃
度の窒素雰囲気に保つことにより、ナトリウムが漏えいした場合の燃焼反応を抑制
する。
(ほ) 漏えいしたナトリウムがコンクリートと直接接触することを防止するため
に、床面等に鋼製のライナを設置する。
(ハ) 事故解析
(a) 解析条件
① 事故発生直前まで、原子炉は定格出力の一〇二パーセントで長時間にわたって
運転されていたものとする。
② 通常運転時に一パーセントの燃料欠陥率を想定する。
③ 外部電源は使用できないものとする。
④ 漏えいナトリウムを貯留する部屋に放出される核分裂生成物の量は、希ガスが
漏えいナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量、よう
素が燃焼ナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量とす
る。漏えいナトリウム量は一九〇立方メートル、燃焼ナトリウム量は二・七トンと
する。
⑤ 漏えいナトリウムを貯留する部屋に放出されたよう素のうち、九五パーセント
はエアロゾルの形態をとり、残り五パーセントはエアロゾルの形態をとらないもの
とする。
⑥ 漏えいナトリウムを貯留する部屋に放出されたエアロゾル状よう素はプレート
アウト等による減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果
を考えない。
⑦ 漏えいナトリウムを貯留する部屋から原子炉格納容器床上への漏えい率は10
0%/d(100mmaq時)として事故時圧力により換算するが、最低漏えい率
は100%/dとする。
⑧ 原子炉格納容器床上へ漏えいしたエアロゾル状よう素はプレートアウト等によ
る減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
⑨ 原子炉格納容器からの漏えい率は、この事故時の原子炉格納容器圧力に対応す
る漏えい率を下回ら
ない値とする。
⑩ 原子炉格納容器からの漏えいは九七パーセントがアニュラス部に生じ、残り三
パーセントはアニュラス部外に生じるものとする。
⑪アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率は九九パ
ーセントとする。
⑫ よう素用フィルタユニットヘの系統切替達成までの一〇分間はよう素除去効果
は考慮しないものとする。
⑬ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑭ 事故の評価期間は原子炉格納容器内圧が原子炉格納容器からの漏えいが無視で
きる程度に低下するまでの期間として、三〇日間とする。
⑮ 環境への核分裂生成物の放出は、排気筒より行われるものとする。
⑯ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(b) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約〇・〇三一キュリー、希ガス
約六八キュリーである。この大気中に放出された核分裂生成物の放射性雲による被
曝線量及び原子炉格納容器内に浮遊する放射能による直接線量及びスカイシャイン
線量を計算した結果、本件敷地境界外で最大となる場所において、小児甲状腺約
〇・〇〇〇二四レム、全身約〇・〇〇四一レムである。
(ろ) コールドトラップからのナトリウム漏えい事故
(イ) 事故内容
 原子炉の出力運転中に何らかの原因により一次ナトリウム純化系のコールドトラ
ップから放射性物質を含んだナトリウムが漏えいする事故を想定する。
(ロ) 事故発生及び拡大防止のための対策
(a) この事故の発生を防止するために、一次ナトリウム純化系の配管及び機器
の材料選定、設計、製作、据付、試験、検査等は、諸規格、基準に適合させるよう
にし、また、品質管理や工程管理を十分に行い、破損や漏えいの可能性を少なくす
る対策が講じられるので、事故発生の可能性は極めて低い。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) ナトリウム漏えい検出器でナトリウムの漏えいを早期に検出して中央制御
室に警報を発するようにする。更に、一次ナトリウムオーバフロータンクの液位が
異常に低下した場合には、オーバフロータンク内の液面計でナトリウムの漏えいを
検出し、警報を発して運転員に注意を喚起し、運転員は、これらの警報に基づき、
オーバフロー
系の電磁ポンプを停止させる等の漏えい抑制措置をとるようにする。
(ろ) ナトリウム漏えい量が増加した場合、「原子炉格納容器床下雰囲気温度
高」信号等により、一次ナトリウムオーバフロー系の電磁ポンプによる汲み上げを
自動的に停止する。
(は) 原子炉格納容器雰囲気中に放射性物質が漏えいした場合においても、原子
炉格納容器を隔離し、大気中に放出される放射性物質の量を抑制する。
(に) 一次ナトリウム純化系の配管、機器を設置する部屋は、低酸素濃度の窒素
雰囲気に保つことにより、ナトリウムが漏えいした場合の燃焼反応を抑制する。
(ほ) 漏えいしたナトリウムがコンクリートと直接接触することを防止するため
に、床面等に鋼製のライナを設置する。
(ハ) 事故解析
(a) 漏えいナトリウムによる熱的影響の解析
(い) 解析条件
① 原子炉出力運転中に、ナトリウムが七〇立方メートル漏えいするとし、漏えい
ナトリウムの温度は五三一℃とする。
② ナトリウムの流出過程を考慮して解析する。
③ 室内の初期酸素濃度は3v/oとする。
④ 室内は内外圧差100mmaqに対して100%/dの通気率があるものとす
る。また、外部は空気雰囲気とする。
(ろ) 解析結果
 ナトリウムを貯留する一次ナトリウム純化系室床ライナの最高温度は約四八〇℃
であり、設計温度五三〇℃を下回っている。原子炉格納容器の内圧上昇は約〇・〇
二一キログラム毎平方センチメートルであり、最高使用圧力〇・五キログラム毎平
方センチメートルGを十分に下回っている。また、温度の上昇もわずかである。な
お、この場合のナトリウム燃焼量は約二・〇トンである。
 したがって、原子炉格納容器の健全性が問題になることはない。(b) 核分裂
生成物の放出量及び被曝線量の評価
(イ) 解析条件
① 事故発生直前まで、原子炉は定格出力の一〇二パーセントで長時間にわたって
運転されていたものとする。
② 通常運転時に一パーセントの燃料欠陥率を想定する。
③ 外部電源は使用できないものとする。
④ ナトリウム漏えいに伴い、コールドトラップに蓄積されている全てのよう素が
流出するものとする。
⑤ 漏えいナトリウムを貯留する部屋に放出される核分裂生成物の量は、希ガスが
漏えいナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量、よう
素が燃焼ナトリウム中の全量及び原子炉格納容器内一次アルゴンガス中の全量とす
る。漏えいナ
トリウム量は七〇立方メートル、燃焼ナトリウム量は二・〇トンとする。⑥ 漏え
いナトリウムを貯留する部屋に放出されたよう素のうち、九五パーセントはエアロ
ゾルの形態をとり、残り五パーセントはエアロゾルの形態をとらないものとする。
⑦ 漏えいナトリウムを貯留する部屋に放出されたエアロゾル状よう素はプレート
アウト等による減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果
を考えない。
⑧ 漏えいナトリウムを貯留する部屋から原子炉格納容器床上への漏えい率は10
0%/d(100mmaq時)として事故時圧力により換算するが、最低漏えい率
は100%/dとする。
⑨ 原子炉格納容器床上へ漏えいしたエアロゾル状よう素はプレートアウト等によ
る減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
⑩ 原子炉格納容器からの漏えい率は、この事故時の原子炉格納容器圧力に対応す
る漏えい率を下回らない値とする。
⑪ 原子炉格納容器からの漏えいは、九七パーセントがアニュラス部に生じ、残り
三パーセントはアニュラス部外に生じるものとする。
⑫ アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率は九九
パーセントとする。
⑬ よう素用フィルタユニットヘの系統切替達成までの一〇分間はよう素除去効果
は考慮しないものとする。
⑭ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑮ 事故の評価期間は原子炉格納容器内圧が原子炉格納容器からの漏えいが無視で
きる程度に低下するまでの期間として、三〇日間とする。
⑯ 環境への核分裂生成物の放出は、排気筒より行われるものとする。
⑰ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(ろ) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約〇・〇八九キュリー、希ガス
約六二キュリーである。この大気中に放出された核分裂生成物の放射性雲による被
曝線量及び原子炉格納容器内に浮遊する放射能による直接線量及びスカイシャイン
線量を計算した結果、本件敷地境界外で最大となる場所において、小児甲状腺約
〇・〇〇〇六ハレム、全身約〇・〇〇三二レムである。
(4) 蒸気発生器伝熱管破損事故
(イ) 事故の内容
 原子炉出力運転中に、何らかの原因で蒸気発生器の伝熱管が破損し、ナ
トリウム・水反応による顕著な圧力上昇が生じるような大規模な水漏えい事故を想
定する。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために次の対策が講じられるので、事故発生の
可能性は極めて低い。
(い) 蒸気発生器の伝熱管の材料選定、設計、製作、据付、試験、検査等は、諸
規格、基準に適合させるようにし、また、品質管理や工程管理を十分に行う。
(ろ) 蒸気発生器は、水側、ナトリウム側とも高い純度管理のもとで運転され、
水側及びナトリウム側からの伝熱管の材料腐食を抑制する。
(は) 水漏えい検出設備を設置することにより、万一、伝熱管小破損が生じた剛
場合には、早期に水漏えいを検出し、運転員により発せられる水漏えい信号に基づ
くプラント運転自動停止操作により、ナトリウム・水反応を終息させる。
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) 蒸発器と過熱器は、いずれも圧力開放板を介してナトリウム・水反応生成
物収納設備に接続され、事故が生じた蒸気発生器内のナトリウム側圧力が圧力開放
板の設定圧力まで上昇すると、圧力開放板は自動的に破れてナトリウム・水反応生
成物収納設備に開放され、圧力の顕著な上昇が抑制されるようにする。
(ろ) ナトリウム・水反応により発生する水素ガスは収納設備に放出され、これ
に付随するナトリウム及び反応生成物のうち液体、固体は、収納容器で分離回収さ
れることとし、水素ガスは収納容器用圧力開放板を介して大気へ放出、燃焼処理さ
れる。
(は) 蒸発器に設けたカバーガス圧力計及び蒸発器又は過熱器の圧力開放板の開
放検出信号によって、蒸気発生器の水、蒸気側の遮断、内部保有の水及び蒸気の急
速ブロー、二次主冷却系循環ポンプ主モータトリップ等の一連のプラント自動停止
操作が行われ、ナトリウム・水反応現象が停止されるようにする。
(に) 蒸気発生器、二次主冷却系配管、中間熱交換器、二次主冷却系循環ポンプ
等の機器、配管は、ナトリウム・水反応による圧力上昇に対して構造強度上十分な
余裕を持つ設計とする。
(ほ) 一次、二次主冷却系循環ポンプにポニーモータを設置し、ポンプトリップ
時にポニーモータによる低速運転を行い、一ループのみにても定格出力時炉心流量
の約四パーセントを確保し、原子炉停止後の崩壊熱除去が行える設計とする。
(ハ) 事故解析
(a) 解析
条件
① 原子炉出力は、定格出力の一〇二パーセントとする。
② 解析対象ループは、二次主冷却系配管長が最短のループとする。
③ 初期スパイク圧評価としては、蒸発器の管束部下部において伝熱管一本が瞬時
に完全破断を起こすものとする。準定常圧評価としては、伝熱管破損伝播の影響を
考慮し、伝熱管四本が同時に完全破断するものとする。
④ 蒸気発生器及びナトリウム・水反応生成物収納容器の圧力開放板は、設定圧力
に誤差を考慮した最大圧力で開放するものとする。
(b) 解析結果
 破断初期において蒸発器胴部に作用するいわゆる初期スパイク圧力のピーク値は
約二三キログラム毎平方センチメートルであり、蒸発器の胴の歪みは少さく、塑性
歪みには至らない。この初期スパイク圧の伝播に対して、中間熱交換器及び二次主
冷却系の機器、配管は塑性歪みを生じるには至らず、各設備の健全性は保たれる。
 また、初期スパイク圧減衰後から事故終止まで持続している準定常圧は、伝熱管
破損伝播による影響も含め、蒸気発生器において約九キログラム毎平方センチメー
トル以下及び中間熱交換器二次側において約一三キログラム毎平方センチメートル
以下であり、準定常圧に対しても蒸気発生器、二次主冷却系機器、配管及び中間熱
交換器の歪みは塑性歪みには至らず、各設備の健全性が損なわれることはない。
 したがって、この事故が生じると、ナトリウム・水反応生成物収納設備の作動に
より、プラント自動停止操作が行われ、「二次主冷却系循環ポンプ回転数低」信号
により原子炉は自動停止する。これに伴い、健全ループの各循環ポンプはポニーモ
ータにより低速運転され、炉心の冷却能力が失われることはなく、また、原子炉冷
却材バウンダリの健全性が損なわれることはない。
(六) 原子炉カバーガス系に関する事故
(1) 一次アルゴンガス漏えい事故
(イ) 事故の内容
 原子炉出力運転時に、何らかの原因により原子炉補助建物内の常温活性炭吸着塔
付近の一次アルゴンガス系の配管が破損し、核分裂生成物を含んだ一次アルゴンガ
スが原子炉補助建物内の常温活性炭吸着塔収納設備内に放出される事故を想定す
る。
(ロ) 事故発生及び拡大の防止のための対策
(a) この事故の発生を防止するために、一次アルゴンガス系の配管及び機器の
材料選定、設計、製作、据付、試験、検査等は、諸規格、基準に適合させるように
し、また、品質管理や工程管理を十分に行
い、破損や漏えいの可能性を少なくする対策が講じられるので、事故発生の可能性
は極めて低い
(b) 万一事故が発生した場合にも、事故拡大の防止を図るため、次の対策が講
じられる。
(い) 一次アルゴンガス系の常温活性炭吸着塔は、気密性の高い常温活性炭吸着
塔収納設備内に収容される。
(ろ) 一次アルゴンガスが漏えいした場合、小規模の漏えいに対しては、一次ア
ルゴンガス系設備室の放射線監視装置で検知できるようにし、運転員の手動操作に
よって一次アルゴンガス系設備排気側の原子炉格納容器隔離弁、一次アルゴンガス
系収納施設隔離弁を閉鎖する等の漏えいの抑制措置をとることができる設計とす
る。また、大規模な漏えいが生じた場合には、「一次アルゴンガス系流量高」の異
常信号により検知し、自動的に一次アルゴンガス系設備排気側の原子炉格納容器隔
離弁、一次アルゴンガス系収納施設隔離弁を閉鎖する等の漏えいの抑制措置を取る
ことのできる設計とする。
(は) 一次アルゴンガス系から、原子炉補助建物内に放射性ガスが放出されたと
しても、換気設備によって常時排気筒に導く。
(に) 排気筒には放射性ガスの監視装置を設け、周辺環境に対する最終の監視を
行う。
(ハ)事故解析
(a) 解析条件
① 事故発生直前まで、原子炉は定格出力の一〇二パーセントで長時間運転されて
いたものとする。
② 通常運転時に一パーセントの燃料欠陥率を想定する。
③ 外部電源は使用できないものとする。
④ 常温活性炭吸着塔内に貯留されている核分裂生成物は、圧力が大気圧になるま
で放出されるとする。更に、その後も残存量の一〇パーセントが拡散により漏えい
するものとする。
⑤ 一次アルゴンガス系収納施設の漏えい率は事故後初期は100%/dとし、そ
の後は一次アルゴンガス系収納施設の内圧の低下に応じた漏えい率とする。
⑥ 常温活性炭吸着塔収納設備より原子炉補助建物内へ漏えいした核分裂生成物は
全て大気に放出されるとする。
⑦ 事故の評価期間は、一次アルゴンガス系収納施設の内圧が一次アルゴンガス系
収納施設からの漏えいが無視できる程度に低下するまでの期間として、三〇日間と
する。
⑧ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(b) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約一・一キュリー、希ガス約二
万四〇〇〇キュリーであり、この大気
放出に伴う被曝線量は、本件敷地境界外で最大となる場所において小児甲状腺約
〇・二二レム、全身約〇・〇七七レムである。
5 本件安全審査における評価
(一) 事象選定の妥当性事故として取り上げられている事象については、「評価
の考え方」に基づき、「安全評価審査指針」等を参考とし、事象選定解析の結果を
も考慮して炉心内の反応度の増大、炉心冷却能力の低下、燃料取扱いに伴う事故、
ナトリウムの化学反応、原子炉カバーガス系に関する事故のそれぞれに対して事故
の結果が厳しくなる事象が選定されており、妥当であると判断した。
(二) 解析方法の妥当性
(1) 事象の解析に当たって考慮する範囲については、サイクル期間中の炉心燃
焼度変化や燃料交換等による長期的な変動及び運転中予想される異なった運転モー
ドが考慮されているほか、工学的安全施設等の動作状況及び運転員の一操作の態様
も考慮されている。解析に使用されているモデル及びパラメータについてはへそれ
ぞれの事象に応じて評価の結果が厳しくなるように選定されており、また、パラメ
ータに不確定因子が考えられる場合には、十分な安全余裕が見込まれている。
(2) 解析に当たっては、作動を要求される安全系の機能別に、結果を最も厳し
くする単一故障が仮定されており、事象の影響を緩和するのに必要な運転員の手動
操作のための時間的余裕は適切に見込まれ、工学的安全施設の動作が要求される場
合には、外部電源の喪失が考慮されている。また、各事象の解析に使用されている
計算コードは、実験結果等との比較によりその使用の妥当性が確認されている。こ
れらのことから、右解析の方法は妥当であると判断した。
(三) 解析結果の妥当性
 いずれの事故の解析結果においても、炉心は大きな損傷に至ることなく、かつ、
十分な冷却が可能であり、冷却材バウンダリの温度、格納容器バウンダリの温度及
び圧力は制限値を下回り、周辺の公衆に対し著しい放射線被曝のリスクを与えるこ
ともないと判断した。
(四) 結論
 以上から、本件安全審査においては、事故事象によっても、炉心の冷却能力が長
期間にわたり十分確保され、核分裂生成物の放出に対しても敷地周辺への影響は大
きくならないよう十分抑止されているとして、本件原子炉施設の安全防護機能の設
計は妥当であると判断した。
三 技術的には起こるとは考えられない事象の解析評価に関する本件安全審査乙七
ないし一〇、乙
一四の一ないし三、乙一六、乙二二、乙二三及び乙イ六並びに弁論の全趣旨によれ
ば、技術的には起こるとは考えられない事象の解析についての本件安全審査の内容
につき、次のとおりと認められる。
1 意義
 技術的には起こるとは考えられない事象の解析評価は、事故防止対策としての安
全設計がされていることを前提として、発生頻度は無視し得るほど極めて低いが、
炉心が大きな損傷に至るおそれがある事象を選定し、この事象とこれに続く事象経
過に対する防止対策との関連において、放射性物質放散に対する障壁の抑制機能を
評価するため、原子炉施設の深層防御の観点から行うものである。
2 本件安全審査の審査方針
 本件安全審査においては、「評価の考え方」に基づき、起因となる事象の発生を
仮定して、事象経過に対する防止対策との関連において炉心損傷の程度を評価し、
一部の機器等に設計条件を超える結果が生じても、放射性物質放散に対する障壁と
しての原子炉冷却材バウンダリのナトリウム保持機能等又は格納容器バウンダリに
よる最終的な放射性物質の放散に対する抑制機能が適切に保たれ、事象に応じて放
射性物質の放散が適切に抑制されるか否かを審査、評価した。
 そして、右審査においては、放射性物質の放散が適切に抑制されることの判断基
準について、「立地審査指針」及び「プルトニウムに関するめやす線量について」
に示されているめやす線量を参考とした。
3 本件許可申請における解析対象
(一) 局所的燃料破損事象
(1) 燃料要素の局所的過熱事象
(2) 集合体内流路閉塞事象
(二) 一次主冷却系配管大口径破損事象
(三) 反応度抑制機能喪失事象
(1) 一次冷却材流量減少時反応度抑制機能喪失事象
(2) 制御棒異常引抜時反応度抑制機能喪失事象
4 本件許可申請における技術的には起こるとは考えられない事象の解析内容
(一) 局所的燃料破損事象
(イ) 事象の内容
 原子炉出力運転中に何らかの原因によって燃料が局所的に溶融し、溶融部分が周
辺の炉心燃料に伝播する事象であり、この場合、炉心の大規模な損傷が生じるおそ
れがある。
 起因事象としては、燃料要素に局所的過熱が生じ燃料が溶融する事象(燃料要素
の局所的過熱事象)と集合体内の冷却材流路の閉塞が生じ燃料が損傷する事象(集
合体内流路閉塞事象)を想定する。
(2) 事故経過に対する防止対策
(イ) 燃料の製造工程は自動化されており、燃料の富化
度を変えるたびに全工程をクリーンアップするという工程管理上の配慮と十分な品
質管理により、富化度の異なる燃料が誤装荷されることのないようにする。
(ロ) 万一この事象が発生し、燃料被覆管が破損した場合には、燃料要素より放
出される核分裂生成物をカバーガス法破損燃料検出装置あるいは遅発中品性子法破
損燃料検出装置で検出し、中央制御室に警報を発して運転員の注意を喚起する。更
に、事象が進展し放出される核分裂生成物が増加すれば、遅発中性子法破損燃料検
出装置からの原子炉トリップ信号により、原子炉を自動停止する。
(3) 燃料要素の局所的過熱事象の解析
(イ) 解析条件
① 炉心中央部で燃料の相対線出力が二〇〇パーセントとなると仮定する。
② 溶融燃料と冷却材の相互作用に寄与する溶融燃料の初期放出量は一〇グラムと
する。
③ 溶融燃料と冷却材の相互作用による燃料微粒子化時定数は一〇ミリ秒とし、粒
子化後の燃料の半径は一七七マイクロメートルとする。
④ 燃料放出による冷却材流路の閉塞率は九〇パーセントとし、閉鎖軸方向長さは
一センチメートルと三センチメートルの両者を仮定する。
⑤ 溶融燃料初期放出に伴い、遅発中性子法破損燃料検出装置及びカバーガース法
破損燃料検出装置により発せられる燃料破損警報による手動での原子炉停止は無視
する。
(ロ) 解析結果
 放出された溶融燃料と冷却材の相互作用により圧力が発生すると共に、ガスブラ
ンカッティング作用により被覆管の温度が上昇する。発生圧力によるラッパ管の変
形は弾性範囲内であって、隣接ラッパ管の健全性が損なわれることはなく、また、
被覆管の温度は七〇〇℃未満であって、周囲の燃料被覆管が破損することはない。
 燃料粒子による冷却材流路閉塞が軸方向長さ一センチメートルの場合は、溶融燃
料放出による破損伝播は生じない。軸方向長さ三センチメートルの場合には、緩慢
な破損伝播が生じるが、隣接燃料集合体のラッパ管の健全性は確保され、原子炉は
燃料破損に伴う遅発中性子法破損燃料検出装置からの原子炉トリップ信号により自
動停止される。なお、原子炉停止後のポニーモータ運転時においても、炉心のナト
リウム最高温度は約六八〇℃にとどまり、沸点に達しない。
(4) 集合体内流路閉塞事象の解析
(イ) 解析条件
① 燃料集合体中央部で流路面積の三分の二が閉塞するものとする。
② 集合体内流路閉塞率に対応する流量は、模擬燃料
集合体の流動試験で得られた閉塞率と流量低下率との関係を適用する。
③ 燃料集合体の出口温度計による異常の検出、破損燃料発生に伴う遅発中性子法
破損燃料検出装置及びカバーガス法破損燃料検出装置により発せられる燃料破損警
報による手動での原子炉停止は無視する。
(ロ) 解析結果
 冷却材流路閉塞に伴い、閉塞部下流域の冷却材流量は低下し、冷却材温度及び燃
料被覆管温度が上昇するが、閉塞した燃料集合体のナトリウム最高温度は炉心部で
の沸点未満であって、ナトリウムの沸騰は生ぜず、また、被覆管肉厚中心最高温度
は九八〇℃未満であって、燃料被覆管は溶融することはない。
 燃料被覆管からの核分裂生成ガスの放出を仮定した場合、核分裂生成ガスにより
隣接被覆管温度が上昇し、局所的破損が拡大することがあるが、その場合にも遅発
中性子法破損燃料検出装置からの原子炉トリップ信号により原子炉は自動停止され
る。なお、原子炉停止後のポニーモータ運転時においても、炉心のナトリウム最高
温度は約七三〇℃にとどまり、沸点に達しない。
(二) 一次主冷却系配管大口径破損事象
(1) 事象の内容
 原子炉出力運転中に何らかの原因によって炉心の冷却が損なわれる事象であっ
て、この場合、燃料が溶融し炉心の大規模な損傷を生じるおそれがある。
 起因事象としては、一次主冷却系配管の大規模な破断が生じ、冷却材が流出する
事象を想定する。
(2) 事故経過に対する防止対策
(イ) 原子炉容器入口配管のガードベッセル付け根部において、ガードベッセル
本体と入口配管部ガードベッセル内空間を仕切る構造を設けることにより、配管破
損時に入口配管部ガードベッセル内の漏えいナトリウムの液位を上昇させ、破損口
からのナトリウムの流出を早期に低減する。
(ロ) 入口配管部ガードベッセル上端からガードベッセル本体上端に通じるナト
リウムの溢流回収路を設け、入口配管部ガードベッセルから外部に溢れ出るナトリ
ウム量を抑え、ガードベッセル内液位を確保する。
(ハ) 「原子炉容器ナトリウム液位低」信号により原子炉が自動停止する際に、
一次主冷却系循環ポンプに可変速流体継手付MーGセットの回転慣性を付加するこ
とにより、炉心への冷却材流入量の低下を抑制する。原子炉の自動停止に際して
は、補助冷却設備起動信号が発せられ、その後は補助冷却設備空気冷却器及びポニ
ーモータによる一次、二次主冷却系循環ポンプの低速運
転により炉心の冷却を行うと共に、ディーゼル発電機を起動し、電源喪失に備え
る。
(ニ) 「原子炉容器ナトリウム液位低低」信号により原子炉容器とオーバフロー
タンクを連絡しているカバーガス連通管止め弁を全開し、原子炉容器液位低下によ
るカバーガス圧力の降下を促進することにより、破損口からのナトリウムの流出を
抑制する。
(3) 炉心冷却能力の解析
(イ) 解析条件
① 一次主冷却系配管の破損位置は原子炉容器入口ノズル部とし、破損口の大きさ
は両端完全破断とする。
② 原子炉は「原子炉容器ナトリウム液位低」信号により自動停止されるものとす
る。
③ 「原子炉容器ナトリウム液位低」信号により、一次主冷却系循環ポンプの可変
速流体MーGセットの切離しが阻止され、その回転慣性を考慮するものとする。
(ロ) 解析結果
 原子炉自動停止による補助冷却設備作動信号によって、補助冷却設備による崩壊
熱除去が開始され、ポニーモータによる一次、二次主冷却系循環ポンプの低速運転
に移行する。
 炉心において最も厳しい結果を示す中心部の燃料最高温度、燃料被覆管因厚中心
最高温度及びナトリウム最高温度は、それぞれ約二三九〇℃、約九九〇℃及び約九
九〇℃となり、燃料及び被覆管の溶融は生じず、燃料の破損割合は約三パーセント
と小さく、炉心は大きな損傷に至ることはない。
(4) 流出ナトリウムの熱的影響の解析
(イ) 解析条件
① 流出したナトリウムの燃焼形態としては、流出過程におけるスプレー化、中間
床上及び最終貯留部でのプール形成を考慮するものとする。
② 室内の初期酸素濃度は3v/oとする。
③ 流出ナトリウム量は一八〇立方メートルとし、流出ナトリウム温度は五二九℃
とする。
④ 一次主冷却系室から原子炉格納容器床上への漏えい量は圧力差100mmaq
に対して100%/dの割合とする。
(ロ) 解析結果
 流出したナトリウムの燃焼量は約二・二トンで、これによる一次主冷却系室床ラ
イナ温度の最高値は約四八〇℃で設計温度の五三〇℃を下回っている。原子炉格納
容器の内圧上昇は、約〇・〇二二キログラム毎平方センチメートルにとどまり、最
高使用圧力の〇・五キログラム毎平方センチメートルGを超えることはない。
 また、温度上昇もわずかであり、したがって、原子炉格納容器の健全性が損なわ
れることはない。
(5) 被曝評価
(イ) 解析条件
① 一次主冷却系室内に放出される核分裂生成物の
量は、希ガスが全燃料要素ギャップ中内蔵量の一〇パーセント及び漏えいナトリウ
ム中の全量、よう素が全燃料要素ギヤツプ中内蔵量の一〇パーセント及び漏えいナ
トリウム中の全量合計のナトリウム燃焼割合分とする。
② 一次主冷却室に放出されるよう素のうち、九五パーセントはエアロゾルの形態
をとり、残り五パーセントはエアロゾルの形態をとらないものとする。
③ 一次主冷却室内のエアロゾル状よう素はプレートアウト等による減衰を考慮す
るが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
④ 原子炉格納容器床上へ漏えいしたエアロゾル状よう素はプレートアウト等によ
る減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
⑤ 一次主冷却室から原子炉格納容器床上雰囲気中への漏えい率は100%/d
(100mmaq時)とし、最低漏えい率は100%/dとする。
⑥ 原子炉格納容器からの漏えい率は、この事象時の原子炉格納容器圧力に対応す
る漏えい率を下回らない値とする。
⑦ 原子炉格納容器からの漏えいは、九七パーセントがアニュラス部に生じ、残り
三パーセントはアニュラス部外に生じるものとする。
⑧ アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率は九九
パーセントとする。よう素用フィルタユニットヘの系統切替達成までの一〇分間は
よう素除去効果を考慮しない。
⑨ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑩ 事故継続時間は三〇日間とする。
⑪ 環境への核分裂生成物の放出は、排気筒より行われるものとする。
⑫ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(ロ) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約一・九キュリー、希ガス約九
六〇〇キュリーであり、この大気放出に伴う被曝線量は、本件敷地境界外で最大と
なる場所において小児甲状腺約〇・〇一五レム、成人甲状腺約〇・〇〇三七レム、
全身約〇・〇二レムである。
(三)反応度抑制機能喪失事象
(1) 事象の内容原子炉出力運転中に何らかの原因によって炉心流量が減少し、
若しくは異常な反応度が挿入された際に、反応度抑制機能が喪失する事象であり、
この場合、燃料が溶融し炉心の大規模な損傷が生じるおそれがある。
 起因事象としては、外部電源喪
失により炉心流量が減少し(一次冷却材流量減少時)、若しくは制御棒が連続的に
引き抜かれることにより炉心に異常な反応度が挿入され(制御棒異常引抜時)、原
子炉の自動停止が必要とされる時点で反応度抑制機能喪失を重ね合わせた事象を想
定する。
(2) 事故経過に対する防止対策
(イ) 遮へいプラグ下面に作用する圧力により生じるプラグ等の隙間を通ってナ
トリウムが炉上部ピットへ噴出することを抑制する構造とする。
(ロ) 事象発生後の炉心の崩壊熱は、自然循環により除去できる構造とする。
(ハ) 「原子炉格納容器床上雰囲気圧力高」信号又は「原子炉格納容器床上雰囲
気放射能高」信号により原子炉格納容器の隔離が行われる。原子炉格納容器は機密
性が高く、また、わずかにアニュラス部へ漏えいした放射性物質は、アニュラス部
が常時負圧に維持されているため、直接大気中に漏えいすることはなく、更に、ア
ニュラス循環排気装置は、アニュラス部の空気を浄化再循環すると共に、浄化した
空気の一部を排気筒より放出する。
(3) 一次冷却材流量減少時反応度抑制機能喪失事象の解析
(イ) 炉心冷却能力の解析
(a) 解析条件
① 炉心の状態は平衡炉心の燃焼末期とする。
② 外部電源喪失と反応度抑制機能喪失を重ね合わせた事象を対象とする。
③ 炉心損傷後の膨張過程における有効仕事量の評価に当たっては、二相燃料の等
エントロピー膨張を仮定する。
④ 構造物の耐衝撃評価に当たっては、膨張過程における最大有効仕事量として五
〇〇メガジュールを考慮する。
⑤ 崩壊熱除去の評価に当たっては、一次主冷却系、二次主冷却系及び補助冷却設
備の自然循環のみを期待する想定とする。
(b) 解析結果
 炉心はナトリウム沸騰、被覆管溶融移動、燃料スランピングが生じた時.点で即
発臨界に達し、膨張によって未臨界となる。炉心損傷後の最大有効仕事量は約三八
〇メガジュールとなる。炉心部で発生する圧力荷重によって、原子炉容器に歪みが
生ずるが、ナトリウムが漏えいするような破損は生じない。また、一次主冷却系機
器、配管についても一部歪みが生じるものの、ナトリウムが漏えいするような破損
は生じない。炉心部から放出された溶融燃料は、周辺のナトリウム及び構造材に熱
を伝達すると共に、原子炉容器内構造物水平部等に保持される。
 崩壊熱の除去については、崩壊熱の除去のために必要な一次主冷却系の循環流路
が確保されており
、その自然循環と二次主冷却系及び補助冷却設備の作動により除熱機能は確保され
る。二次主冷却系の二ループの強制循環除熱(ポニーモーター台不作動)を想定し
た場合には、除熱能力は更に大きくなる。なお、遮へいプラグ下面へのナトリウム
スラグの衝突に伴うナトリウムの原子炉格納容器床上部への噴出量は約二九〇キロ
グラムとなる。
(ロ) 噴出ナトリウムの熱的影響の解析
(a) 解析条件
① 原子炉格納容器床上へのナトリウム噴出量を四〇〇キログラムとする。
② ナトリウムは床上雰囲気中で瞬時に空気と反応するものとし、その燃焼熱と原
子炉格納容器雰囲気中へ放出された核分裂生成物の崩壊熱の全てが、原子炉格納容
器内雰囲気ガスの温度上昇に費やされるものとする。
(b) 解析結果
 四〇〇キログラムのナトリウム噴出に伴い、原子炉格納容器内雰囲気ガスは、初
期に温度が約一四〇℃、内圧が約〇・三三キログラム毎平方センチメートルGまで
上昇した後、下降し続ける。
 したがって、原子炉格納容器内圧、温度とも設計値を下回っており、放射性物質
の放散を抑制できる。
(ハ) 被曝評価
(a) 解析条件
① 原子炉格納容器床上に放出される核分裂生成物の量は、炉内存在量に対して、
希ガスが一パーセント、よう素が一パーセント、プルトニウムが〇・一パーセント
とする。
② 放出されるよう素のうち、九五パーセントはエアロゾルの形態をとり、残り五
パーセントはエアロゾルの形態をとらないものとする。
③ 原子炉格納容器床上へ漏えいしたエアロゾル状よう素はプレートアウト等によ
る減衰を考慮するが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
④ 原子炉格納容器からの漏えい率は、この事象時の原子炉格納容器圧力に対応す
る漏えい率を下回らない値とする。
⑤ 原子炉格納容器からの漏えいは、九七パーセントがアニュラス部に生じ、残り
三パーセントはアニュラス部外に生じるものとする。
⑥ アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率は九九
パーセントとするよう素用フィルタユニットヘの系統切替達成までの一〇分間はよ
う素除去効果は考慮しないものとする。
⑦ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑧ 事故継続時間は三〇日間とする。
⑨ 環境への希ガス、よう素等の核分裂生成物の放出は排気筒より行わ
れるものとする。
⑩ 環境に放出された希ガス、よう素等の大気中の拡散については、「気象指針」
に従って評価するものとする。
(b) 解析結果
 大気中に放出される放射能は、よう素約七七キュリー、希ガス約二六〇〇キュリ
ー及びプルトニウム約二・〇キュリーである。このよう素及び希ガスの大気放出に
伴う被曝線量は、本件敷地境界外で最大となる場所において、小児甲状腺約一・一
レム、成人甲状腺約〇・三七レム、全身約〇・〇六九レムである。プルトニウムの
大気放出に伴う被曝線量は、本件敷地境界外で最大となる場所において、骨表面、
肺及び肝のそれぞれに対し約〇・〇七一ラド、約〇・〇一四ラド及び約〇・〇一五
ラドである。
(4) 制御棒異常引抜時反応度抑制機能喪失事象の解析
(イ) 解析条件
① 炉心の状態は、初装荷炉心の燃焼初期とする。
② 制御棒の異常な引き抜きと反応度抑制機能喪失を重ね合わせた事象を対象とす
る。
(ロ) 解析結果
 冷却材流路に放出された溶融燃料は冷却材の移動と共に掃き出され、炉心は未臨
界となる。また、炉心部は部分的な損傷にとどまり、事象終了後の炉心部の冷却は
確保できる。したがって、本事象の結果は一次冷却材流量減少時反応度抑制機能喪
失事象に包絡される。
5 本件安全審査における評価
(一) 事象選定の妥当性
 取り上げられている事象は、「評価の考え方」に基づき、海外LMFDRの評価
例等も参考として選定されており、妥当であると判断した。
(二) 解析方法の妥当性
 事象の解析に当たって考慮する範囲については、サイクル期間中の炉心燃焼度変
化や燃料交換等による長期的な変動及び運転中予想される異なった運転モードが考
慮されているほか、工学的安全施設等の動作状況及び運転員の操作の態様も考慮さ
れている。解析に使用されているモデル及びパラメータについては、それぞれの事
象に応じて合理的に選定されており、また、各事象の解析に使用されている計算コ
ードは、実験結果等との比較によりその使用の妥当性が確認されている。これらの
ことから、右解析の方法は妥当であると判断した。
(三) 解析結果の妥当性
 いずれの事象の解析結果においても、放出される放射性物質による本件敷地境界
外の公衆の被曝線量は「立地審査指針」及び「プルトニウムに関するめやす線量に
ついて」に示されているめやす線量を下回る放射性物質の放散が適切に抑制される
と判断した。
(四) 
結論
 以上から、本件安全審査においては、技術的には起こるとは考えられない事象に
よっても炉心は冷却され、防止対策との関連において放射性物質の放散が適切に抑
制されるとして、妥当であると判断した。
四 本件安全審査の結論
 本件安全審査においては、調査審議の結果、本件原子炉施設の事故防止対策に係
る安全性について、本件原子炉施設が具体的審査基準に適合し、その基本設計ない
し基本的設計方針において、事故防止対策に係る安全性を確保し得るもの、すなわ
ち、事故防止対策との関連において、原子炉等による災害の防止上支障がないもの
とした。
五 当裁判所の判断
1 「運転時の異常な過渡変化」、「事故」、「技術的には起こるとは考えられな
い事象」の三種類に分けて通常運転時を超える異常状態を想定している点について
は、「運転時の異常な過渡変化」は、本件原子炉の使用期間内に一度は起こる可能
性のある燃料被覆管又は原子炉冷却材バウンダリに過度の損傷をもたらす可能性の
ある事象であり、その解析は、その発生を想定した場合に、右異常な過渡変化を安
定して終止させ、燃料被覆管及び原子炉冷却材バウンダリの健全性を確保するため
に設置された安全保護設備等の設計の妥当性を総合的に確認することを目的として
行われるもの、「事故」は「運転時の異常な過渡変化」を超える異常な状態であっ
て、発生頻度は小さいが、万一、発生した場合には本件原子炉施設から環境へ放射
性物質を異常に放出するおそれがある事象であり、その解析は、その発生を想定し
た場合に、その拡大を防止し放射性物質が環境へ異常に放出することを抑止するた
めに設置された工学的安全施設等の設計の妥当性を総合的に確認することを目的と
して行われるもの、「技術的には起こるとは考えられない事象」は、LMFDRの
運転実績が僅少であることから、発生頻度は無視し得るほど極めて低いが、その結
果が重大であると想定される事象であり、その解析評価は、その発生を仮定した場
合に、その起因となる事象とこれに続く事象経過に対する防止対策との関連におい
て、放射性物質の放散が適切に抑制されることを目的として行われるものであっ
て、それぞれその目的を異にするものであるから、このような多方面からの評価に
よって本件原子炉施設における事故防止対策に係る安全機能が適切に確保され得る
ことを確認することに、特段不合理な点があるとは認められない。

 また、「運転時の異常な過渡変化」、「事故」、「技術的には起こるとは考えら
れない事象」の各事象の解析評価において用いられた解析条件には、特段不合理な
点があるとは認められない。
3 そして、右各事象の解析結果からは、次のようにいうことができる。
(一) 「運転時の異常な過渡変化」の解析結果については、いずれの事象におい
ても燃料及び原子炉冷却材バウンダリの健全性が損なわれないことが確認されたと
いえる。
(二) 「事故」の解析結果については、いずれの事故においても、炉心の冷却能
力が失われたり、原子炉格納容器、原子炉冷却材バウンダリの健全性が損なわれる
ことなく事故が終息すること、本件原子炉施設付近の周辺公衆の被曝も、全身被曝
線量についてはいずれの事故においても「線量当量限度を定める件」の定める「公
衆の許容被曝線量」年間〇・一レム(なお、「許容被曝線量等を定める件」の定め
る年間〇・五レムは現在妥当性を失っていることは、前記(第二、二、2)のとお
りである。)を下回り、一次アルゴンガス漏えい事故における小児の甲状腺被曝線
量のみが〇・二二レムと、右〇・一レムを超えているものの、公衆が過大な被曝を
受けることがないことが確認されたといえる。
(三) 「技術的には起こるとは考えられない事象」の解析結果については、炉心
は冷却され、本件原子炉施設の付近住民が、「立地審査指針」、「プルトニウムに
関するめやす線量について」に定める「めやす線量」を超える被曝をすることがな
いことが確認されたといえる。
(四) そうすると、本件原子炉施設における事故防止対策に係る安全性が適切に
確保され得るという結論においても、特段不合理な点は認められないというべきで
ある。
4 以上のとおり、本件安全審査における本件原子炉施設の事故防止対策に係る安
全性についての調査審議及び判断の過程に重大かつ明白な瑕疵といえるような看過
し難い過誤、欠落があるとは認められない。
六 原告らの主張について
1 「運転時の異常な過渡変化」及び「事故」の解析評価について原告らは、「運
転時の異常な過渡変化」及び「事故」の解析評価についての本件安全審査には種々
の重大かつ明白な瑕疵がある旨主張する。
(一) 事象の選定について
 原告らは、本件許可申請に際しては、限られたいくつかの「運転時の異常な過渡
変化」や「事故」を想定して解析評価したものにすぎず、不十分である旨主
張する。
 この点、多数の機器で複雑に構成された原子炉施設においては、理論上発生する
可能性のある事故を網羅的に検討するならば、極めて多数の事故等を想定し得るこ
とは明らかである。しかし、「安全評価審査指針」は、軽水炉の安全評価を行うに
際して想定すべき事象として、加圧水型軽水炉(PWR)については「運転時の異
常な過渡変化」として一四種類、「事故」として九種類、沸騰水型軽水炉(DW
R)については「運転時の異常な過渡変化」として一四種類、「事故」として六種
類を定めている(乙四・二六八頁、二六九頁)。また、「安全評価審査指針」は、
「原子炉の運転状態において原子炉施設寿命期間中に予想される機器の単一故障又
は誤動作若しくは運転員の単一誤操作などによって、原子炉の通常運転を超えるよ
うな外乱が原子炉施設に加えられた状態及び、これらと類似の頻度で発生し、原子
炉施設の運転が計画されていない状態にいたる事象」を「運転時の異常な過渡変
化」とし、「運転時の異常な過渡変化を超える異常状態であって、発生頻度は小さ
いが、発生した場合は原子炉施設からの放射能の放出の可能性があり、原子炉施設
の安全性を評価する観点から想定する必要のある事象」を「事故」としているこ
と、そして、「運転時の異常な過渡変化」については、原子炉施設が制御されずに
放置されると、燃料又は原子炉冷却材圧カバウンダリに過度の損傷をもたらす可能
性のある事象を想定し、これら事象が発生した場合における安全保護系、原子炉停
止系等の設計の妥当性を確認するという観点から、「事故」については、原子炉施
設からの放射線による敷地周辺への影響が大きくなる可能性のある事象を想定し、
これらの事象が発生した場合における工学的安全施設等の設計の妥当性を確認する
という観点から、それぞれの目的、範囲に従って評価の対象とすべき代表的事象を
選定するとしていること、類似の「運転時の異常な過渡変化」又は類似の「事故」
が二つ以上ある場合には、結果が最も厳しくなるもので代表させることができると
していること、安全性の解析に当たっては、当該原子炉の通常運転範囲全域につい
て考慮すると共に、想定された事象に加え、作動を要求される安全系の機能別に結
果を最も厳しくする単一故障を仮定し、かつ、工学的安全施設の作動が要求される
場合には外部電源の喪失を仮定しなければならず、解析に当たって使用するモデル
及びパラメータは評価の結果が厳しくなるように選定しなければならないとしてい
る(乙四・二六四ないし二六七頁)。
 そして、「評価の考え方」は、右「安全評価審査指針」を参考とし、これにLM
FDRの特徴を考慮して「運転時の異常な過渡変化」及び「事故」の解析評価を行
うことが必要であるとし、「運転時の異常な過渡変化」として一二種類、「事故」
として一四種類を例示している(乙四・四九二ないし四九四頁)。
 右「安全評価審査指針」及び「評価の考え方」の定めは、原子炉施設の安全審査
においては、原子炉施設の事故防止対策に係る安全性を確認するために、原子炉施
設寿命期間中に現実に発生するおそれがあると想定される事象のうち、安全保護
系、原子炉停止系、工学的安全施設等の設計の妥当性を確認するという観点から、
評価の対象とすべき代表的な具体的事象を適切に選定して、これらにつき評価結果
が厳しくなるような前提条件を設定した上で解析評価し、安全性を確保することが
できるとの結論が得られれば、他の態様の事故については、選定された事故よりも
原子炉施設の安全性を損なうおそれが少ないものとして、具体的な解析を行うまで
もなく原子炉施設の安全性が確保されるという考え方に基づいているものと解する
ことができるところ、右考え方を不合理であるとする証拠はない。したがって、本
件原子炉施設について解析評価の対象として選定された事象の数が少ないことをも
って、直ちに本件安全審査が不合理であるということはできない。
 もちろん、具体的に想定して解析する事故等は、代表的な事象を適切に選定した
ものでなければならないが、この点については、各解析評価に関する部分で判断を
示すことにする。
(二) 単一故障の仮定について
 原告らは、異常事態の発生には多重故障やいくつかの誤操作が関与しているにも
かかわらず、本件原子炉施設の「運転時の異常な過渡変化」及び「事故」の解析評
価に際して、機器の単一故障のみを仮定しているのは不合理である旨主張する。
 この点、「安全設計審査指針」は、安全系(「安全設計審査指針」でいう「安全
上重要な構築物、系統及び機器」の一部をなすものであって、かつ、想定すべき事
象により生じる異常な状態を速やかに収束させ、又はその拡大を防止し、あるいは
その結果を緩和することを主たる機能とするもの。)に属する各系統は、単一故障
を仮定してもその安全機能を損
なわない設計であることを要求していること、「安全評価審査指針」は、各事象の
解析に当たっては、想定された事象に加え、作動を要求される安全系の機能別に結
果を最も厳しくする「単一故障」を仮定することをそれぞれ要求している(乙四・
三〇頁、二六七頁)。
 ところで、「安全評価審査指針」において右の単一故障の仮定を要求しているの
は、安全系の設計が「安全設計審査指針」の要求を満足していることを確認すると
共に、作動を要求されている諸系統間の協調性や、手動操作を必要とする場合の運
転員の役割等を合め、安全系全体としての機能と性能を確認しようとするものであ
ることが認められ、右によれば、原子炉施設の基本設計ないし基本的設計方針の妥
当性を確認するために行う「運転時の異常な過渡変化」及び「事故」の解析評価
は、単に安全系の設計が「安全設計審査指針」の要求を満足することを確認するこ
とを目的とするものではなく、安全系全体を統合的に検討しようとするものであ
り、その目的において十分な合理性を有する。
 そして、「安全評価審査指針」は、単一故障の仮定を考慮すべき範囲として、当
該想定事象に対して安全機能を果たすべき系統全般、すなわち、当該事象に対して
作動が要求される全ての安全系であって、補助施設や非常用電源も含むとしている
こと、単一故障の仮定は、当該事象に対して果たされるべき安全機能の観点から結
果を最も厳しくするものを選定し、かつ、一つの選定事象について二つ以上の安全
機能が要求される場合には、機能別に単一故障を仮定しなければならないとしてい
ること、事故の解析に当たって、工学的安全施設の作動が要求される場合には、外
部電源の喪失を考慮しなければならないとされていることが認められる(乙四・二
六七頁)。
 右によれば、単一故障の仮定といっても、機能別、すなわち作動を要求される系
統ごとに順次単一故障を仮定するのであるから、単に一つの故障のみを仮定するも
のではなく、また、結果を最も厳しくする単一故障を仮定するのであるから、結果
を同じくする複数の故障を仮定することと同視し得る。また、工学的安全施設の作
動に関しては外部電源の喪失も考慮するとしているのであるから、必然的に複数の
故障を仮定するものであることが明らかである。もちろん、放射性物質の拡散に対
する多重防壁のすべてが、無条件に機能しないということも理論上は仮定できる。
しかし、前記(第一、四、2、(二))のとおり、本件原子炉施設においては、事
故防止対策としての安全設計として、①異常事象の発生を防止し(異常の発生防
止)、次に、②仮に異常事象が発生したとしても、それが拡大し事故(周辺環境へ
放射性物質を大量に放出するに至るおそれのある事態)に発展することを防止し
(異常事故の拡大及び事故への発展の防止)、更には③万一事故に発展したとして
も周辺環境へ放射性物質が大量に放出されることを防止する(放射性物質の異常放
出の防止)設計がされ、本件安全審査においてその妥当性が確認されているのであ
って、「運転時の異常な過渡変化」及び「事故」の解析は、右のように本件原子炉
施設の安全設計の妥当性を確認した上で、更にあえて「運転時の異常な過渡変化」
及び「事故」の発生を想定し、「運転時の異常な過渡変化」については、炉心が損
傷に至る前に収束され通常運転に復帰できる状態になること、「事故」について
は、炉心の溶融のおそれがないこと及び放射線による敷地周辺への影響が大きくな
らないよう核分裂生成物放散に対する障壁の設計が妥当であることを確認し、右安
全設計の妥当性を別の側面から確認するためのものである。このような「運転時の
異常な過渡変化」及び「事故」の解析評価の目的、そして、本件原子炉施設の安全
保護系や工学的安全施設については、前記(第四、一、2、(三)、同4及び第
四、一二、3、(二))のとおり、①強度等において十分な余裕をもった設計とな
っていること、②外部電源が喪失した場合においても、非常用電源をその電源とす
るなど所定の機能が発揮されるようになっていること、③原子炉の運転開始後にお
いても定期的にその性能確認のための試験、検査が実施できる構造となっているこ
となど、設計上非常に高い信頼性を有しており、異常事象や事故が発生したとして
も、その発生に伴って作動することが要求される安全保護系や工学的安全施設に同
時に故障が発生する可能性は極めて低いことが確認されていることからすると、右
のような単一故障の仮定には十分な合理性があるといえ、理論上多重防護のすべて
が無条件に機能しないということを仮定し得るからといって、「運転時の異常な過
渡変化」及び「事故」の解析評価において、全ての機器の不作動やこれに近い仮定
を前提としても安全性が確認されなければならないとすることは、そもそも解析評
価の目的と矛盾し、合理性に欠けるというべきである。
 したがって、「運転時の異常な過渡変化」及び「事故」の解析評価における機器
の単一故障の仮定は合理的であり、原告らのこの点についての主張は理由がない。
(三) 「二次冷却材漏えい事故」について
(1) 原告らは、「二次冷却材漏えい事故」に係る解析評価(漏えいナトリウム
による熱的影響評価)の解析条件として、二次主冷却系配管の破損口の大きさを一
五平方センチメートルの割れ状の破損口としていることについて、右解析条件は恣
意的なものであり、瞬時両端完全破断を解析条件として仮定すべきである旨主張
し、その根拠として、フランスの高速原型炉スーパーフエニックスにおいては二次
系ナトリウム配管が完全破断する事故を想定していることを指摘する。
 この点、「二次冷却材漏えい事故」とは、本件原子炉の出力運転中に二次主冷却
系配管が破損して、二次冷却材であるナトリウムが漏えいする事象であるところ、
証人P8の証言(P8調書一・四二丁表、八八丁裏)によれば、二次主冷却系配管
に万一破損が生じるとしても、配管の内圧が低いために、右破損は肉厚を貫通した
疲労亀裂という形態をとり、急速な破断に発展するおそれはないこと、また、肉厚
を貫通した疲労亀裂の大きさは、設計上想定される応力の繰り返し回数を超えて配
管の肉厚を貫通するまで応力が繰り返し加えられたと仮定しても、長さが管の直径
の二分の一、幅が管の厚さの二分の一のスリット状の大きさを超えることはないこ
とが認められる。そうすると、本件安全審査において、申請者が漏えいナトリウム
による熱的影響の解析条件として、破損口の大きさを右スリット状の漏えい口の大
きさに相当する一五平方センチメートルとしたことを合理的と判断したことは妥当
というべきであり、フランスのスーパーフェニックスの事故想定は、右認定を覆す
ものではない。
 したがって、原告らのこの点についての主張は理由がない。
(2) 原告らは、「二次冷却材漏えい事故」の解析評価(漏えいナトリウムによ
る熱的影響評価)において、①床ライナの温度上昇がより大きい小、中規模漏えい
時の局所的なナトリウムの燃焼による床ライナの温度上昇が解析評価されていない
こと、また、②界面反応による腐食が解析条件において考慮されていないことは不
当である旨主張する。
 しかし、①の点については、乙イ四一及び乙イ四五によれば、右解析評価は、炉
心冷却能力の解析評価において前提とする二次主冷却系の系統分離が、漏えいナト
リウムの熱的影響によって損なわれないか否かを確認することを目的とするもので
あること、右評価の目的からすると、右系統分離のための障壁を形成する建物、構
築物の健全性に最も大きな影響を及ぼすのは、事故ループにおける雰囲気温度の上
昇に伴う内圧の上昇であり、内圧の上昇については、大規模漏えいの場合の方が
小、中規模漏えいの場合よりも大きいことから、右内圧の上昇が実際よりも十分に
厳しい結果となるように、考えられる最大規模の漏えいを想定した上で、漏えいし
たナトリウムの燃焼形態についても、右の内圧の上昇が実際よりも厳しい結果にな
るように、スプレイ燃焼するという条件が設定されたことが認められる。
 このように、右解析評価は、床ライナ自体の定量的な機械的健全性を確認するた
めのものではなく、右解析条件は、床ライナの健全性にとって最も厳しい条件とし
て設定されたものではない。確かに、右評価の際には、床ライナの温度上昇も併せ
て評価されているが、乙イ四五によれば、これは、内圧の上昇に着目した右条件下
において、機械強度的に余裕のある床ライナが設置され得ることを念のために確認
したにすぎないものと認められる。したがって、床ライナの温度上昇がより厳しい
小、中規模漏えい時の局所的なナトリウムの燃焼による床ライナの温度上昇が解析
評価されていないことは、右解析評価の合理性を左右するものではない。
 また、②の点ついても、同様に、右解析評価は、床ライナの機械的健全性を確認
するための解析評価ではないから、右解析評価において界面反応による腐食を考慮
していないことは、右解析評価の合理性を左右するものではない(なお、弁論の全
趣旨によれば、右解析評価において想定されている大規模漏えい時には、ナトリウ
ムが床ライナ上でプール燃焼するため、ナトリウム、酸素及び鉄の界面がほとんど
存在しないことが認められる。)。
もっとも、前記(第六、二、4、(二)、(6)、(ロ)、(b))に加え、証人
P1の証言(P1調書二八、二九頁)、乙一六・八―一―六頁、七頁、九頁、二七
頁、二八頁、三一頁、三二頁及び乙イ四五によれば、本件安全審査においては、冷
却材として使用されるナトリウムは、化学的に活性であり、酸素やコンクリートに
含まれる水とも激しく反応するため、漏えいしたナトリウムとコンク
リートが直接接触すると、ナトリウムとコンクリート中の水分が反応し、圧力上昇
やコンクリートの脆弱化により建物の健全性が失われることがあり、建物の健全性
が失われると、二次主冷却系の他の系統に影響が及ぶ可能性があることから、ナト
リウムの化学反応及びナトリウム火災に対する対策の一つとして、漏えいしたナト
リウムとコンクリートが直接接触することを防止するために、鋼製の床ライナを設
置し、これによって、ナトリウムが万一漏えいした場合であっても、漏えいナトリ
ウムとコンクリートとの直接接触を防止するという基本設計ないし基本的設計方針
について審査し、妥当であることを確認したことが認められる。
 そうすると、ナトリウム漏えい時の床ライナの温度上昇のために、床ライナの漏
えいナトリウムとコンクリートとの直接接触を防止する機能が損なわれる場合、例
えば、床ライナの温度が床ライナの融点を超えた場合や、床ライナが熱膨張して壁
面と干渉し又は局所的なひずみが発生して床ライナに損傷が生じる場合には、床ラ
イナにより漏えいナトリウムとコンクリートとの直接接触を防止するという基本設
計ないし基本的設計方針の妥当性が失われる可能性がある。
 ところが、右のとおり、「二次冷却材漏えい事故」に係る解析評価(漏えいナト
リウムによる熱的影響評価)は、床ライナの機械的健全性を確認するための解析評
価ではなく、本件安全審査に際しては、床ライナの機械的健全性を確認するための
事故の解析評価は行われていないことになる。そこで、この点に関して、本件安全
審査の調査審議及び判断の過程に、重大かつ明白な瑕疵といえるような看過し難い
過誤、欠落があるか否かについて検討するが、この点については、本件ナトリウム
漏えい事故及びその後に得られた知見が関連するので、後記八に別項を設けて判断
する。
(四) 「蒸気発生器伝熱管破損事故」について
 原告らは、「蒸気発生器伝熱管破損事故」に係る解析評価の解析条件について、
①初期スパイク圧の設計基準リーク(前提事象として伝熱管一本が瞬時に両端完全
破断することを仮定する)、準定常圧の設計基準リーク(伝熱管四本が同時に両端
完全破断する水リーク率を想定する)は、いずれも恣意的で合理性がない、②主蒸
気止め弁の開固着又は主蒸気管破断を想定していないのは不合理である旨主張し、
本件原子炉施設において「蒸気発生器伝熱管破損事故」が発生した場
合には、炉心にまで影響が及び、炉心溶融事故となる可能性がある旨主張する。こ
の点については、原告らの主張が多岐にわたるので、蒸気発生器の安全設計に関す
る原告らの主張に対する判断と併せて、後記七において別項を設けて判断する。
(五) 「燃料スランピング事故」について
 原告らは、スランピング現象が最大の反応度価値を持つ一体の燃料集合体内の全
燃料要素で同時に発生するという解析条件は、恣意的に反応度の範囲を限定したも
のであること、燃焼の進展に伴う融点の低下を考慮していないこと、スランピング
した燃料による燃料被覆管の脆化を考慮していないことを理由に、「燃料スランピ
ング事故」に係る解析評価は不合理である旨主張する
(1) 解析条件について
 証人P8の証言(P8調書一・一八丁表ないし一九丁裏)、乙ニ二の二(証人P
9調書二)五四丁表ないし五八丁表及び乙ニ二の七(証人P9調書七)二六丁裏な
いし二八丁裏によれば、「燃料スランピング事故」は、ステップ状の正の反応度が
投入された場合に、本件原子炉施設の炉心の冷却能力が失われることはないか、ま
た、原子炉冷却材バウンダリの健全性が損なわれることはないかを評価するために
想定された事故であり、燃料スランピングは、本件原子炉の炉心の応答特性を把握
するために、ステップ状の正の反応度が投入される物理モデルとして想定された事
象であって、万一の場合に現実に本件原子炉施設においてそのような事故が起こり
得ることを前提としたものではないことが認められる。
 そして、前記(二、4、(一)(2))に加え、証人P8の証言(P8調書一・
二一丁表ないし二二丁表、二三丁表)及び乙一六・一〇―三―七頁によれば、本件
安全審査においては、最大の反応度価値を有する燃料集合体の一六九本の燃料要素
すべてで同時にスランピングが生じるという解析条件は保守的であり、妥当である
と判断したことが認められるところ、前記(二、4、(一)、(ロ)、(2)、
(a))のとおり、本件原子炉施設には燃料スランピングの発生防止対策が十分に
講じられていること、証人P8の証言(P8調書一・二一丁表ないし二二丁表、二
三丁表)によれば、我が国の高速実験炉「常陽」や海外の高速炉において、このよ
うな現象は起きていないことが認められることに照らせば、右本件安全審査の判断
に不合理な点はないというべきである。
 したがって、原告らのこの点に
ついての主張は理由がない。
(2) 燃料の融点の低下について
 前記(第四、一、1、(一)、(2)及び同三、(一)、(2))のとおり、本
件安全審査においては、燃焼の進展に伴う燃料融点の低下については、一般的には
燃焼が進んだ段階では融点が漸減するとはいえるが、他方、出力密度が減少するこ
とによる燃料温度の低下の方が大きくなるため、結局、燃料温度が最高となるのは
燃焼開始直後であることを確認したことが認められる。
 したがって、燃焼の進展に伴う融点の低下は、右事象の評価結果に影響を及ぼす
ものではないといえるから、原告らのこの点についての主張は理由がない。
(3) スランピングした燃料の燃料被覆管への接触について
 前記(1)のとおり、「燃料スランピング事故」は、ステップ状の正の反応度が
炉心に投入された場合の炉心の応答特性を把握するための物理モデルとして想定さ
れたものであり、スランピングを起こした燃料ペレットが燃料被覆管に接触するか
等、燃料ペレット自体の挙動を解析するものではない。すなわち、乙ニ二二の二
(P9調書二)五四丁表ないし五八丁表によれば、スランピング現象については、
それにより炉心に投入される正の反応度の大きさを求めるためだけに想定されるも
のであり、解析に際しては、右により求められた正の反応度の大きさを前提とした
上で、健全な形状の燃料要素を有する炉心を解析対象として燃料温度等が計算され
ることが認められる。
 したがって、原告らのこの点についての主張は理由がない。
(4) 中性子照射による燃料被覆管の脆化について
 乙一六・一〇―一―二頁によれば、本件安全審査においては、右解析評価におい
て判断基準の一つとしている燃料被覆管の肉厚中心温度に関する制限値につき、実
際に中性子を照射した燃料被覆管に対する急速加熱試験の結果等を基に安全余裕を
持たせて設定された値であることを確認したことが認められ、その合理性に疑いを
入れるような証拠はない。そうすると、中性子照射による燃料被覆管の脆化によっ
て、燃料被覆管の健全性が影響を受けるとはいえないから、これを考慮していない
ことは、本件安全審査の合理性を左右するものではない。
 したがって、原告らのこの点についての主張は理由がない。
(六) 「気泡通過事故」について
 原告らは、ナトリウム沸騰のように気泡が炉心近くで連続して発生するという前
提条件を置いた場合には、投
入される反応度が更に大きく、しかも持続することを指摘し、「気泡通過事故」の
解析評価の解析条件として、二〇リットルの気泡が一斉に炉心を通過するとしたこ
とは恣意的で、不合理である旨主張する。
 しかし、「気泡通過事故」は、何らかの原因により原子炉容器内の一次冷却材中
に気泡が混入し、燃料集合体下部のエントランスノズルを通じて、一次冷却材と共
に右気泡が炉心内を通過するという事故であるところ、証人P8の証言(P8調書
一・二七丁表ないし二九丁表)及び乙ニ二の二(証人P9調書二)三七丁表によれ
ば、本件原子炉施設において何らかの原因により一次冷却材中に気泡が混入し滞留
する場合の気泡の最大量は、気泡の排出経路であるガス抜き孔の効果を無視した場
合であっても、原子炉下部プレナム中の高圧プレナムの連結管間隙空間容積のうち
スリット上端より上の部分の体積に相当する量(二〇リットル)であることが認め
られる。そうすると、ナトリウムの沸騰を除けば、右二〇リットルが気泡混入の物
理的最大値ということができる。
 そして、ナトリウムの沸騰については、前記(第四、三、2、(一))のとお
り、本件原子炉施設においてナトリウムが沸騰することは想定し難いから、ナトリ
ウムが沸騰するという前提を置かないことは、本件安全審査の合理性を左右するも
のではない。
 したがって、原告らのこの点の主張は理由がない。
2 「技術的には起こるとは考えられない事象」について
 原告らは、「技術的には起こるとは考えられない事象」の解析評価についての本
件安全審査には種々の重大かつ明白な瑕疵がある旨主張する。
(一) 事象の起こる可能性について
(1) 原告らは、反応度事故に基づく「炉心崩壊事故」(「炉心溶融」から「出
力暴走」等に至る事故現象)を「技術的には起こるとは考えられない事象」とし、
「事故」(設計基準事故)として扱っていないのは不合理である旨主張し、その根
拠として、①本件原子炉施設は、軽水炉と比べると、即発中性子の寿命が短く、か
つ遅発中性子の割合が少ないため、異常な反応度が投入された場合には容易に燃料
が溶融すること、②ボイド反応度が正であること、③炉心内の燃料が反応度を最も
高くするように配置されておらず、炉心内には臨界になり得る量の数倍ないし十数
倍の核分裂性物質が燃料として装荷されているため、炉心の変形等によって正の反
応度が投入されること、④炉心の
発熱密度が高いことを挙げる。
 しかし、①については、前記(第四、三、2、(二))のとおり、本件原子炉施
設において即発中性子の寿命が軽水炉のそれと比べて短く、また、遅発中性子の割
合が軽水炉のそれと比べて少ないことは、本件原子炉施設の安定した制御に当たっ
て問題となるものではない。
 ②についても、前記(第四、三、2、(一))のとおり、本件原子炉施設におい
てナトリウムが沸騰しボイドが生じることは想定し難いから、これにより反応度事
故が起こることは想定し難い。
 ③、④については、本件原子炉施設の炉心には、原子炉の運転を維持するため、
最小臨界量を超えた燃料が装荷されており、プルトニウムは、高速中性子に対する
核分裂断面積(核分裂を起こす確率)が熱中性子に対するそれと比べて小さいた
め、本件原子炉においては、プルトニウム富化度の高い燃料を用いると共に、炉心
燃料要素の配列を密にして核分裂連鎖反応を効率的に起こさせるようになっている
ことは当事者間に争いがない。
 したがって、本件原子炉施設は、同規模の出力の軽水炉と比べると、炉心に装荷
される核分裂性物質が多く、また、発熱密度(炉心の単位体積当たりの発熱量)も
大きい。しかし、前記(第四、一、1、(一)、(2)、同(4)及び同三、2、
(一))のとおり、本件安全審査においては、本件原子炉施設について、炉心燃料
集合体の変形による反応度投入を防止する対策が取られていること、冷却材ナトリ
ウムは軽水に比べ冷却能力に優れている上、冷却材は炉心に安定して供給され、発
熱量に応じた流量が確保されることを確認しているから、本件原子炉施設におい
て、燃料の配置、燃料の装荷量及び発熱密度の点から炉心崩壊事故が発生する可能
性があるとはいえない。
 したがって、原告らのこの点についての主張は理由がない。
(2) 一次冷却材流量減少時反応度抑制機能喪失事象」について
 原告らは、停電によるポンプ停止時に制御棒挿入装置が故障する可能性があるか
ら、「一次冷却材流量減少時反応度抑制機能喪失事象」は現実に起こり得るもので
あって、「技術的には起こるとは考えられない事象」として解析評価することは不
当である旨主張する。
 この点、「一次冷却材流量減少時反応度抑制機能喪失事象」は、外部電源の喪失
に伴う一次冷却材流量の減少と、緊急停止の失敗とを重ね合わせた事象であるか
ら、個別に検討する。
(イ) 外部電源
の喪失に伴う一次冷却材流量の減少について
 前記(第四、一、1、(二)、(3))に加え、乙一六・八―一―三九頁、四七
頁、四八頁、八―四―六頁、七頁、一〇―二―一二頁、一九頁、二〇頁によれば、
本件安全審査においては、外部電源の喪失に備えて、本件原子炉施設の非常用所内
電源設備は、必要な容量を持つディーゼル発電機三台蓄電池三組が各々独立した部
屋に収納され、かつ、独立分離した非常用母線に接続されていること、外部電源喪
失時に、ディーゼル発電機三台のうち一台が起動に失敗すると仮定したとしても、
燃料の許容設計限界及び原子炉冷却材バウンダリの設計条件を超えることなく原子
炉を停止して冷却できること、一次主冷却系循環ポンプは、それ自体の構造とし
て、万一、主モータの駆動電源が喪失した場合であっても、冷却材流量が急激に減
少することのないようポンプの回転慣性が設定されている上、非常用電源で駆動さ
れるポニーモータがこれを引き継ぎ、一定の炉心部流量を確保する設計とされてい
ることを確認していることが認められ、その合理性に疑いを入れるような証拠はな
い。
 したがって、本件原子炉施設においては、外部電源が万一喪失した場合において
も、一次冷却材流量の減少により、燃料の許容設計限界及び原子炉冷却材バウンダ
リの設計条件を超えるような事態に陥ることは想定し難いから、原告らのこの点つ
いての主張は理由がない。
(ロ) 緊急停止の失敗について
 前記(第四、一、2、(一)及び同(三))に加えて、乙一六・八―九―一六
頁、二五頁、二六頁、四二頁、八―一―一六頁、二三頁、二五頁、五二ないし五四
頁、六一頁ないし六三頁、八―三―一八頁によれば、本件安全審査においては、仮
に外部電源喪失その他の理由により一次冷却材の流量が減少した場合、本件原子炉
施設の安全保護系は、中性子束及び一次冷却材流量、原子炉容器ナトリウム液位等
の異常状態から多様な原子炉緊急停止信号が一発せられること、本件原子炉の緊急
停止を行う安全保護系及び原子炉停止系は、地震時の加重に対しても十分な強度を
有するように設計されること、安全保護系については、それを構成する回路等に、
同じ機能を有するものを二つ以上設け(多重性)、かつ、右の回路等が、同時に故
障することがないように独立性が確保されるように考慮した対策が講じられるか
ら、安全保護系を構成する右の回路等の一つが故障した場合にも
、その安全機能は確実に維持され、原子炉停止系に原子炉トリップ信号を発するこ
とができること、原子炉停止系は、互いに独立した主炉停止系と後備炉停止系とか
ら構成されており、いずれも本件原子炉の緊急停止時に作動して炉心へ制御棒が挿
入されるが、このうちいずれか一方の原子炉停止系が作動しさえずれば本件原子炉
を確実に停止することができる構造となっていること、安全保護系及び原子炉停止
系は、いずれも外部電源が喪失した場合にも制御棒を自動的に炉心に挿入して原子
炉を停止できるように、いわゆるフェイルセイフ機能を持たせる設計となっている
こと、本件原子炉施設の安全保護系及び原子炉停止系は、想定されるいかなる地震
力に対してもその機能が保持できるように耐震設計が講じられることが確認された
ことが認められ、その合理性に疑いを入れるような証拠はない。
 したがって、本件原子炉施設においては、外部電源が万一喪失した場合において
も、緊急停止に失敗するような事態に陥ることは想定し難いから、原告らのこの点
ついての主張は理由がない。
(3) 原告らは、本件原子炉は、軽水炉において考慮されている制御棒の抜け出
し事故や冷却材喪失事故と同様の事故の発生によって、「炉心崩壊事故」が発生す
る旨主張する。
 しかし、制御棒が原子炉の運転中に何らかの原因で抜け出すことについては、弁
論の全趣旨によれば、加圧水型原子炉においては、その炉内の圧力が約一六〇気圧
という高い圧力であるため、圧力による制御棒の飛び出しを考慮する必要があるこ
とが認められるが、乙一六・八―四―一四頁によれば、本件原子炉施設の場合に
は、その炉内の圧力が原子炉容器入口で約八キログラム毎平方センチメートル、同
出口で約一キログラム毎平方センチメートルと低圧であることが認められるから、
右のような事態が発生することは想定し難い。
 また、冷却材の喪失については、証人P6の証言(P6調書一・四四丁表ないし
四五丁表)及び乙一六・八―一―七一頁、八―七―一〇頁によれば、本件安全審査
においては、本件原子炉施設の一次主冷却系の機器及び配管は、原則として、原子
炉容器出口ノズルの上端より上方に適切な余裕をもって最低限保持されなければな
らない液位(エマージェンシ・レベル)より上方に定めた基準高さ(システム・レ
ベル)以上に配置することとし、また、右システム・レベル以下に配置する機器又
は配管につい
てはガードベッセルの中に配置し、さらに、右ガードベッセルの上端の縁の高さは
システム・レベル以上になるようにし、かつ、ガードベッセルの空間容積は原子炉
容器内ナトリウム液位をエマージェンシ・レベル以上に保持できるように定めるも
のとしており、このような一連の対策から、仮に原子炉冷却材バウンダリから冷却
材が漏えいした場合も、漏えいしたナトリウムはガードベッセルによって保持さ
れ、炉心の冷却に必要な原子炉容器内のナトリウム液位は保持されることを確認し
たことが認められ、その合理性に疑いを入れるような証拠はない。そうすると、本
件原子炉施設においては、炉心冷却に支障を来すような冷却材喪失事故が発生する
ことは想定し難い。
 したがって、制御棒の抜け出し事故や冷却材喪失事故を解析評価していないこと
は、本件安全審査の合理性を左右するものではなく、原告らのこの点についての主
張は理由がない。
(二) 解析評価における解析条件等について
(1) 原告らは、「技術的には起こるとは考えられない事象」の解析評価は既に
その誤りが明らかとなったWASH―一四〇〇(ラスムッセン報告)等確率論的安
全評価に基づくものであるから、不当である旨主張する。
 しかし、「技術的には起こるとは考えられない事象」の解析評価は右の考え方を
参考にしているものの、その評価値等に依拠していると認めるに足りる証拠はない
から、原告らの主張はその前提を欠く。
(2) 原告らは、「炉心崩壊事故」は現時点では十分解明されていないこと、ま
た、事象選定基準が不明確であるとして、「技術的には起こるとは考えられない事
象」の解析評価は、最悪の事態を想定して行うべきであるのに、これを想定してい
ないのは不合理である旨主張する。
 しかし、前記(五、1)のとおり、「技術的には起こるとは考えられない事象」
の解析評価は、「運転時の異常な過渡変化」及び「事故」の解析評価と同様、安全
設計の妥当性を別の側面から確認するものであり、「事故」を超える範囲において
当該原子炉施設の放射性物質の放散が適切に抑制されるか否かを確認するためにさ
れる(そして、右確認の結果、各種の安全機能がどのように働くかも付随的に明ら
かにされる。)ものである。したがって、起因事象の選定においては、右解析の目
的に照らし、代表的な具体的事象を適切に想定すれば足りるというべきであり、
「運転時の異常な過渡変化」及び「
事故」に係る安全評価で想定する範囲を大幅に超えて、右評価目的を損ねるような
事象を想定する必要はないと解される。したがって、原告らの主張するようにただ
「最悪の事態」を想定しなればならないものではない。
 そして、「炉心崩壊事故」については、前記第四のとおり、本件安全審査におい
ては、本件原子炉施設に所要の事故防止対策が講じられていることを確認してお
り、これらの事故防止対策を前提とする限り、本件原子炉施設において「炉心溶
融」や「出力暴走」が起こるとはそもそも考えられないから、「技術的には起こる
とは考えられない事象」の解析評価において起因事象として想定された「一次冷却
材流量減少時反応度抑制機能喪失事象」及び「制御一棒異常引抜時反応度抑制機能
喪失事象」(これらが「炉心崩壊事故につながる可能性のある事象である。」の事
象選定が不合理であるとはいえない。
 したがって、原告らのこの点についての主張は理由がない。
(3) 原告らは、「技術的には起こるとは考えられない事象」の解析評価におい
て、「運転時の異常な過渡変化」及び「事故」と同様の保守的な解析条件を置いて
いないことは不合理である旨主張する。
 この点、前記(五、1)のとおり、本件安全審査の「技術的には起こるとは考え
られない事象」の解析評価は、LMFBRの運転実績が僅少であることから、「評
価の考え方」に基づいて、「事故」より更に発生頻度は低く、その発生頻度は無視
し得るほど極めて低いが、炉心が大きな損傷に至るおそれがある事象を選定し、こ
の事象とこれに続く事象経過に対する防止対策との関連において、放射性物質放散
に対する障壁の抑制機能を評価するため、原子炉施設の深層防御の観点から行うも
のであり、そして、弁論の全趣旨によれば、「技術的には起こるとは考えられない
事象」の解析評価に当たっては、「事故」の範囲を超えるより厳しい事象(機器の
多重故障等を仮定して初めて発生が想定できる発生頻度の小さい事象)の中から代
表的なものを想定して、その起因事象の発生以降の事象経過をできる限り忠実に評
価することとし、「評価の考え方」にいう「防止対策」のうち、事象経過の中で作
動が期待できると判断するに足りる十分な根拠のある設備については、その作動を
考慮した上で、放射性物質の放散が適切に抑制されることを確認することが認めら
れる。
 右から明らかなように、「技術的には起こるとは
考えられない事象」の解析評価は、軽水炉には要求されておらず、本件原子炉施設
のようなLMFBRについてのみ、その運転実績が僅少であることにかんがみて要
求されるものである上、本件原子炉施設においてその発生を想定し難いことは、事
故防止対策に係る安全設計並びに「運転時の異常な過渡変化」及び「事故の解析評
価によって既に確認されたということができるのであるから、「技術的には起こる
とは考えられない事象」の解析評価は、その起因事象の選定の段階において、必然
的に、機器の多重故障等の大きな保守的仮定が含まれることになる。そうすると、
右起因事象に組み合わせる評価条件については、更に保守性を考慮しないとして
も、また、解析評価に使用するモデル及びパラメータについて、最も確からしいも
のを用いた解析を行って事象経過を忠実にたどることとしても、不合理とはいい難
く、かえって、「防止対策」との関連において、本件原子炉施設の安全余裕が確認
できるほか、「事故」の範囲を超えるか否かや、事故シナリオが飛躍的に変化し
て、例えば再臨界を引き起こすような仮想的炉心崩壊事故に至り、周辺公衆に対す
る放射線被曝のリスクが急増することに至らないことを確認することも可能とな
り、評価結果の多面的活用にも道が開かれるということができる。
 したがって、原告らのこの点についての主張は理由がない。
(三) 「一次主冷却系配管大口径破損事象」について
(1) 配管の破損位置について
 原告らは、「一次主冷却系配管大口径破損事象」の解析評価において、配管の破
断位置を原子炉容器の入口ノズル部としているが、配管の破断はどこで起きるか予
測できないので、ガードベッセルに覆われていない部分における破断を仮定すべき
であるから、右想定は不合理であり、本件原子炉施設においてはこれを超える事故
が起こり得る旨主張する。
 しかし、「一次主冷却系配管大口径破損事象」とは、原子炉出力運転中に一次主
冷却系配管に大規模な破断が生じ、一次冷却材が流出するという仮定上の事象であ
るが、その評価に関し、その破断位置をどう仮定するかについては、炉心を冷却す
る能力を評価する観点から、破断によって炉心内のナトリウムの温度が最も高くな
るような位置を仮定するのが望ましいということができる。そして、証人P8の証
言(P8調書一・八七丁表ないし八八丁表)及び乙一六・一〇―四―一三頁によれ
ば、本件安
全審査においては、一次主冷却系配管の原子炉容器入口ノズル部、一次主冷却系循
環ポンプ出口部、ガードベッセルに覆われていない原子炉容器入口配管高所部等に
ついて、右各部位が破断した場合の炉心内のナトリウムの最高温度を評価した結
果、原子炉容器入口ノズル部に破断が生じた場合が最も高くなるとして、右部分を
破断位置としたことは妥当であることを確認したことが認められ、その合理性に疑
いを入れるような証拠はない。
 これに対して、原告らは、破断位置を原子炉容器入口ノズル部としても、大口径
配管破断が起こった場合には、配管がむちのようにしなる「ホイッピング現象」が
起こるので、ガードベッセルが破損したり、破断口がガードベッセルの外に飛び出
すなどして、原子炉容器内液位が保持できなくなる旨主張し、甲イ一九九にはこれ
に沿う記載がある。
 しかし、証人P8の証言(P8調書一・八八丁裏、八九丁表)及び乙一六・八―
一―二九頁によれば、一次主冷却系配管が破断したとしても、一次主冷却系配管内
の冷却材の圧力は軽水炉に比して十分低く、冷却材の流出によって配管が「ホイツ
ピング現象」を起こすような流出流体のジェツトカが生じることはなく、これによ
りガードベッセル等が損傷するおそれはないことが認められる。
 したがって、原告らのこの点についての主張は理由がない。
(2) ナトリウムの漏えい量及び燃焼量について
 原告らは、「一次主冷却系配管大口径破損事象」の解析評価において、破損口か
ら漏えいするナトリウムの量を一八○立方メートルとし、また、解析結果として、
右漏えいしたナトリウムの燃焼量を約二・二トンとしていることについて、右漏え
い量及び燃焼量の想定は、「一次冷却材漏えい事故」におけるナトリウム漏えい量
及び燃焼量よりも過小であり、不合理である旨主張する。
 この点、前記(二、4、(二)、(5)及び三、4、(二)、(4))のとお
り、二次冷却材漏えい事故」の解析評価におけるナトリウム漏えい量は二一〇立方
メートル、燃焼量は二・七トンであるのに対し、「一次主冷却系配管大口径破損事
象」の解析評価におけるナトリウム漏えい量は一八○立方メートル、燃焼量は二・
二トンとされている。
 しかし、証人P8の証言(P8調書一・九〇丁裏ないし九二丁表)及び乙一六・
一―三―二九頁によれば、「一次冷却材漏えい事故」の解析評価におけるナトリウ
ム漏えい量は、原子炉容器
内のナトリウム液位が落ち着くまでの最大漏えい量を考えたこと、右最大漏えい量
については、三系統ある一次主冷却系のうち配管が破損した系統を除く残りの二系
統の循環ポンプが、ポニーモータによって駆動される低速運転へ移行したときに、
一次主冷却系内のナトリウム液位のバランスを考慮して算出される漏えい量(一八
○立方メートル)と、オーバフロータンクからの最大汲み上げ量(二六立方メート
ル)とを合計して二一〇立方メートルとしたものであること、ナトリウムの燃焼量
については、漏えいしたナトリウムの燃焼形態としては、破損口からスプレー状に
漏えいしたナトリウムの燃焼と、一次ダンプタンク室でプール状に貯留したナトリ
ウムの燃焼とを考慮し、また、燃焼に寄与する酸素量としては、一次主冷却系内の
窒素雰囲気中にわずかに残存する酸素と漏えいナトリウムとの反応による燃焼熱を
大きく見積もるために、右残存酸素は、窒素雰囲気に維持される場合のそれは二体
積パーセント以下の濃度であるところ、右濃度に余裕を持たせて三体積パーセント
と仮定するなどの厳しい前提条件の下で解析した結果、約二・七トンとしたもので
あることが認められる。
 これに対して、証人P8の証言(P8調書一・九一丁表、同裏)及び乙一六・一
〇―四―一四頁、一五頁によれば、二次主冷却系配管大口径破損事象」の解析評価
におけるナトリウム漏えい量は、原子炉容器内のナトリウム液位が落ち着くまでの
最大漏えい量を考える点では二次冷却材漏えい事故」と同じであるが、二次主冷却
系配管大口径破損事象」の解析評価における配管破損は両端完全破断の仮定である
ため、破断口から漏えいするナトリウムの流出が速く、したがって原子炉容器内の
ナトリウム液位の低下も早くなるため、早期にオーバフロータンクからのナトリウ
ム汲み上げ停止信号が発せられてナトリウムの汲み上げが停止されることから、オ
ーバフロータンクからのナトリウムの汲み上げ量は無視できるとして、三系統ある
一次主冷却系のうち配管が破損した系統を除く残りの二系統の循環ポンプが、ポニ
ーモータによって駆動される低速運転へ移行したときに、一次主冷却系内のナトリ
ウム液位のバランスを考慮して算出される漏えい量(一八○立方メートル)とした
ものであること、ナトリウムの燃焼量については、二次冷却材漏えい事故」と同様
の条件の下で解析した結果、約二・二トンとしたものである
ことが認められる。
 したがって、両者のナトリウム漏えい量及び燃焼量の違いは合理的であり、二次
主冷却系配管大口径破損事象」の解析評価におけるナトリウム漏えい量及び燃焼量
の想定が過小で不合理であるということはできない。
(四) 「一次冷却材流量減少時反応度抑制機能喪失事象」について
(1) 計算コードの妥当性について
 原告らは、「一次冷却材流量減少時反応度抑制機能喪失事象」の解析評価に用い
られた「SAS―3D」コード、「VENUS―PM」コードの各計算コードは、
パラメータを変えれば結果が大幅に変わる、不確かさの大きいものである上、コー
ド全体の実験的検証ができていない旨主張する。
 この点、弁論の全趣旨によれば、「SAS―3D」コード、「VENUS―P
M」コードとも、多数のパラメータを有する複雑な計算コードであることが認めら
れる。したがって、パラメータを変えれば得られる計算結果が大幅に変わることは
明らかである。しかし、およそ適切なパラメータを代入することが不可能であるな
らばともかく、適切なパラメータを代入した場合には適切な結果が得られるのであ
れば、パラメータを変えれば計算結果が大幅に変わることのみから直ちに、当該計
算コードの妥当性が否定されるものではないことは明らかである。そして、両計算
コードが、適切なパラメータを代入することが不可能なものであることや、「一次
冷却材流量減少時反応度抑制機能喪失事象」の解析評価において適切でないパラメ
ータが代入されたことをうかがわせるような証拠はなく、かえって、本件安全審査
においてその妥当性が確認されている。
 したがって、原告らのこの点についての主張は理由がない。
(2) 計算コードの接続条件について
 原告らは、「一次冷却材流量減少時反応度抑制機能喪失事象」の解析評価におい
て、右事象の経過のうち、起因過程を「SAS―3D」コード、炉心崩壊過程を
「VENUS―PM」コードによって解析し、両者は全反応度が一ドル近傍に到達
した時点において接続するとしていることについて、①接続時点の明確性に欠け
る、また、②その際、「SAS―3D」コードによる多数のチャンネルの計算結果
を一本化して「VENUS―PM」コードに入力していることは不合理である旨主
張する。
 しかし、証人P8の証言(P8調書一・七〇丁裏、七一丁表、P8調書五・一五
丁裏)によれば、「VENUS―PM」
コードによる解析は、即発臨界を超え炉心崩壊に至る領域において妥当性を持つこ
とが認められる。したがって、「SAS―3D」コードから「VENU―lPM」
コードヘの接続は、即発臨界に至った時点で行うのが適切ということになる。そし
て、乙ニ二の五(証人P9調書五)五〇丁表ないし五一丁裏によれば、全反応度が
一ドル近傍(一ドルが即発臨界に達する反応度である。)に到達した時点におい
て、「SAS―3D」コードを「VENUS―PM」コードに接続するという趣旨
は、即発臨界に至った時点で両者を接続するが、コードの都合上その接続時点が前
後に若干のずれを伴うことから「近傍」という表現がされていることが認められ
る。したがって、右接続時点が不明確であるということはできない。
 また、証人P8の証言(P8調書一・七〇丁裏ないし七二丁表)によれば、本件
安全審査においては、「VENUS―PM」コードは、「SAS―3D」コードの
チャンネルに対応させた計算領域を設定して計算できること、「SAS―3D」コ
ードで計算された燃料温度、冷却材ボイド率等、反応度の時間変化等は可能な限り
忠実に「VENUS―PM」コードへ受け渡されていることが認められ、多数のチ
ャンネルの計算結果を一本化しているという事実は認められない。
 したがって、原告らのこの点についての主張は理由がない。
(3) 燃料要素の破損位置、破損口の長さについて
 原告らは、「一次冷却材流量減少時反応度抑制機能喪失事象」の解析評価におい
て、①燃料要素の破損位置を軸方向中央部からやや上部の位置に想定し、②燃料ピ
ンの破損口の長さを五センチメートルと想定したのは恣意的で、不合理であり、破
損位置は中央とし、破損口の長さは三〇センチメートルとすべきである旨主張す
る。
 この点、申請者の実施した「一次冷却材流量減少時反応度抑制機能喪失事象」の
解析評価のうち、本件原子炉施設にとって有効とされたものは、いずれも、燃料要
素の破損位置を軸方向中央部からやや上部の位置に想定し、燃料要素の破損旧の長
さを五センチメートルと想定たものであることは当事者間に争いがない。そして、
乙ニ四の一(証人P2調書一)四五頁、四六頁、一一〇頁によれば、燃料要素の破
損位置を軸方向中央部とすると出力はより大きくなること、燃料要素の破損口を長
くすると同じく出力はより大きくなることが認められる。
 しかし、①の燃料要素
の破損位置については、乙イ一八及び乙ニ四の一(証人P2調書一)一一二頁によ
れば、実験(CABRI試験)結果によれば、破損口の位置は、概ね燃料要素の高
さの約○・六五(破損位置のフィッサイル下端からの高さ÷フイッサイル全長)の
位置となったことが認められる。また、乙ニ四の一(証人P2調書一)一二〇頁に
は、燃料要素の燃料が溶融して燃料要素の内圧が上昇するとき、燃料被覆管は、材
料強度の弱いところで破損するところ、材料強度は、一般的に温度が高くなるほど
低下し、本件原子炉施設の被覆管の温度分布は軸方向の上の部位が高く、したがっ
て、軸方向の上の部位の強度が弱いことから、内圧と燃料被覆管の強度との兼ね合
いで、燃料ピンの高さの○・六ないし○・七の位置で破損することが合理的に説明
できる旨の証言があり、右証言は合理的であり信用できる。もっとも、乙ニ四の二
(証人P2調書二)二ないし四頁によれば、別の実験(TREAT―PFR試験)
結果においては、燃料ピンが軸方向中央で破損したものもあったことが認められる
が、同書証の九頁には、CABRI実験の方が、定常運転状態から模擬している点
で、TREAT―PFRよりも精度が高い旨の証言があることに照らすと、右実験
結果の存在をもって、本件原子炉施設において燃料ピンが軸方向中央で破損する可
能性があると認めることはできない。したがって、燃料ピンの破損位置を軸方向中
央部からやや上部の位置とした解析条件に不合理な点はないというべきである。
 また、②の破損口の長さについては、乙ニ四の一(証人P2調書一)四○頁に
は、本件原子炉施設の炉心燃料要素は、直径六・五ミリメートル、炉心部の高さが
九三センチメートルであるから、これが破損した瞬間に同時に三〇センチメートル
にわたって穴が開くとは考え難い旨の証言があるところ、右証言は合理的であり信
用することができる。また、他に燃料ピンの破損口の長さが瞬時に五センチメート
ルを超え得ることを認めるに足りる証拠はない。したがって、燃料ピンの破損口の
長さを五センチメートルとした解析条件に不合理な点はないというべきである。
 なお、原告らは、燃料の破損態様については実験的検証が不十分であるこ旨主張
するが、実験的検証が少ないか否かは多分に評価の分かれるところであって、右原
告らの主張は被告が想定した燃料の破損態様に不合理な点があることを具体的に指
摘するも
のとはいえないし、右燃料の破損態様は右のとおり合理的根拠に裏付けられたもの
ということができる。
 したがって、原告らのこの点についての主張は理由がない。
(4) 反応度投入率の算定について
 原告らは、反応度投入率が一秒当たり三五ドルとされる根拠が不明であり、これ
よりも大きな反応度の投入が起こる旨主張する。
 しかし、乙一六・〇―四―二〇頁によれば、右反応度投入率の一秒当たり三五ド
ルは、一次冷却材流量減少と反応度抑制機能喪失との重ね合わせ事象において、最
も厳しい結果を示す平衡炉心の燃焼末期に、ナトリウムの沸騰、燃料被覆管の溶融
移動及び燃料のスランピングが生じた時点で即発臨界に達する時の反応度投入率で
あるが、右反応度投入率は「SAS―3D」コードにより算出されたものであるこ
とが認められる。また、証人P8の証言(P8調書一・七五丁表)によれば、本件
安全審査においては、右反応度投入率はその前提となる条件が厳しく設定されてい
ること、燃焼度の異なる三つの状態の炉心(初装荷炉心の燃焼初期、平衡炉心の燃
焼初期及び平衡炉心の燃焼末期)について比較して最も厳しい結果を示した平衡炉
心の燃焼末期での炉心状態を用いていること、使用されている計算コードは実験結
果等に照らし妥当なものであることを確認したことが認められ、その合理性に疑い
を入れるような証拠はない。
 したがって、原告らのこの点についての主張は理由がない。
(5) 炉心損傷後の最大有効仕事量について
(イ) 原告らは、炉心損傷後の最大有効仕事量を三八○メガジュールとする解析
結果を過小評価である旨主張し、その根拠として、①申請者が行った同一事象につ
いての別個の解析結果においては炉心損傷後の最大有効仕事量は九九ニメガジュー
ルとなったこと、②一九五六年にH・A・べーテとJ・H・テイトが提唱した解析
モデル(いわゆる「べーテ・テイトモデル」)に基づいて計算すれば、本件原子炉
施設の炉心崩壊における機械的エネルギーはTNT火薬に換算して少なくとも三〇
〇キログラムの爆発に相当すること、③旧西ドイツの高速原型炉SNR三〇〇にお
いて、炉心崩壊事故における機械的エネルギーについて、申請者の計算では最高三
七〇メガジュール(本件原子炉施設と同じく一気圧までの膨張に換算すると約九三
〇メガジュール)とされていたのが、ブレーメン大学ドンデラー博士らのグループ
が、初期遷移過程で再
臨界に達した場合の機械的エネルギーを計算した結果、最大の場合には八〇六メガ
ジュール(一気圧までの膨張に換算すると二〇二一メガジュール)となり、申請者
が計算した三七〇メガジュールの約二・二倍の数値となったことを指摘する。
(ロ) しかし、①については、原告らの指摘する申請者が行った別の解析結果
は、燃料棒の破損口を三〇センチメートルとして解析したものであるところ、前記
(3)のとおり、右想定は非現実的であり、また、乙イ一六の一、乙イ三二及び乙
ニ四の一(証人P2調書一)三九ないし四二頁によれば、右解析は、単に「SAS
―3D」コードの特性とパラメータの影響度を把握することを目的として、物理的
に合理的な範囲を超えて大きくハラメータを変更して解析したものであることが認
められるから、右解析結果をもとに、本件原子炉施設において実際に九九ニメガジ
ュールの機械的エネルギーが発生する可能性があるということはできない。
 ②については、証人P8の証言(P8調書一・七六丁表ないし七七丁裏)によれ
ば、原告らの指摘する「べーテ・テイトモデル」は、LMFBRの開発初期に、炉
心崩壊に伴う機械的エネルギーの放出を簡便に評価するために作成された簡易モデ
ルであること、このため、右モデルは、解析に当たり、単に炉心体積や熱出力の増
加率のみによって炉心崩壊に伴う機械的エネルギーを算定するものにすぎず、炉心
内の出力や温度の分布を考慮せず、ドップラ効果による負のフィードバック効果も
無視する等極端な仮定を置いて評価する素朴なものであること、しかし、炉心崩壊
に伴う機械的エネルギーの放出量は、単に炉心体積や熱出力の増加率のみによって
的確に計算できるものではなく、炉心崩壊に伴う燃料被覆管の溶融と移動、炉内で
の燃料の態様、燃料とナトリウムの熱的な相互作用等多くの要因に基づいて計算さ
れるものであるから、右モデルは、現在の科学的知見に照らして不合理であるとい
うべきであること、右理論の提唱者ベーテ自身もこれを肯定していることが認めら
れる
 ③については、乙イ一九の一及び乙ニ四の一(証人P2調書一)七九ないし八五
頁によれば、ドンデラーの計算に対しては、カールスルーエ研究所グループが、燃
料集合体におけるオリフィス孔の存在あるいは閉塞の肘形成という明白な事実を無
視したことによる数値的不安定(コードの不完全性)による結果であり、コードの
不完全さの
みを修正して再計算をしたところ、一桁小さい八○メガジュールという結論が出た
旨批判していることが認められる。また、本件原子炉施設とSNR三〇〇はその構
造が同一ではない。したがって、右計算結果から直ちに、本件原子炉施設における
炉心崩壊事故においても同様の機械的エネルギーが発生するということはできな
い。また、セオファネスの結論も、直ちに本件原子炉施設における「一次冷却材流
量減少時反応度抑制機能喪失事象」の解析評価に当てはまるものとはいえないし、
これを認めるに足りる証拠もない。
(ハ) また、乙イ一八、乙イ三二及び乙ニ四の一(証人P2調書一)七五ないし
七八頁によれば、申請者は、本件許可処分後に、技術的知見の向上に伴い評価方法
を改善し、評価にかかわる物理現象等の不確かさの低減を図った上で、再度二次冷
却材流量減少時反応度抑制機能喪失事象」の解析評価を行ったこと(以下「新たな
解析評価」という。)、右解析評価の結果、「一次冷却材流量減少時反応度抑制機
能喪失事象」において発生する最大の機械的エネルギーは、一気圧までの等エント
ロピー膨張による仕事量に換算して一一〇メガジュール、より詳細に物理現象に即
した解析をし、原子炉容器等に作用する機械的エネルギーを炉心上部のナトリウム
スラグ(ナトリウムの固まり)の運動エネルギーから求めた仕事量は二八メガジュ
ールとなるとの結果が得られ、本件許可処分当時の最大有効仕事量が低減されたこ
とが認められる。
 この点、原告らは、新たな解析評価は機械的エネルギーの発生を小さくする事象
を大きく見積もった結果によるのであって、右解析結果以上の機械的エネルギーが
発生しないとする根拠はない旨主張する。
 しかし、右解析の過程に具体的に不合理な点があるとは認められないし、他に本
件原子炉施設において右解析結果以上の機械的エネルギーが発生すると認めるに足
りる証拠もない。
(二) なお、原告らは、炉心崩壊事故の研究には実験データが少ないから、申請
者が解析に用いた計算コードが妥当である保証はなく、これを使用して導かれた結
論もそれが最大値となる保証はない旨主張する。しかし、実験データが少ないか否
かは多分に評価の分かれるところであって、右原告らの主張は計算コードに不合理
な点があることを具体的に指摘するものとはいえないし、他に計算コードが不合理
であることを窺わせるような証拠もない。
(ホ) した
がって、原告らのこの点についての主張は理由がない。(五) 再臨界事故につい

 原告らは、本件原子炉施設においては、原子炉容器の破壊を伴い外部環境に壊滅
的被害を与えるような再臨界事故が起こり得ると主張し、その根拠として、①炉心
崩壊後に生じる塊状の堆積物(デブリ)の再集結による再臨界事故発生の可能性
や、②最初の爆発に続くナトリウムの蒸気爆発により燃料が再び密に集められ、再
臨界事故に至るというR・E・ウェッブの考え方を指摘する。
 しかし、①のデブリの再集結については、証人P8の証言(P8調書一・七七丁
裏ないし七九丁表)及び乙一六・一〇―四―二一頁によれば、本件安全審査におい
ては、「一次冷却材流量減少時反応度抑制機能喪失事象」における本件原子炉施設
の挙動の推移を評価した結果、溶融物質は原子炉容器内で分散し、最終的には各種
の構造物の上に堆積層(デブリベッド)となって再配置されるが、右デブリベッド
は広範囲にかつ薄く堆積するので、未臨界状態を保つ形状が維持されることを確認
したことが認められる。また、前記((四)、(5))のとおり、「一次冷却材流
量減少時反応度抑制機能喪失事象」の新たな解析評価においては、最も保守的なケ
ースにおいては再臨界に至るものの、これにより発生する最大の機械的エネルギー
は、一気圧までの等エントロピー膨張による仕事量に換算して一一〇メガジュール
であり、これをナトリウムスラグが遮へいプラグに衝突する直前の運動エネルギー
(IKE)に換算すると約一六メガジュールとなり、この程度の機械的エネルギー
に対しては、一次系バウンダリ構造の健全性は余裕を持って保持されるとの結果が
得られており、原子炉容器の破壊を伴うような再臨界が発生するとの結果は得られ
ていない。したがって、本件原子炉施設において再臨界事故が発生する可能性があ
るとはいえない。
 ②のウェッブの考え方については、乙イ一五によれば、ドイツのカールスルー工
原子力センターが、「ウェッブの仮説には計算上重大な誤りと非現実的な事故条件
が含まれており、しかも彼のシナリオは物理条件を逸脱している。」としているこ
とが認められるから、その合理性には疑問があるといえ、右考え方から直ちに本件
原子炉施設において再臨界事故が発生する可能性があるということはできない。
 したがって、原告らのこの点についての主張は理由がない。
(六) ポニーモータによ
る崩壊熱の除去について
 原告らは、わずか八パーセントの流量しか持たないポニーモータによる冷却では
崩壊熱を除去し得ないから、崩壊熱により重大な事故が起こり得る旨主張する。
 しかし、証人P8の証言(P8調書一・七二丁表ないし七四丁裏、七九丁裏、八
○丁表)及び乙一六・一〇―四―二〇頁、二一頁によれば、本件安全審査において
は、ポニーモータによる炉心の冷却を考慮しなくても、一次主冷却系、二次主冷却
系及び補助冷却設備における各自然循環のみによって崩壊熱を除去するという前提
条件で解析評価し、その結果、右崩壊熱を除去するに十分な除熱能力が確保され、
これに二次主冷却系のポニーモータによる二ループの強制循環を仮定すれば、むし
ろ除熱能力はさらに大きくなり、崩壊熱を十分な余裕をもって除去できることを確
認したことが認められ、その合理性に疑いを入れるような証拠はない。
 したがって、原告らのこの点についての主張は理由がない。
七 蒸気発生器伝熱管破損事故について
 原告らは、本件原子炉施設において、蒸気発生器伝熱管破損事故が発生するおそ
れがあり、また、その場合には、炉心にまで影響が及び、炉心溶融事故となる可能
性があるから、本件安全審査は合理性を欠く旨主張する。
 そこで、以下、右原告らの主張について検討するが、まず、本件原子炉施設の蒸
気発生器の概要、蒸気発生器伝熱管破損事故の意義、本件安全審査の内容(事故防
止対策に係る安全性を確保するための安全設計、「事故」の解析)について検討し
た上で、原告らの主張に対して判断を示すことにする。
1 本件原子炉施設の蒸気発生器設備の概要
 次の事実は当事者間に争いがない。
 本件原子炉施設の蒸気発生器は、二次冷却材ナトリウムの熱を水・蒸気系に伝達
する熱交換器であり、ナトリウムの熱によって水を蒸気(過熱蒸気)に変える蒸発
器と、蒸発器で生成された蒸気(過熱蒸気)を更に過熱する過熱器とからなり、い
ずれも、外径約三メートルの胴部の中に、ヘリカルコイル(らせん)形の「伝熱管
約一五〇本を内蔵する構造となっており、伝熱管の内部を被加熱体である水、蒸気
が流れ、伝熱管の間を加熱体であるナトリウムが胴部の上部から下部へ下降し、伝
熱管壁を介して熱交換が行われる。
 蒸発器及び過熱器は、二次主冷却系三系統の系統ごとに各一基ずつ設置されてお
り、蒸気発生器設備として、蒸発器及び過熱器のほか、ナトリウム・
水反応生成物収納設備等が設置されており、また、蒸気発生器計装として、水漏え
い検出設備等が設置されている。
2 事故の意義
 蒸気発生器伝熱管破損事故とは、本件原子炉の出力運転中に、何らかの原因で蒸
気発生器の伝熱管が破損し、大規模なナトリウム・水反応によって、当該蒸気発生
器を有する二次主冷却系ループ内の圧力が過度に上昇した場合に、右の蒸気発生器
を始め、当該蒸気発生器を有する二次主冷却系ループの中間熱交換器等が損傷する
おそれのある事象である。
 すなわち、蒸気発生器伝熱管が破損すると、圧力差によって水、蒸気がナトリウ
ム中に漏えいしてナトリウム・水反応が生じ、次のように隣接する伝熱管等がその
影響を受けるおそれがある。
(一) 水漏えい率(単位時間当たりの水漏えい量)が毎秒○・一グラム程度を下
回る場合には、影響の及ぶ範囲は最初の漏えい管自身に限定され、反応生成物によ
ってリーク孔が塞がれてナトリウム・水反応が終止するか、リーク孔が腐食により
拡大する。
(二) 水漏えい率が毎秒○・一グラム程度を上回る程度になると、ナトリウム中
に噴出する水、蒸気が、高温で腐食性の噴出流(リークジェット)を形成し、リー
クジェットにさらされた隣接伝熱管が、主として腐食によって損耗、減肉し、破損
に至るおそれが生ずるこのような現象を「ウェステージ(損耗)現象」といい、初
期事象に引き続き、ウェステージ現象によって隣接伝熱管に破損が伝播し、右伝熱
管が破損することを「ウェステージ型破損」又は「ウェステージ型二次破損」とい
う。)
(三) 水漏えい率が毎秒一〇グラム程度以上になると、リークジェットが周囲の
複数の隣接伝熱管に影響を及ぼすようになるため、伝熱管にウェステージ型破損が
生じるおそれがある。
(四) 水漏えい率が毎秒約一キログラム程度を上回るようになると、隣接伝熱管
にウェステージ型破損が発生するおそれがあるほか、ナトリウム・水反応によって
生じる高温の反応熱のために伝熱管壁が過熱されて、伝熱管の機械的強度が低下
し、伝熱管が内部の圧力によって急速に膨れて破裂する(この現象を「高温ラプチ
ャ(破裂)現象」といい、高温ラプチャ現象によって隣接伝熱管が破損することを
「高温ラプチャ型破損」という。)おそれが生じる。一般に、ウェステージ型破損
よりも、高温ラプチャ型破損の方が、短時間に多数の伝熱管を破損させるおそれが
高いとされる。
 また、大量の水素ガスが発生して系内の圧力上昇が顕著となり、二次主冷却系各
部や原子炉冷却材バウンダリである中間熱交換器伝熱管に圧力荷重を与えることか
ら、機器の健全性が損なわれるおそれが生じる。
3 本件安全審査の内容
(一) 異常発生防止対策
 乙一六・八―五―二頁、一〇―二―三七頁、一〇―三―六三頁、乙イ四三、乙ニ
二の四(証人P9調書四)五八丁表、同裏及び乙ニ二の七(証人P9調書七)一三
丁表ないし一六丁表によれば、本件安全審査においては、本件原子炉施設につき、
蒸気発生器伝熱管からの水、蒸気の漏えいを防止するために、次の対策(異常発生
防止対策)が講じられていることを確認したことが認められる。
(1) 伝熱管の材料には、蒸発器、過熱器のそれぞれについて、その使用条件に
適合する材料が使用される。
(2) 伝熱管の溶接部は、構造信頼性や欠陥検出性に優れた突き合わせ溶接継手
構造とした上、全自動の電気溶接機で施工し、非破壊検査等の所定の検査を行う。
(3) 伝熱管の腐食を防止するため、ナトリウム純度及び水質を管理するコール
ドトラップ、プラギング計、脱気器、復水脱塩装置等が設置される。
(二) 異常拡大防止対策(影響緩和対策)
 乙一六・八―五―六頁、八―九―一五頁、一〇―二―三七頁、一〇―三―六二頁
ないし六四頁及び乙イ四三によれば、本件安全審査においては、万一、蒸気発生器
伝熱管が損傷し、水、蒸気の漏えいが発生した場合であっても、水、蒸気の漏えい
規模が拡大したり、系内の圧力が顕著に上昇することを防止し、事象ないし事故を
安全に終止させることができるように、次の影響緩和対策が講じられていることを
確認したことが認められる。
(1) 設備等
(イ) 水・蒸気系と一次主冷却系との間には二次主冷却系が設けられる。
(ロ) 様々な規模の水漏えいに対し早期にその発生を検知するための設備とし
て、水素計、カバーガス圧力計及び圧力開放板開放検出器が設置される。
(ハ) 大規模なナトリウム・水反応の影響を緩和するため、圧力開放板や反応生
成物収納容器等から構成されるナトリウム・水反応生成物収納設備が設置される。
(2) 漏えいの検知等
 微小な水、蒸気の漏えいが生じてナトリウム中水素濃度の上昇率が増加した場合
には、ナトリウム中水素計の警報によって運転員が手動操作で水漏えい信号を発す
る。右上昇率が更に増加した場合には、自動的に水漏えい信号が
発せられる。水、蒸気の漏えいが中規模以上である場合には、蒸発器カバーガス圧
力計又は圧力開放板開放検出器により自動的に水漏えい信号が発せられる。
(3) 事象、事故の終止等
 水漏えい信号が発せられると、漏えいの規模に関係なく、自動的に二次主冷却系
循環ポンプ及び主給水ポンプの運転が停止し、蒸気発生器の水・蒸気側が遮断され
ると共に、水・蒸気系の高速ブロー系が作動して伝熱管内に保有する水、蒸気が急
速にブロー(排出)され(過熱器及び蒸発器の隔離を含む右一連の動作を「蒸気発
生器の緊急停止」という。)、ナトリウム・水反応は安全に終息する。また、原子
炉は、右各ポンプの停止に伴う「二次主冷却系循環ポンプ回転数低」信号や「二次
主冷却系流量低」信号によって緊急停止する。
 蒸気発生器伝熱管から大規模な水、蒸気の漏えいが起こり、万一、ナトリウム・
水反応により二次主冷却内の圧力が異常に上昇した場合には、蒸気発生器及び原子
炉の各緊急停止に加え、圧力開放板が開放されて過度の圧力上昇を抑えると共に、
右反応により生成した水素ガスやその他のナトリウム水反応生成物は反応生成物収
納容器内に回収され、右水素ガスは分離されて燃焼処理される。
(三) 事故の解析評価
① 設計基準リークの想定
 証人P8の証言(P8調書一・四七表ないし五〇丁裏)、乙一六・一〇―三―六
五頁及び乙イ四三によれば、申請者は、「蒸気発生器伝熱管破損事故」の解析評価
において、評価の前提として、安全上余裕を持って想定すべき伝熱管の最大水漏え
い率(以下「設計基準リーク」という。)を設定したこと、水、蒸気がナトリウム
に接した直後に発生する急峻な圧力パルス(初期スパイク圧)の評価の前提として
は、伝熱管一本が瞬時に両端完全破断(いわゆるギロチン破断)した際の水漏えい
率を、初期スパイク圧減衰後、事故終止まで持続する水素ガスの圧力(準定常圧)
の評価の前提としては、水、蒸気の漏えいが周囲の伝熱管(隣接伝熱管)に影響を
及ぼし、隣接伝熱管が二次的に破損するメカニズムとしては、ナトリウム中に水、
蒸気が噴出して形成されるリークジェットによるウェステージ(損耗)型破損を前
提として、伝熱管四本の両端完全破断に相当する水漏えい率を想定したことが認め
られる。
 また、右各証拠によれば、本件安全審査においては、本件原子炉施設の基本設計
ないし基本的設計方針において、伝熱管の破損に対して
十分な発生防止対策が取られていることに照らして、初期スパイク圧の評価の前提
として伝熱管一本が瞬時に両端完全破断した際の水漏えい率を仮定することは、保
守的な解析条件ということができ、妥当であると判断したこと、漏えいの位置につ
いても、水漏えい率が最大となる蒸発器の管束部の下部を破損位置としていること
から妥当であると判断したことが認められる。
 そして、右各証拠に加え、甲イ三八三によれば、本件安全審査においては、申請
者等が行った実験結果等によると、一本の伝熱管の最初の破損規模が伝熱管一本の
最大水漏えい率未満では右の破損伝播が生ずるが、その場合に初期に破損した伝熱
管及びその周囲で破損した伝熱管の水漏えい率の合計は、最大でも二本の伝熱管が
完全破断して漏えいする水漏えい率を若干上回る程度であることなどから、準定常
圧の評価の前提として伝熱管四本が同時に完全破断した場合に相当する水漏えい率
を仮定することは、保守的な解析条件ということができ、妥当であると判断したこ
とが認められる。
(2)解析結果
 乙一六・一〇―三―六三ないし五頁によれば、本件安全審査においては、①蒸気
発生器を流れる二次冷却材ナトリウムには放射性物質は含まれておらず、蒸気発生
器は「二次主冷却系の各系統ごとに独立して設置されていることから、本件原子炉
施設において、一系統の蒸気発生器設備に伝熱管の破損事故が万一発生したとして
も、他の健全な二系統の蒸気発生器設備に影響が及ぶことや、その影響が炉心に影
響に及ぶことはなく、周辺に放射性物質が異常に放出される危険のないことを確認
したこと、また、②申請者が右の設計基準リーク(初期スパイク圧の評価の前提は
伝熱管一本の両端完全破断に相当する水漏えい率、準定常圧の評価の前提は伝熱管
四本の両端完全破断に相当する水漏えい率をそれぞれ想定している。)を前提に蒸
気発生器伝熱管破損事故について解析評価し、事故は安全に終止し、また、これに
より生じる初期スパイク圧及び準定常圧に対し、蒸気発生器、二次主冷却系の機
器、配管及び中間熱交換器を含む原子炉冷却材バウンダリの健全性は保たれるとい
う結論が得られたことについて、その妥当性を確認したことが認められる。
4 原告らの主張について
(1) 異常発生防止対策について
① 応力腐食割れ、腐食、脱炭、浸炭等による蒸気発生器伝熱管の損傷に対する防
止対策について
(イ) 原告らは
、本件原子炉施設の蒸気発生器の伝熱管は、応力腐食割れ、腐食、脱炭、浸炭など
により損傷する旨主張する。
(a) 応力腐食割れについては、弁論の全趣旨によれば、機器、配管に係る①材
料の耐食性の低下、②腐食環境の存在、及び③過度の応力の存在という三つの要素
が重畳したときに初めて生じるものであり、右各要素のうちの一つでも取り除く
か、あるいは、右各要素を緩和ないし低減すれば、その発生を防止できることが認
められる。
 そして、乙一六・八―五―二頁、一〇―二―三七頁、乙イ四三及び乙ニ二の七
(証人P9調書七)一三丁表、同裏によれば、本件安全審査においては、本件原子
炉施設の蒸気発生器(蒸発器及び過熱器)の伝熱管の材料として、使用条件に対す
る材料の特性を考慮し、水を蒸気に変える蒸発器の伝熱管には、水、蒸気の環境下
で使用されることから応力腐食割れにも強いクロム・モリブデン鋼が、過熱器の伝
熱管には、高温の過熱蒸気の環境下で使用されることから高温での強度に優れたオ
ーステナイト系ステンレス鋼がそれぞれ使用されることを確認し、使用環境の要素
についてみると、過熱器の伝熱管には、湿分を含まない過熱蒸気を流入させること
としていること、応力腐食割れの発生に深く関係する溶存酸素等が十分低減された
水質に維持できるように脱気器等が設置されることを確認したことが認められ、そ
の合理性に疑いを入れるような証拠はない(なお、ナトリウム中の酸素は、ナトリ
ウムが化学的に活性であり、ナトリウムの化合物として存在するため、応力腐食割
れの要因にはならない。)。そうすると、本件原子炉施設においては、右応力腐食
割れの発生の原因となる三要素のうち、少なくとも①と②を取り除き、あるいはこ
れらを緩和ないし低減することができるといえるから、伝熱管の応力腐食割れの発
生の可能性は極めて低いということができる。
(b) ナトリウムによる伝熱管の腐食についても、前記(第四、三、4、
(一)、(2)、(イ))及び右(a)のとおり、本件安全審査においては、右腐
食の原因となるナトリウム中の酸素等の不純物を適切に除去できるようにコールド
トラツプが設けられること、脱気器や水中の不純物を取り除く復水脱塩装置等が設
置されることを確認している。
 したがって、本件原子炉施設においては、ナトリウムによる腐食による伝熱管の
破損の可能性は極めて低いということができる。
(c) ナ
トリウム中での脱炭や浸炭については、前記(第四、三、4、(一)、(2)、
(ロ))のとおり、本件原子炉施設の過熱器の伝熱管の材料であるオーステナイト
系ステンレス鋼と、蒸発器の伝熱管の材料であるクロム・モリブデン鋼とにおける
活性炭素濃度の相違により、オーステナイト系ステンレス鋼は浸炭し、また、クロ
ム・モリブデン鋼は脱炭される傾向にあることが認められる。しかし、本件安全審
査においては、本件原子炉施設の蒸気発生器の伝熱管の材料には、蒸発器、過熱器
のそれぞれについて、その使用条件に適合する材料が使用されることを確認してい
る上、伝熱管の具体的な設計において、浸炭、脱炭による材料の強度低下を考慮し
た設計とすることは十分可能であるといえ、これに反する証拠はないから、浸炭、
脱炭は、本件原子炉施設の基本設計ないし基本的設計方針の合理性を左右するもの
ではないというべきである。
(d) したがって、原告らのこの点についての主張は理由がない。
(2) 溶接時における残留応力、組立ての困難さについて
 原告らは、本件原子炉施設の蒸気発生器の伝熱管に採用されているヘリカルコイ
ル型は、溶接時における残留応力が問題であると共に、伝熱管の組み立てが困難で
ある旨主張する。
 しかし、右原告らの主張する点は、いずれも機器の設計に関する事柄ではなく、
製作に係る事柄であって、本件安全審査の対象となる本件原子炉施設の基本設計な
いし基本的設計方針に関連しないものであるから、右主張は失当である。
(3) 溶接のたれ込みについて
 原告らは、平成三年七月に本件原子炉施設の蒸発器伝熱管内で、伝熱管の傷の有
無等を検査するために管内に挿入した探傷プローブが引っ掛かるという事象が発生
したことから、右事象が発生した原因は伝熱管の溶接のたれ込みであり、このよう
な溶接のたれ込み部分では腐食、振動、応力集中によって伝熱管が損傷するおそれ
があり、また、申請者が右事象の対策として右プローブの保護カバーを削ったこと
により、右プローブの探傷性能が低下した旨主張し、甲ニ二の一(証人P10調書
一)五三丁裏ないし五六丁表にはこれに沿う証言がある。
 しかし、右原告らの主張する点は、機器の設計に関する事柄ではなく、製作に係
る事柄であって、本件安全審査の対象となる本件原子炉施設の基本設計ないし基本
的設計方針に関連しないものであるから、右主張は失当である。
(4) 流
動不安定現象について
 原告らは、本件蒸気発生器には流動不安定現象により安全性が確保できないと主
張し、その根拠として、平成七年五月に本件原子炉施設が自動停止した事象につい
て、右事象は、本件原子炉施設の蒸気発生器のように、ダウンカマー部(蒸気発生
器内の流動しない静止ナトリウム中にある伝熱管の下降管)を有する蒸気発生器特
有の流動不安定現象により発生したことを指摘し、甲イ一九〇にはこれに沿う記載
がある。
 しかし、甲イ二二三、乙イ四七・三・四・四―四頁、乙イ四八・三・四・四―三
頁及び乙イ五一によれば、右事象は、水・蒸気系の流量等の制御回路の制御定数の
設定が適切でなかったことによるものと判断されていることが認められ、本件原子
炉施設の蒸気発生器にダウンカマー部が存在することによるものではないのである
から、原告らのこの点についての主張は理由がない。
(二) 異常拡大防止対策(影響緩和対策)について
(1) 水素計について
(イ) 原告らは、本件安全審査において水漏えい検出設備である水素計の設置箇
所や機能が審査されていない旨主張する。
 しかし、甲イ三〇二、乙一六・八―九―一五頁及び乙イ四三によれば、本件安全
審査においては、二次主冷却系配管のナトリウム中の水素計については、毎秒約
○・一グラム未満の微小な漏えいでも確実に検出し得るものであること、また、蒸
気発生器カバーガス空間にも水素計が設けられることを確認したことが認められ
る。そして、これ以上の水素計の具体的な設置位置については、詳細設計が定まら
なければ決定することができないものと認められるから、これを本件安全審査にお
いて審査しなかったことに不合理な点はないというべきである。
 したがって、原告らのこの点についての主張は理由がない。
(ロ) また、原告らは、本件原子炉施設のナトリウム中水素計による検出には限
界があり、また、水漏えいの検知は原子炉トリップ信号と連動されておらず、水漏
えい信号を発するためには運転員が操作しなければならず、右操作の遅れによっ
て、重大な結果に至ることを未然に防止できない旨主張し、甲イ三八五にはこれに
沿う記載がある。
 しかし、右(イ)のとおり、本件原子炉施設のナトリウム中水素計は、毎秒約
○・一グラム未満の微小な漏えいをも確実に検出し得るものである上、その性能に
ついては、申請者が実際にナトリウム中に微量の水ないし水素を注入する
試験を行って確認したことが認められる。これに対し、甲ニ六の二(証人P10調
書五)七六ないし七八頁には、本件原子炉施設の水素計は、他の健全な伝熱管に破
損が伝播する前に小、中規模の漏えいを検知することはできない旨の証言がある
が、右証言には合理的な根拠が示されていないから、採用できない。
 そして、運転員の操作については、乙イ四三によれば、微小な漏えいの場合に
は、運転員が、水素計が発する警報に基づいて水漏えい信号を発するとされている
が、漏えい規模が拡大して毎秒約○・一グラムを超える小、中規模の水漏えいとな
った場合には、隣接伝熱管に破損が伝播するおそれが生じるので、水素計三基のう
ち二基がナトリウム中水素濃度の顕著な上昇を検知した時点、更には蒸発器カバー
ガス圧力計や圧力開放板検出器が検知した時点で、運転員が操作するまでもなく、
自動的に水漏えい信号が発せられ、蒸気発生器及び原子炉の各緊急停止に至るとさ
れていることが認められる。そうすると、微小な漏えいの場合には、運転員が水漏
えい信号を発するとしても、前記(2、(一))のとおり、毎秒約○・一グラム未
満の微小な漏えいの場合は直ちに隣接伝熱管に破損伝播が生じるものではなく、ま
た、運転員が適切な措置を講じることなく漏えい規模が拡大して、毎秒約○・一グ
ラムを超える小、中規模の水漏えいとなった場合には、運転員が操作するまでもな
く、自動的に水漏えい信号が発せられ、蒸気発生器及び原子炉の各緊急停止に至る
のであるから、運転員の水漏えい信号の操作遅れが重大な結果を招来する危険性を
有しているということはできない。
 したがって、原告らのこの点についての主張は理由がない。
(ハ) 原告らは、本件原子炉施設のナトリウム中水素計は、その検出特性上、漏
えい率が毎秒○・一グラムから毎秒一キログラムまでの範囲は、漏えいを検出する
までに数十秒を要するから、蒸気発生器の緊急停止が遅れる旨主張する。
 しかし、前記2のとおり、毎秒約○・一グラム未満の微小な漏えいの場合は直ち
に隣接伝熱管に破損伝播が生じるものではない。毎秒○・一グラムから一キログラ
ムの水漏えい率においては破損伝播の可能性が生じ、甲イ三八三及び乙イ八六によ
れば、この場合は水素計の検出時間は最短約一分程度であることが認められるが、
この程度の水漏えい率における破損伝播の拡大速度はそれほど大きくないから、こ
の時間内に多
大な破損伝播が生じるとはいえない。そして、毎秒一キログラム程度を上回る水漏
えい率の場合は、乙イ四四によれば、水素計からの水漏えい信号よりも、カバーガ
ス圧力計の信号や圧力開放板検出器の信号が早く発せられることが認められる。
 そうすると、水素計の検出時間の遅れにより、本件原子炉施設の緊急停止が遅
れ、重大な事態が生じることは想定し難いというべきである。
 したがって、原告らのこの点についての主張は理由がない。
(2) ナトリウム・水反応による二次主冷却系配管の大口径破断等について
 原告らは、本件原子炉施設の蒸気発生器の伝熱管が破損した場合には、ナトリウ
ム・水反応により、中間熱交換器の破壊、二次主冷却系配管の大口径破断等が生じ
る旨主張する。
 しかし、乙一六・一〇―三―六二ないし六四頁及び乙イ四三によれば、本件安全
審査においては、本件原子炉施設において万一蒸気発生器の伝熱管から二次主冷却
系内の圧力が顕著に上昇するような大規模な水漏えいが発生した場合には、二次主
冷却系の各系統ごとに設置されたナトリウム・水反応による生成物を収納する反応
生成物収納容器設備へと続く圧力開放板が破れ、二次主冷却系内の圧力を逃がして
二次主冷却系内の過度の圧力上昇を防止すると共に、圧力開放板の開放を検出した
信号によって、自動的に、主給水ポンプの停止、伝熱管内に残留した水、蒸気の急
速ブローが行われる結果、ナトリウム・水反応は終止し、また、各ポンプの停止に
伴い、「二次主冷却系循環ポンプ回転数低」信号、「二次主冷却系流量低」信号に
よって原子炉が自動停止することを確認したことが認められ、その合理性に疑いを
入れるような証拠はない。したがって、本件原子炉施設においては、蒸気発生器の
伝熱管の破損によるナトリウム・水反応により二次主冷却系配管の大口径破断等が
生じることは想定し難く、原告らのこの点ついての主張は理由がない。
(三) 事故の解析評価について
(一) 設計基準リークについて
 原告らは、「蒸気発生器伝熱管破損事故」に係る解析評価の解析条件のうち、初
期スパイク圧の評価の前提として、伝熱管一本が瞬時に両端完全破断することを仮
定したこと、準定常圧の評価の前提として、伝熱管四本が同時に両端完全破断した
場合に相当する水漏えい率を仮定したことは、いずれも恣意的で合理性がなく、こ
れ以上の事故が発生する旨主張する。そして、その根拠として
、英国のPFRの事故において高温ラプチャ型破損(以下「高温ラプチャ」とい
う。)により四〇本の伝熱管が破損したこと、海外の加圧水型原子炉の蒸気発生器
伝熱管破損事故の解析の前提条件等を挙げるので、以下検討する。
(イ) 高温ラプチャの発生について
(a) 伝熱管破損伝播試験について
 原告らは、申請者がSWAT―3を用いて行った伝熱管破損伝播試験について、
本件原子炉施設の定格出力時の蒸発器を模擬したRUN―16やRUN―19にお
いて、伝熱管が高温ラプチャによって破損したことを挙げ、本件原子炉施設の蒸気
発生器の伝熱管が高温ラプチャによって破損する可能性が高い旨主張する。
(い) この点、乙イ四三及び乙イ四四によれば、次の事実が認められる。
① 申請者は、昭和五六年、本件原子炉施設の定格出力時の蒸発器を模擬して伝熱
管破損伝播試験RUN―16を行ったが、右試験においては、初期水リーク率を毎
秒二・二キログラムとし、リークジェットのターゲットとなる伝熱管(ターゲット
管)としては、ターゲット管の破損による水漏えい率の拡大を模擬するための静止
水管(水、蒸気の流動がないようにした伝熱管)と、伝熱管内部の圧力条件を模擬
するためのガス加圧管(水、蒸気の代わりに窒素ガスを充填した伝熱管)とを用い
た(この点で、いずれのターゲット管も実際の本件原子炉施設の条件を模擬したも
のではない。)。その結果、静止水管六本のうち一本が、また、ガス加圧管四八本
のうち二四本が、それぞれ高温ラプチャによって破損するという結果が得られた。
② 一方、申請者は、昭和五七年、本件原子炉施設の三〇パーセント負荷時の蒸発
器を模擬して伝熱管破損伝播試験RUN―17を行ったが、右試験においては、初
期水リーク率を毎秒一・四六キログラムとし、ターゲット管としては、ガス加圧管
五九本のほか、流水管(水、蒸気を流動させている点、本件原子炉施設の蒸気発生
器伝熱管の水・蒸気側の流動条件を模擬した伝熱管)四本を用いた。その結果、ガ
ス加圧管、流水管とも破損は生じなかった。
③ そして、申請者は、昭和六〇年、本件原子炉施設の蒸発器の伝熱管内の冷却効
果等の条件を可能な限り模擬したRUN―19を行ったが、右試験においては、初
期水リーク率(一次リーク平均注水率)を毎秒一・八五キログラムとし、ターゲッ
ト管としては、流水管三本及びガス加圧管一五本をを用いた。その結果、ガス
加圧管は五本が高温ラプチヤによって破損したものの、流水管は破損しなかった。
(ろ) 右認定の各試験の結果によれば、高温ラプチャによって破損したターゲッ
ト管は、いずれも本件原子炉施設の水、蒸気の流動条件を模擬していない静止水管
及びガス加圧管であって、本件原子炉施設の水、蒸気の流動条件を模擬した流水管
は全く破損していない。そうすると、右各試験結果から、本件原子炉施設の蒸気発
生器の伝熱管が高温ラプチャによって破損する可能性が高いということはできず、
かえって、高温ラプチャによる破損は想定し難いということができる。
(は) これに対して、原告らは、申請者がSWAT―3を用いて行った伝熱管破
損伝播試験RUN―19は、RUN―16と比べて、伝熱管内の冷却効果の条件
(水側条件)だけでなく、初期水リーク率、注水時間及び注水量に関する試験条件
を切り下げているから、試験条件が保守的でなく、これをもって本件原子炉施設の
蒸気発生器の伝熱管が高温ラプチャによって破損しないとはいえない旨主張する。
 しかし、甲イ四四三によれば、申請者は、RUN―19において、本件原子炉施
設の蒸気発生器伝熱管において高温ラプチャが発生しないことを念のため最終的に
確認するために行うこととし、この目的に照らし、本件原子炉施設の蒸発器の各種
条件を可能な限り模擬する実験を行うこととしたことが認められる。
 また、RUN―19とRUN―16を比較すると、初期水リーク率については、
RUN―19は一・八五キログラム毎秒、RUN―16は二・二キログラム毎秒で
あり、RUN―19均の方が小さい。しかし、乙イ四四によれば、RUN―19に
おける右初期リーク率は、RUN―16及びそれ以前に実施したRUN―15まで
の試験結果を総合的に検討した結果、ガス加圧管等で観察された高温ラプチャは、
水リーク率が二キログラム毎秒前後の場合に発生すると考えられることから設定さ
れたものであることが認められ、RUN―19の一・八五キログラム毎秒が、RU
N―16の二・二キログラム毎秒よりも保守的でないということはできない。
 次に、注水時間については、RUN―19の三二秒に対し、RUN―16は六〇
秒であり、RUN―19の方が短い。しかし、乙イ四四によれば、RUN―16と
RUN―19においてガス加圧管が高温ラプチャによって破損するに至るまでに要
した最小時間は、それぞれ約一二
秒及び一三秒とほぼ同一時間となっていること、ナトリウム・水反応の反応熱によ
るナトリウム温度の上昇やそれに伴うナトリウム伝熱管内の温度及び応力の状態
は、初期水漏えい開始後約一〇秒もあれば安定することが認められるから、カバー
ガス圧力計が水漏えいの検出に要する時間約一〇秒(乙イ四四によって認められ
る。)を考慮しても、水リーク率が二キログラム毎秒前後の場合においては、注水
開始から三〇秒程度水漏えいが継続すれば、高温ラプチャ発生の有無を確認する上
で何ら支障となるものではないということができる。
 したがって、原告らのこの点についての主張は理由がない。
(に) また、原告らは、SWAT―3による各試験について、ナトリウム圧力が
模擬されていない点で誤りがある旨主張し、甲ニ二の二(証人P10調書二)一一
丁裏、一二丁表及び甲ニ六の一(証人P10調書四)八二頁、八三丁頁にはこれに
沿う証言がある。
 しかし、乙イ四三によれば、右各試験においては、ナトリウム圧力は、本件原子
炉施設で実際に圧力開放板が破裂して圧力を開放する際の作動圧力を含めて模擬さ
れたことが認められるから、右主張は失当である。
(b) 隔離、ブローの失敗等について
 原告らは、水・蒸気系の隔離後にブローが行われたり、ブローに失敗したり、更
には隔離とブローが双方とも失敗したりした場合には、水、蒸気の流動が失われる
ことから、蒸気発生器伝熱管が高温ラプチャによって多数破損する旨主張し、その
根拠として、美浜原子力発電所二号炉で平成三年二月九日に発生した蒸気発生器伝
熱管破損事故において伝熱管の破断と加圧器の逃し弁の不作動という多重故障が生
じたことを指摘する。
 しかし、乙イ四三及び乙イ四四によれば、本件原子炉施設の蒸気発生器は、高速
ブロー系の放出弁が水・蒸気系の蒸気発生器の隔離に先立って開放されるように設
定されていることが認められるから、水、蒸気のブロー操作時に伝熱管内の水、蒸
気の流動が完全に停止することは想定し難く、他にブローに失敗したり、更には隔
離とブローが双方とも失敗する可能性があると認めるに足りる証拠はない。原告ら
の指摘する美浜原子力発電所の事故については、右事故に係る通商産業省及び原子
力安全委員会の調査報告書(甲イ一一八)において、加圧器逃し弁が作動しなかっ
た原因は右弁が空気を供給することにより開く方式であったところ、定期検査の際
に、右
弁に空気を供給する系統の元弁を誤って閉止したために、右弁を開くために必要な
空気が供給されなかったことにあるとされており、右は設計上の問題に起因するも
のではなく、運転管理上の問題に起因するものであったことが明らかである。そう
すると、右事故は、原子炉施設の基本設計ないし基本的設計方針と関連するもので
はなく、本件原子炉施設において多重故障が起こることの根拠となるものではな
い。
 したがって、原告らのこの点についての主張は理由がない。
(c) ドイツのインターアトム社の伝熱管破損伝播試験について
 原告らは、ドイツのインターアトム社の伝熱管破損伝播試験において、水流動の
ある伝熱管(流水管)でも高温ラプチャが発生したことから、伝熱管内部の水、蒸
気の流動が失われなくても、高温ラプチャが発生する旨主張する。
 しかし、甲イ四四三及び乙イ四四によれば、インターアトム社が試験に用いた三
種類のターゲット管は、外径が二六・九ミリメートル、一七・二ミリメートル及び
二五ミリメートルの細径管であること、他方、本件原子炉施設蒸発器伝熱管やSW
AT―3を用いた試験(以下「SWAT試験」という。)のターゲット管は、外径
が三一・八ミリメートルの太径管であることが認められる。そうすると、右インタ
ーアトム社の実験は、本件原子炉施設蒸発器伝熱管を模擬したものではないという
べきであり、右試験結果から、本件原子炉施設蒸気発生器伝熱管において、高温ラ
プチャが発生する具体的可能性があるということはできない。
 また、いわゆるラプチャ(破裂)型破損には、短時間に伝熱管の機械的強度が低
下して破裂に至る典型的な高温ラプチャのほか、隣接伝熱管が比較的長時間にわた
ってリークジェットを受けて伝熱管にウェステージ(損耗、肉厚減少、減肉)が生
じ、右伝熱管の機械的強度自体が低下して起こるウェステージ先行型ラプチャがあ
る。そして、インターアトム社の実験については、①前記のとおり、本件原子炉施
設の蒸発器伝熱管やSWAT試験のターゲット管が太径管(外径三一・八ミリメー
トル)であるのに対して、インターアトム社が試験に用いた三種類のターゲット管
はいずれも細径管(二六・九ミリメートル、一七・二ミリメートル、二五ミリメー
トル)であるから、インターアトム社の各ターゲット管は、本件原子炉施設の蒸発
器伝熱管やSWAT試験に比べて、伝熱管全体がリークジェットに包ま
れ全面的に反応熱によって加熱されやすく、ウェステージ先行型の高温ラプチャが
発生しやすい条件下にあったこと、②乙イ八六によれば、インターアトム社が行っ
た伝熱管破損伝播試験のうち、ターゲット管として、本件原子炉施設の蒸発器と同
様の材料が用いられ、かつ、流水管が用いられたテスト(VERSUCH)3、同
4及び同7の三回の各試験のいずれにおいても、水リーク率毎秒約六〇ないし一七
五グラムにおいて、約二〇ないし五〇秒前後にわたり水リークが継続した後、流水
管が破裂していること(この場合、当初の水リークによって伝熱管が相当程度減肉
したと考えられるから、このような条件下でウェステージ先行型の高温ラプチヤが
発生したことは十分にありうる。)、③乙イ八六・三二〇頁の写真によれば、テス
ト7においては、冷却効果のある流水管は外形が大きく膨れていないのに対し、冷
却効果のないガス加圧管は大きく開口して破損しており、前者はウェステージ先行
型のラプチャをしたのに対して、後者は典型的な高温ラプチャ型破損をしたことが
それぞれ認められる。
 そうすると、インターアトム社の伝熱管破損伝播試験において見られた流水管の
破損は、典型的な高温ラプチャとは異なると解されるから、この点からみても、右
試験結果から、本件原子炉施設の蒸気発生器伝熱管において、高温ラプチャが発生
する具体的可能性があるということはできない。
(d) PFR事故について
 原告らは、昭和六二年二月に、英国の高速増殖原型炉PFRにおいて蒸気発生器
伝熱管が四〇本破損した事故(以下「PFR事故」という。)が発生したことか
ら、本件原子炉施設においても右事故と同様に高温ラプチャにより伝熱管が多数破
損する事故が発生する可能性がある旨主張し、甲イ三八五にはこれに沿う記載があ
る。
 そこで、以下、右事故の発生及び拡大の原因について検討し、本件原子炉施設に
おいて同様の事故が発生する可能性があるか否かを検討する。
(い) 事故発生及び拡大の原因
 PFR事故については、①甲イ二一二及び甲イ六一によれば、過熱器内の内筒
(六枚の曲板の端を溶接せずに重ね合わせて円筒状に組み上げたもの)の隙間から
漏えい流が生じ、これによって周辺の伝熱管が振動して内筒と擦れ、フレツティン
グ摩耗によって一三本の伝熱管に減肉が生じ、右減肉と振動による疲労とによって
一本の伝熱管に亀裂が入って蒸気の漏えいが始まり(
初期事象)、その影響によって、やはり減肉、疲労していた他の伝熱管に破損が伝
播して(二次破損)事故が拡大したこと、②甲イ一二五及び甲イ二一二によれば、
事故当時、ナトリウム中水素系が自動トリップ機能から取り外されており、更に、
事故を起こしたループの水素計自体がその一時間前に全数故障していたため、漏え
いを早期に検知することができなかったこと、③乙イ四三及び乙イ四四によれば、
PFRの過熱器には蒸気を短時間で排出する高速ブロー系が設置されておらず、ブ
ロー弁が作動を開始してから完全に開き終わるまでに約二三秒を要するような低速
ブロー系しか設置されていなかったため、蒸気発生器の緊急停止によって蒸気の流
動が停止してその冷却効果が失われたにもかかわらず、低速ブロー系による減圧が
速やかに開始されず、当初の一五秒間はほとんど減圧しなかったことから、多数の
伝熱管が過熱して高温ラプチャが発生し、事故が拡大したことがそれぞれ認められ
る。
(ろ) 本件原子炉施設との関係
 PFR事故の初期事象の原因は、右のとおり、過熱器の内筒が重ね合わせ構造で
あったこと及び内筒がナトリウムの流路であったために漏えい流が生じたことにあ
るが、これに対し、証人P8の証言(P8調書・一・五二丁表ないし五三丁裏)、
甲イ六一、乙イ四三及び乙イ四四によれば、本件原子炉施設の蒸気発生器の内筒
は、これとは異なる溶接による一体構造であって、ナトリウムの漏えい流が生じる
ことはないこと、また、ナトリウムの流路を形成するものでもないため、運転時で
もナトリウムは流動せず、仮に内筒に孔が開いたとしても、管束側に漏れ出す力が
働くことはないことが認められる。
 また、事故拡大の原因については、乙イ四三及び乙イ四四によれば、本件原子炉
施設においては、ナトリウム中水素計を自動トリップ機能から取り外すことは設計
上予定されていないこと、蒸発器、過熱器のいずれにも高速ブロー系が設置されて
おり、高速ブロー系のブロー弁が水・蒸気系の隔離に先立って開放されるように設
定されていることから、水、蒸気のブロー操作時に伝熱管内の水、蒸気の流動が完
全に停止することはないことが認められる。
 したがって、本件原子炉施設において、PFR事故と同様の事故が発生すること
は想定し難いというべきである。
(は) 原告らの主張について
① 原告らは、高速ブロー系は高温ラプチャ型破損を防止するのに有
効でない旨主張し、その根拠として、PFR事故後に開催された平成元年の日英専
門家会議の際、英国専門家が、①PFRでは、当初高速ブロー系が設置されていた
が、有効でないという理由で取り外されていた旨発言したこと、②高速ブロー系が
あれば、破損伝熱管は一〇本は減少した旨発言したこと、③PFR事故では、破損
孔からのリーク量が大きいので、高速ブロー系の効果は大きくないかもしれない旨
発言したことを指摘する。
 しかし、①の点については、乙イ四四によれば、PFRにおいては、事故後、調
査結果を踏まえて高速ブロー系の重要性が認識され、再びこれが設置されたことが
認められるから、事故前に取り外されていたことをもって、高速ブロー系が有効で
ないということはできない。
 ②の発言については、乙イ四四によれば、PFR事故の原因調査を担当した英国
AEA社の技術者が、仮に過熱器に高速ブロー系が設置されていたならば、破損し
たのはフレッティングを受けていた初期漏えい管と他の伝熱管三本に止まっていた
であろうと発言していることが認められる。これに照らせば、右発言を高速ブロー
系が設置されていてもなお高温ラプチャが生じるという趣旨に解することはできな
いというべきである。
 ③の発言についても、PFR事故においては多数の伝熱管が破損したことから、
多数の伝熱管が破損した後は破損孔からのリーク量が大きいため、減圧の効果は大
きくないかもしれない旨を述べたものと解することができ、PFR事故時の状況を
離れて、一般的に、高速ブロー系の本来的な減圧機能や高温ラプチャの発生防止機
能に占める効果が大きくないとする趣旨と解することはできない。
 したがって、原告らのこの点についての主張は理由がない。
② 原告らは、PFR事故の際、蒸気発生器が緊急停止した一〇秒後に、過熱器伝
熱管内の蒸気圧力は七気圧に低下しており、PFRの蒸気発生器の低速ブロー系
は、本件原子炉施設の蒸気発生器の高速ブロー系の能力と同程度であるから、本件
原子炉施設においても高温ラプチャが発生するおそれがある旨主張する。
 この点、甲イ二一二及び乙イ四四によれば、PFR事故においては、蒸気発生器
が緊急停止した一〇秒後には蒸気圧力が七気圧まで低下したことが認められ、甲イ
二一二・二は「自動的な防護動作は、わずか一〇秒の間で有効に完了した。」旨の
記載があることが認められる。しかし、乙イ四四によ
れば、PFRの過熱器の低速ブロー系は、トリップ信号発報後の最初の一五秒間は
ほとんどブローできないことが認められ、右証拠は、甲イ二一二の記載を踏まえた
上で申請者が英国AEAにした照会に対する回答であるから、これに照らせば、甲
イニ一二の右記載は誤りであると解される。したがって、右の減圧は、原告らが主
張するように、低速ブロー系が作動したことによるものではなく、むしろ、甲イ一
二五の一及び乙イ四四にあるとおり、低速ブロー系の作動が間に合わなかったこと
から高温ラプチヤに至り、その破損口から蒸気が過熱器のナトリウム側に漏出した
ことによるものと解するのが自然である。
 したがって、原告らのこの点についての主張は理由がない。
(に) なお、甲イ二一二及び乙イ四四によれば、PFR事故では四〇本の過熱器
伝熱管が破損したが、これによる水漏えい率は、蒸発器伝熱管一本を想定したPF
Rの設計基準リークを下回る上、本件原子炉施設の準定常圧の設計基準リークをも
下回るものであったことが認められる。したがって、この点からみても、PFR事
故は、本件安全審査の合理性を左右するものではないというべきである。
(e) 安全総点検の結果について原告らは、申請者が平成八年から九年にかけて
実施した本件原子炉施設の安全総点検の結果において、蒸気発生器伝熱管の構造健
全性評価手法等の検証を行うとしたことは、本件原子炉施設において高温ラプチャ
の発生するおそれがあることを示すものである旨主張する。
 この点、乙イ四四及び乙イ四七・三・四・五―二頁、六頁によれば、確かに、安
全総点検の結果報告書には、蒸発器のブロー動作中に安全裕度が少なくなる場合が
あり、構造健全性評価手法を整備する必要がある旨記載されていることが認められ
る。
 しかし、乙イ四三、乙イ四四及び乙イ四七・三―二・四・三―六頁によれば、安
全総点検における右の指摘は、本件原子炉施設の蒸発器伝熱管の材料であるクロ
ム・モリブデン鋼について、高温ラプチャ型破損の評価に必要な急速破損時の強度
データが不足していたため、いわば簡易な手法として、比較的緩慢なひずみ速度に
よる引張試験で得られた強度データを補正して解析を行った結果、安全裕度が少な
い場合があるとされたことから、右クロム・モリブデン鋼の急速破損時の強度デー
タを取得し、計算コード等の信頼性を確認した上で、再度評価を行う必要がある旨
等を述べ
たものであることが認められるから、右は、直ちに本件原子炉施設の蒸気発生器に
おいて、高温ラプチャ型破損が生じるおそれがあるとするものではないと解され
る。
 また、乙イ四三及び乙イ四四によれば、申請者は、右安全総点検における指摘を
踏まえ、クロム・モリブデン鋼の伝熱管について種々の強度データを採取し、構造
健全性評価手法の改定や高温強度基準値の策定、さらに解析コードの検証等の検証
を行い、これら最新の知見に基づいて、本件原子炉施設の過熱器及び蒸発器につい
て再評価をした結果、いずれもすべての運転条件において高温ラプチャ型破損が発
生する条件とはならない旨の結論を得たことが認められる。
 したがって、原告らのこの点についての主張は理由がない。
(ロ)周辺の伝熱管の損傷について
 原告らは、美浜原子力発電所二号炉で平成三年二月九日に発生した蒸気発生器伝
熱管破損事故や前記PFR事故を根拠として、一本の伝熱管が破損した場合には、
その周辺の伝熱管においても同一の原因で破損に至るような損傷が進んでいる旨主
張する。
 しかし、右美浜発電所二号炉の事故の原因については、右事故に係る通商産業省
及び原子力安全委員会の調査報告書(甲イ一一八)において、伝熱管の振動を防止
するために設置されていた「振止め金具の施工が設計どおりであれば伝熱管破断及
び周辺管の磨耗は発生しなかったと判断する。」とされており、それが、設計上の
問題ではなく、施工上の問題に起因するものであったことが明らかにされている。
したがって、右事故は、本件原子炉施設の基本設計ないし基本的設計方針に関連す
るものではなく、本件安全審査の合理性を左右するものではない。
 また、前記((イ)、(d)、(い)及び同(ろ))のとおり、PFRの事故の
原因は、過熱器の内筒の曲板を重ね合わせた隙間からナトリウムが漏れ、漏れたナ
トリウムの流れによって伝熱管が振動し、内筒と擦れて磨耗し、減肉するというフ
レッテイング現象が起きたことにあり、内筒の構造に設計上問題があったことにあ
ることが認められるところ、本件原子炉施設の蒸気発生器の内筒は、PFRのよう
な重ね合わせの構造ではなく、円筒形の一体構造であり、ナトリウムの漏えい流が
生じることはないし、また、ナトリウムは流動せず、仮に内筒に孔が開いたとして
も、管束内に漏れ出す力は働かない。したがって、PFR事故が発生した事実か
ら、本件原子炉
施設の蒸気発生器において同様の事故が起こるということはできないから、原告ら
のこの点についての主張は理由がない。
(ハ) BN1三五〇の蒸気発生器事故について
 原告らは、一九七三(昭和四八)年に、旧ソ連の高速増殖原型炉BN―三五〇で
発生した蒸気発生器伝熱管からの水漏えい事故を挙げて、本件原子炉施設の蒸気発
生器の安全性は確保されない旨主張する。
 しかし、甲イ五七によれば、右事故は、伝熱管下部の、キヤツプを用いた溶接方
法によって溶接した部位の欠陥により生じたことが認められるところ、前記(3、
(一)、(2))のとおり、本件安全審査においては、本件原子炉施設の蒸気発生
器伝熱管は構造信頼性や欠陥検出性に優れた、伝熱管同9士を突き合わせて自動溶
接する構造とされていることを確認している。したがって、本件原子炉施設におい
て右事故と同様の事故が起こることは想定し難いから、原告らのこの点についての
主張は理由がない。
(ニ) 海外の軽水炉の設計基準事故の見直しについて
 原告らは、近年、海外では軽水炉の蒸気発生器細管の破断事故の事故評価が厳し
い方向で見直されていることからすれば、本件原子炉の事故想定は不十分である旨
主張する。すなわち、原告らは、①アメリカでは、原子力規制委員会が報告NUR
EG―〇八四四において、蒸気発生器伝熱管破損のリスク評価と伝熱管の健全性の
問題を取り上げており、その中で、設計基準事象の再評価に関して、複数本の破断
及び主蒸気管の破断事象との組合せを今後の継続検討課題としていること、②フラ
ンスでは、二本破断を状態四(一万炉年から一〇〇万炉年に一回程度の発生頻度の
事象)として想定していること、③ドイツでは、「主蒸気管破断と蒸気発生器伝熱
管破損」「蒸気発生器伝熱管破損と主蒸気安全弁開固着」の複合事象の解析が行わ
れていることを指摘する。
 しかし、軽水炉の蒸気発生器と本件原子炉施設のそれとは、構造材の使用条件や
冷却材等が全く異なっている。したがって、本件安全審査において設定された前提
条件が海外の軽水炉の「蒸気発生器伝熱管破損事故」の解析評価の前提条件と異な
ることをもって、直ちに本件解析評価の前提条件が不当であるということはできな
いから、原告らの主張は失当である。
(2) 主蒸気止め弁の開固着又は主蒸気管破断について
 原告らは、加圧水型軽水炉では、事故想定に際し、主蒸気止め弁の開固着又は主

気管破断をも併せて想定しているのに、本件安全審査においてこれを想定していな
いのは不合理である旨主張し、甲イ一九〇にはこれに沿う記載がある。
 この点について、甲イ一一五によれば、加圧水型軽水炉において、蒸気発生器の
事故を評価するに当たって主蒸気止め弁の開固着や主蒸気管破断の想定を重ね合わ
せているのは、加圧水型軽水炉では、蒸気発生器伝熱管を境界として、放射性物質
を含む冷却系(一次冷却水)と放射性物質を含まない水・蒸気系(二次冷却水)と
が接していることから、環境への放射性物質の影響を評価する目的によるものであ
ることが認められる。
 しかし、本件原子炉施設の蒸気発生器において、伝熱管を境界として接する二次
冷却材ナトリウムと水、蒸気とは、いずれも放射性物質を含まないから、右目的で
の事故想定が必要とは解されない。
 また、仮に加圧水型軽水炉のように主蒸気止め弁の開固着や主蒸気管破断の想定
を重ね合わせたとすれば、高速ブロー系の効果が高まり、ナトリウム・水反応はよ
り早期に終止するものと解されるから、この点でも、右事故想定をしていないこと
は、本件安全審査の合理性を左右するものではない。
 したがって、原告らのこの点についての主張は理由がない。
5 小括
 以上からすれば、本件原子炉施設の蒸気発生器伝熱管破損事故の発生防止対策に
係る安全設計及び同事故の解析評価についての本件安全審査における調査審議及び
判断の過程に重大かつ明白な瑕疵といえるだけの看過し難い過誤、欠落があるとは
認められないというべきである。
八 本件ナトリウム漏えい事故について
 原告らは、平成七年一二月六日に本件原子炉施設において発生した二次冷却材ナ
トリウム漏えい事故(以下「本件事故」という。)によって、本件安全審査の合理
性は失われた旨主張する。そこで、以下、本件事故の概要及び原因を認定した上
で、右事故と本件安全審査との関係について判断を示すことにする。
1 本件事故の概要
(一) 事故の発生状況
 本件事故は、二次主冷却系のCループにおいて、中間熱交換器出口側の配管に取
り付けられていた温度計(以下「本件温度計」という。)が、さや段付部で折損
し、右折損部からさや太管部及びニップル部を経て、二次冷却材が、温度計コネク
タ部分から原子炉補助建物地下一階にある二次主冷却系配管室(C)(以下「本件
配管室」という。)内に漏えいしたものである。
(二) 事
故の結果
(1) 機器の損傷等乙イ九・四―一ないし一四頁及び乙イ一〇・I―三―一一な
いし一三頁、同Ⅱ―二―二、三頁によれば、次のとおりと認められる。本件事故に
より約○・七トン(二次主冷却系Cループ内にあるナトリウム量全体(約二八○ト
ン)の約○・三パーセント)のナトリウムが漏えいし、漏えいしたナトリウムによ
り、本件温度計直下に配置されていた換気ダクト、グレーチング(保守用足場)及
び床ライナが損傷を受け、近傍の壁面コンクリートも影響を受けた。すなわち、①
換気ダクトについては、漏えい箇所の直下に当たる換気ダクト吸入口近傍に、幅約
三〇センチメートル、円周に沿つた長さ約八○センチメートル程度の欠損部が生
じ、欠損部周辺に高さ約一一五センチメートル程度のナトリウム化合物が堆積し
(加熱温度は、最高で八○○℃と推定されている。)、②グレーチングについて
は、漏えい箇所の直下に当たるグレーチングに、最大で幅約四二センチメートル、
長さ約三九センチメートルの半楕円状の欠損部が生じ、欠損部分周辺に高さ一五セ
ンチメートル程度のナトリウム化合物が堆積し(加熱温度は、最高で一一五〇℃と
推定されている。)、③床ライナについては、床ライナ上に漏えいしたナトリウム
と本件配管室内の雰囲気中の酸素等が化合して生成されたナトリウム化合物が堆積
し、漏えい箇所の直下では、局所的に○・五ないし一・五ミリメートル程度の板厚
減少が観察されたが、貫通するに至った部分はなく、漏えい箇所の近傍でも、ほと
んどの場所で六ミリメートル以上の板厚が計測され(加熱温度は、最高で七五〇℃
と推定されている。)、④壁面コンクリートについては、ナトリウム漏えいが発生
した箇所近傍の原子炉補助建物壁面コンクリートの一部(約四・五平方メートル)
に深さ一ミリメートル程度の黒灰色の変色が生じたが、その影響は表層部にとどま
り、ナトリウムとコンクリートの反応生成物は検出されず、構造耐力、遮へい性能
への影響はないものと判断された。
 また、本件事故の際に漏えいしたナトリウムは、本件配管室内の雰囲気中の酸素
等と化合してナトリウム化合物を生成し、一部は前述のとおり本件配管室内に堆積
したが、一部は本件配管室内の雰囲気中にナトリウム・エアロゾル(粒径数ミクロ
ンからマクロン以下の微粒子状のナトリウム化合物)となって浮遊し、その一部は
本件温度計直下に配置されている換気ダクトへ
吸入され、屋上の排気ガラリから環境に放出されたが、更にその部が右排気ガラリ
の近傍に設置されていたC系空気取入口から再び原子炉補助建物内のCループ系各
室に吸入され、Cループ系各室周辺(原子炉補助建物床面積の約一〇・五パーセン
トに当たる約五五八○平方メートルの範囲)に拡散されたが、一部のナトリウム漏
えい検出器及び換気装置を除いて機器・電気計装品及び制御盤類の機能に支障が生
じた事実はなかったことが確認されている。
(2) 環境に対する影響
 甲イ二四三及び乙イ九・四―二五ないし三一頁、一〇六頁によれば、次のとおり
と認められる。
(イ) 放射性物質の放出二次冷却材には炉心で生成されて移行したトリチウムを
除いて、放射性物質を含んでいないため、放射性物質の炉外への放出量は、トリチ
ウム四×一〇の七乗ベクレルと推定されており、これは、原子力発電所から平常時
に放出されるトリチウム量(気体廃棄物)と比べても十分に小さい値であった。ま
た、本件事故の際の放射線モニタ等の指示値は、通常のバックグラウンドレベル
(自然に存在する量)であり、本件事故の前後において、本件原子炉施設の敷地内
外の環境監視設備で採取した空気中浮遊じん、ガス状物質、雨水などの降下物等の
環境試料の計測値は、本件事故前までに確認されている実測値の範囲内であった。
また、本件事故によって発生し、本件配管室等から回収されたナトリウム化合物の
分析結果からも、放射性核種は検出されなかった。
 このように、本件事故においては、放射性物質の放出による周辺の環境への影響
はなかった。
(ロ) ナトリウム・エアロゾルの影響
 本件原子炉施設の敷地内の風上及び風下側と敷地外で採取した土壌サンプルを分
析した結果、ナトリウム量は塩分等のバックグラウンドの範囲内であり、風下側の
植物などにナトリウム・エアロゾル飛散の影響とみられる痕跡は観察されなかった
ことから、環境に放出されたナトリウム・エアロゾルは、本件事故当時の気象条件
下(風速毎秒一一メートル、小雨)においては、急速に無害な炭酸化合物に変化
し、塩分等の、バックグラウンドと区別できない程度に拡散され、希釈されたと判
断された。
 また、本件事故によって生じたナトリウム・エアロゾルがすべて建物外に放出さ
れ、そのすべてが有害な水酸化ナトリウムの形態で拡散されるという厳しい仮定を
しても、敷地境界における水酸化ナトリウムの濃度
は一立方メートル当たり約○・〇五ミリグラムと評価され、わが国の産業用に定め
られた作業環境下における許容濃度基準である一立方メートル当たり二ミリグラム
を下回るものであった。
 このように、本件事故においては、化学物質の放出による環境への影響もなかっ
た。
(3) 炉心冷却能力に対する影響
 乙イ九・五―一ないし八頁、添二―一ないし三頁、乙ニ五の一(証人P11調書
一)一五丁裏ないし一六丁表によれば、次のとおりと認められる。
 本件事故における二次冷却材の漏えいは、漏えいが生じた系統の除熱能力を直ち
に低下させる規模のものではなく、他の二系統も健全に機能していたことから、本
件事故の際の炉心冷却能力は十分保たれていた。
 また、本件事故の発生から終止に至るまでのプラントパラメータ(原子炉の運転
記録)を検討しても、原子炉出力は、原子炉の通常停止操作の開始により低下し始
め、原子炉の手動トリップにより約四〇パーセント出力から○パーセント出力に急
激に減少していること、一次冷却材温度は原子炉出力の低下に伴い順調に低下して
いること、原子炉容器内のナトリウム液位は、炉心燃料を冷却するのに十分な液位
が確保されていたことが確認された。
 このように、本件事故において、炉心の冷却能力が影響を受けた事実はなかっ
た。
(4) 床ライナの健全性への影響
 前記(1)のとおり、本件事故においては、本件配管室の床ライナに板厚減少が
生じたが、右床ライナについては、ほとんどの部分で六ミリメートルの板厚が計測
され、局所的に○・五ないし一・五ミリメートル程度の板厚減少が観察されたにと
どまり、ナトリウムとコンクリートが直接接触した事実はない。
 このように、本件事故において、本件配管室の床ライナは、十分な健全性を有し
ていた。
 なお、原告らは、本件事故においては、リッドが変形したから、本件床ライナの
健全性は維持されたとはいえない旨主張する。
 この点、甲イ二四二によれば、本件事故においてリッドが変形した事実が認めら
れるが、右のとおり、ナトリウムとコンクリートが直接接触した事実はないのであ
るから、原告らの主張は失当である。
2 本件事故の原因
(一) 本件温度計の破損原因
 乙イ九・三―一ないし二六頁及び乙イ一〇・Ⅰ―二―一ないし一二頁及び乙イ一
二によれば、次のとおりと認められる。
(1) 本件事故は、本件温度計が、本件さや管のさや段付部に生じた高
サイクル疲労により破損したことにあると判断された。
(2) 本件温度計に高サイクル疲労が生じた原因は、本件温度計について、設計
段階では考慮されていなかった対称渦に伴う抗力方向(ナトリウムが流れる方向と
同じ方向)の振動であると判断された。
(3) そして、本件温度計が右の流力振動を回避できなかった理由は、次のとお
り、メーカーの設計及び申請者の審査が不十分であったことにある。
(イ) メーカーは、設計に際し、カルマン渦による揚力方向の振動については評
価を行い、米国機械学会(ASME)の基準を満足することを確認したが、対称渦
等による抗力方向の振動については設計上の認識がなく、評価を行わなかった。ま
た、カルマン渦との共振が回避され、特段の荷重を受けないと考えたことから、温
度計のさや形状は、さや段付部への応力集中を生じやすい、曲率の小さな段付形状
となった。そして、平成三年一二月、ASMEにおいて、抗力方向の振動を含む流
力振動に対する設計指針が追発行されたが、これを知らなかったため、これに基づ
く設計の評価を行わなかった。
(ロ) 申請者は、本件温度計がナトリウム内包壁(ナトリウムバウンダリ)を構
成する機器であることを念頭に置いて、さやの形状を検討することをせず、また、
ASMEの指針の追加発行後も、温度計について問題意識を持たなかったため、設
計の見直しを求めなかった。
(ハ) また、破損した本件温度計は、熱電対がさや段付部近傍で曲がった状態で
挿入されていたため、流力振動が他の温度計より大きくなっていた。
(4) また、破損した本件温度計は、熱電対がさや段付部近傍で曲がった状態で
挿入されていたため、流力振動が他の温度計よりも大きくなっていた。
(二) 設備腐食の原因
 乙イ一〇・Ⅰ―四―一六ないし二〇頁によれば、次のとおりと認められる。
(1) 鋼材の腐食機構本件事故においては、鋼製の換気ダクト、グレーチング及
び床ライナが損傷したが、その腐食機構は次のとおりであった。
(イ) 床ライナの腐食
 本件温度計部分から漏えいしたナトリウムは、本件配管室の雰囲気中の酸素と反
応しながら、下方の換気ダクト、グレーチングを経て床ライナ上に落下して堆積す
る。右堆積物は、当初、主として未燃焼のナトリウムと酸化ナトリウムからなり、
その上部表面ではナトリウムが燃焼し、堆積物の下部では酸化ナトリウムが鋼材面
と接触しているが、時
間の経過と共に、ナトリウムの燃焼により生成される酸化ナトリウム(固体)は堆
積物の下部で層をなし、落下するナトリウムはその表面で燃焼する状況となる。ま
た、堆積物の下部では、鉄と酸化ナトリウムの反応により鋼材が腐食し、ナトリウ
ム・鉄複合酸化物が生成される。高温でも固体である酸化ナトリウムの生成及び堆
積物への混入が継続すると、堆積物の下部では、酸化ナトリウムに阻まれて、鋼材
の腐食面からの、高温では液体であるナトリウム・鉄複合酸化物の移動が困難にな
るため、鋼材の腐食面においてナトリウム・鉄複合酸化物の存在割合が高くなり、
これによって反応が抑制され、鋼材の腐食は徐々に進展しなくなる。堆積物上部表
面におけるナトリウムの燃焼が停止し、温度が下がり始めると、ナトリウム・鉄複
合酸化物は固体となって鋼材の腐食面を覆うため、鋼材の腐食はほとんど進行せ
ず、床ライナの損傷も進まなくなる。
(ロ) 換気ダクト及びグレーチングの腐食換気ダクト及びグレーチングにおいて
も、床ライナと同じように、鉄と酸化ナトリウムの反応により鋼材が腐食し、ナト
リウム・鉄複合酸化物が生成されたと解されるが、換気ダクト及びグレーチング
は、床ライナよりも高温の環境であったこと、空間にあったことから、漏えいした
ナトリウムの落下により、常に鋼材面に存在するナトリウム・鉄複合酸化物が除去
され、鋼材の表面が現れることになり、ナトリウムの漏えいの継続中、抑制される
ことなく腐食が進行したと解される。
(三) 運転管理上の問題乙イ九・二―五ないし一六頁、二―三三頁及び乙イ一二
によれば、次のとおりと認められる。
 本件原子炉施設の設備設計段階では、二次冷却材漏えい事故の区分及び運転につ
いては、①配管の損傷が大きく、蒸発器のナトリウムの液位が低下して「蒸発器液
位低低」の信号が発せられた場合は、大規模漏えいに当たるとして、右信号により
原子炉を自動トリップすると共に換気装置を自動停止する。ナトアリウムは、原子
炉緊急停止後短時間で行う緊急ドレンによりドレンする。
 ②ガスサンプリング式ナトリウム漏えい検出器(配管と保温材の内装板との間の
空気を吸引し、これを計測し、配管部などのクラックからの微小な漏えいを検知す
ることができるもの)がナトリウムを検知するにとどまる微小な漏えいについて
は、小規模漏えいとし、原子炉の通常停止を行う。この場合、換気装置は停止せ
ず、ナトリウムは通常ドレンによりドレンする。また、通常停止操作中、ナトリウ
ムの漏えい規模が拡大するようであれば、以後、中規模漏えい又は大規模漏えいの
手順に従う。
 ③小規模漏えいに比して漏えいの規模が拡大し、オーバフロータンクのナトリウ
ム液位等に有意な変化が認められる場合、あるいは漏えいしたナトリウムが配管の
保温材の内装板と保温材を経て室内に漏れ出し、火災検知器の作動又は白煙の発生
に至った場合は、中規模漏えいとして、原子炉の手動トリップを行う。ナトリウム
は、オーバフロータンクのナトリウム液位等に有意な変化が認められる場合には、
原子炉停止後短時間で行う緊急ドレンによりドレンし、右の変化が認められない場
合には、ナトリウム温度が四〇〇℃まで降下した段階で行う緊急ドレンによりドレ
ンする。また、換気装置は、緊急ドレンに必要な弁操作終了まで運転する、という
検討がされていた。
 しかし、本件原子炉施設の異常時運転手順書(以下「運転手順書」という。)
は、概要、フローチャート及び細目から構成され、運転員は細目に記載されている
手順にしたがって訓練を受けていたところ、火災検知器の作動及び白煙の発生は、
細目の小規模漏えい及び中規模漏えいの両欄に記載されたため、運転員において、
火災検知器の作動又は白煙の発生があれば中規模漏えいと判断することができる記
載とはなっておらず、また、その記載内容も、小規模漏えい及び中規模漏えいの各
欄において、「白煙の発生状況」を監視すべきこととされるにとどまり、漏えい規
模の判断基準は明記されていなかった。
 そのため、本件事故時においては、ナトリウム検知器の作動と相前後して、火災
検知器の作動及び白煙の発生が認められたのであるから、この時点で中規模漏えい
と判断して原子炉の手動トリップを行うべきであったが、オーバフローータンクの
ナトリウム液位に有意な変化が認められなかったことから、これを小規模漏えいと
判断し、前記②の手順に従って原子炉の通常停止を開始し、換気装置の運転も継続
していたところ、火災検知器の発報範囲等が拡大したことから、ナトリウムの漏え
い規模が拡大したと判断して、以後、中規模漏えいの手順に従うこととし、前記③
の手順に従って原子炉の手動トリップを行ったため、原子炉の手動トリップが行わ
れたのは事故発生の一時間三三分後であり、ナトリウムの漏えいが停止したのは事
故発生の約三時間
四〇分後であった。仮に火災検知器の作動及び白煙の発生を確認した時点で手動ト
リップがされていれば、事故発生から手動トリップに至るまでの時間は短縮され、
ナトリウムの漏えい量や施設の損傷の程度はいずれも本件事故を下回るものとする
ことが可能であった。
3 本件事故と本件安全審査
(一) 温度計について
 証人P8の証言(P8調書二・一〇丁裏)によれば、本件安全審査においては、
二次冷却材配管に取り付ける温度計の構造を審査の対象としていないことが認めら
れる。
 ところで、前記(第三章第一、三)のとおり、本件安全審査においては、本件原
子炉施設の安全性に係るすべてをその審査対象とするものではなく、その基本設計
ないし基本的設計方針に係る事項のみがその対象になるのであって、詳細設計や具
体的施工管理に属する事項は、審査の対象とはならない。
 また、前記(第四章第二、四)のとおり、いかなる設計を基本設計ないし基本的
設計方針に該当するものとして本件安全審査の対象とするかについても、被告の合
理的な判断に委ねられているものと解するべきであるから、裁判所は、ある事項を
基本設計ないし基本的設計方針として扱わず審査の対象としなかったことに、本件
安全審査の調査審議及び判断の過程に重大かつ明白な瑕疵といえるだけの過誤、欠
落があり、これに依拠してされた被告の判断に重大かつ明白な瑕疵があるといえる
か否かを判断すれば足りる。
 そして、本件安全審査においては、前記(第四、一、3、(イ))のとおり、二
次主冷却系に関しては、通常運転時、運転時の異常な過渡変化時及び事故時におい
て一次冷却系からの熱を確実に水・蒸気系又は補助冷却設備に伝達できる設計であ
るか否かを審査しており、配管に取り付けられる温度計の構造は審査の対象として
いないが、これは、温度計が、二次冷却材であるナトリウムの温度を計測するため
のものであり、それ自体特殊なものではなく、その具体的構造、設計については、
必要に応じて詳細設計の問題として適宜対応すれば足りる事項であると判断したこ
とによるものと解され、右判断に特段不合理な点があるとは認められない。
 そうすると、温度計の具体的構造、設計に係る事項を、本件安全審査の対象とし
なかったことに違法はなく、したがって、本件温度計の具体的構造、設計の欠陥
は、本件安全審査の合理性を左右するものではないというべきである。なお、本件
事故の
際、炉心の冷却能力が維持されていたことは、前記(1、(二)、(3))のとお
りである。
(二) 床ライナについて
(1) 本件事故と床ライナヘの影響本件安全審査においては、鋼製の床ライナの
設置によりナトリウムとコンクリートの直接接触を防止することを基本設計ないし
基本的設計方針として審査の対象としている。
 前記(1、(二)、(1)及び同(4))のとおり、本件事故において、本件配
管室の床ライナに板厚減少が生じたが、右床ライナについては、ほとんどの部分で
六ミリメートルの板厚が計測され、局所的に○・五ないし一・五ミリメートル程度
の板厚減少が観察されたにとどまり、ナトリウムとコンクリートが直接接触した事
実はなく、床ライナは、十分な健全性を有していた。
 しかし、本件事故を契機とする事故原因の調査過程において、本件安全審査当時
は認識されていなかった二つの知見、すなわち、①申請者が本件事故後に行った燃
焼実験Ⅱにおいて、床ライナの一部が局所的に損傷したことから、空気の供給状況
等の条件いかんによっては、ナトリウムと鉄と酸素が関与する界面反応による腐食
により、床ライナ等の鋼材が損傷する場合があるという知見、②推定される本件事
故時の床ライナ温度及び最新のナトリウム燃焼解析コードを用いて解析した床ライ
ナの温度は、いずれも設計温度を上回るという知見が得られており、右各新知見が
漏えいナトリウムとコンクリートとの直接接触を鋼製の床ライナの設置により防止
するという基本設計ないし基本的設計方針の合理性に影響を与えるか否かが問題と
なる(なお、原告らは、右①の知見については、本件許可処分当時既に明らかにな
っていた知見であるから、新知見ではない旨主張している。確かに、乙イ四一によ
れば、一九七九(昭和四四)年には、英国原子力局は、ナトリウムが燃焼して酸化
ナトリウムや過酸化ナトリウムとなり、水と接触してできた水酸化ナトリウムが共
存する場合には、鉄がかなりの腐食速度を示すことを報告しており、右は高速増殖
炉設計の分野でも入手可能であったことが認められるから、右知見は厳密な意味で
の新知見とは言い難い。しかし、本件安全審査において右知見は審査の前提とされ
ていなかったこと(当事者間に争いがない。)、前記(第三章第二、二)のとお
り、新知見であっても、本件訴訟においては、科学的経験則は、現在の科学水準の
ものに則って判断すべきであり
、新知見であるか否かによって、本件訴訟における裁判所の審理の対象、範囲に差
異はないから、ここでは新知見として扱うこととする。)。
 そこで、まず、本件安全審査における床ライナに関する審査の概要を示した上
で、右各新知見の内容とこれと本件安全審査の関係について検討する。
(2) 本件安全審査における床ライナに関する審査前記(六、1、(三)、
(2))のとおり、本件安全審査においては、冷却材として使用されるナトリウム
は、化学的に活性であり、酸素やコンクリートに含まれる水とも激しく反応するた
め、漏えいしたナトリウムとコンクリートが直接接触すると、ナトリウムとコンク
リート中の水分が反応し、圧力上昇やコンクリートの脆弱化により建物の健全性が
失われることがあり、建物の健全性が失われると、二次主冷却系の他の系統に影響
が及ぶ可能性があることから、ナトリウムの化学反応及びナトリウム火災に対する
対策の一つとして、漏えいしたナトリウムとコンクリートが直接接触することを防
止するために、鋼製の床ライナが設置されること、これによって、万一ナトリウム
が漏えいした場合であっても、鋼製の床ライナによって、漏えいナトリウムとコン
クリートとの直接接触を防止し得ることを確認している。他方、証人P1の証言
(P1調書二八、二九頁)によれば、床ライナの寸法(板厚等)、形状等の細部
は、詳細設計に属する事項として、審査の対象としなかったことが認められるが、
右審査対象の選定について、特段不合理な点があるとは認められない。
(3) 界面反応による床ライナの腐食に関する新知見と本件安全審査
(イ) 界面反応による腐食に関する新知見
(a) 乙イ一〇・Ⅱ―二―二ないし一九頁、乙イ四一及び乙イ四二によれば、次
の事実が認められる。
 申請者は、本件事故後、本件床ライナの板厚が減少した原因を解明すると共に、
将来の対策を講じるため、燃焼実験Ⅰ、燃焼実験Ⅱ及びナトリウム漏えい時のナト
リウム燃焼解析を行った。燃焼実験Ⅰは、申請者が平成八年四月八日に行った実験
であり、内容積約一〇〇立方メートルの鋼製円筒容器の実験装置内で、約一時間三
〇分間ナトリウムを漏えいさせた。実験の結果、実験装置の床部には、酸化ナトリ
ウムを主体としてナトリウム酸化物が山状に堆積し、換気ダクト表面の破損は確認
されなかったものの、グレーチングには一部で破損と減肉が、また、床部の鋼製の

け皿には漏えい部直下近傍で最大で約一ミリメートールの減肉がそれぞれ認められ
た。そして、鋼材の腐食速度は本件事故のそれとほぼ一致した。燃焼実験Ⅱは、申
請者が同年六月七日に行った実験であり、内容積約一七〇立方メートルのコンクリ
ート製矩形容器内で、本件事故時におけるナトリウム漏えい時間と同じ三時間四〇
分間ナトリウムを漏えいさせた。実験の結果、床ライナ上には溶融体が凝固した堆
積物が平板状に広がると共に、漏えい部直下近傍の床ライナが損傷し、五つの貫通
孔が確認された。そして、鋼材の腐食速度は、本件事故及び燃焼実験における鋼材
の腐食速度よりも著しく速かった。
 そして、申請者は、燃焼実験Ⅱでは、燃焼開始後三時間二〇分ころにはライナが
破損し、大小五個の貫通孔が生じるに至ったが、燃焼実験Ⅱの鋼材の腐食速度は本
件事故及び燃焼実験Ⅰの鋼材の腐食速度より著しく早いこと、本件事故と燃焼実験
Ⅱとでは、床ライナ上における堆積物の様相が異なっていることからすると、本件
事故時の腐食機構は、燃焼実験Ⅰにおける鋼材の腐食機構と同様であり、燃焼実験
Ⅱの腐食機構は、本件事故時の腐食機構とは異なると解した。
 すなわち、本件事故及び燃焼実験Ⅰでは、前記(2、(二)、(1)(イ))の
とおり、酸化ナトリウムと鉄が高温で反応する「ナトリウム・鉄複合酸化型腐食」
が主体的であり、燃焼実験Ⅱでは、ナトリウムの燃焼に伴って部屋の温度が高温に
なり、コンクリート部から多量の水分が放出され、この水分により堆積物中の水酸
化ナトリウムの割合が増加して溶融体となり、これに溶け込んだ過酸化ナトリウム
が過酸化物イオンとなって鉄を腐食する「溶融塩型腐食」(界面反応による腐食)
が主体的であったとした。そして、この違いは、本件事故時及び燃焼実験Ⅰでは、
ナトリウム燃焼部への多量の水分の供給はなかったが、燃焼実験Ⅱでは、コンクリ
ート製の実験セルの空間容積が実際の配管室の容積と比べて小さい上、コンクリー
ト壁がナトリウム漏えい部に接近していたことなどから、ナトリウム燃焼部にコン
クリート壁表面から多量の水分が供給されたため、水酸化ナトリウムの割合が増加
したことから生じたものとした。
(b) これに対し、乙イ四一及び乙イ四二によれば、安全委員会は、右腐食機構
の相違について、いずれの場合も溶融塩が関与した腐食機構が働いたとみることが
重要であるとし、申請者の右推論の
当否を論じるには更に科学的知見が必要であるとした上で、現時点において、ナト
リウム燃焼による鋼材の腐食機構の動的な過程及びそれに及ぼす温度、物質の移動
等の因子の影響については必ずしも十分に解明されているとはいえず、本件原子炉
施設において、どのような条件下で燃焼実験Ⅱのような「溶融塩型腐食」が発生す
るのかについては、十分明らかではないとした上で、燃焼実験Ⅱのような事態をも
視野に入れた腐食抑制対策を考えることが当面最も重要なことであるとしたことが
認められる。
(c) この点、「溶融塩型腐食」が生じるための条件を考えると、前記のとお
り、燃焼実験Ⅱの実験条件は、空間容積及びコンクリート壁との接近距離におい
て、本件原子炉施設の配管室より小さい。そして、乙ニ五の二(証人P11調書
二)四一頁、四二頁、八三頁、一七五頁、一七六頁によれば、「溶融塩型腐食」が
生じるためには、①床ライナを腐食させる過酸化ナトリウムが形成されること、②
過酸化ナトリウムが安定して存在するために大量の溶融状態の水酸化ナトリウムが
存在することが必要であること、水酸化ナトリウムが大量に存在するためには、大
量の水分の供給が必要であることが認められる。この水分の供給は、室内の雰囲気
あるいは壁面コンクリートからのものしか考えられないから、「溶融塩型腐食」の
発生においては、ナトリウムの漏えいした空間の容積及びコンクリート壁との接近
距離は重要な要素であると考えられる。そうすると、前記(a)のとおり、燃焼実
験Ⅱの実験条件は、空間容積及びコンクリート壁との接近距離において本件原子炉
施設の二次主冷却系の配管室より小さく又は近いから、乙イ四五及び乙ニ五の二
(証人P11調書二)三九頁ないし四四頁にもあるとおり、本件原子炉施設におい
て、現実に「溶融塩型腐食」によるライナの損傷が生じる可能性は低いということ
ができる。しかし、本件事故の床ライナ上の堆積物中の水酸化ナトリウムの濃度は
二・六パーセントであり、燃焼実験Ⅱのそれは三五・一パーセント(床ライナが穴
が開いたとされる実験開始後三時間二〇分では約一〇パーセント)であったところ
(乙イ一〇・Ⅱ―二―三一頁、乙イ四八・三・一・三―一〇八頁)、乙イ四八・三
二・三―九二頁、九四頁によれば、申請者が本件事故後に実施した、二次冷却材漏
えい(小、中規模漏えい)時の本件原子炉施設の二次冷却系配管室及び過熱器室
の床ライナ上の堆積物中の水酸化ナトリウム濃度の解析の結果、配管室、過熱器室
のいずれにおいても二五パーセント以上に達していることが認められることからす
れば、本件原子炉施設において、「溶融塩型腐食」による床ライナの損傷が生じる
可能性を否定することはできないというべきである。
(ロ) 本件安全審査との関係
 そこで、次に、「溶融塩型腐食」という新知見によって、鋼製の床ライナを設置
することによりナトリウムとコンクリートとの直接接触を防止するという本件原子
炉施設の基本設計ないし基本的設計方針が損なわれるか否かについて検討する。
 この点、「溶融塩型腐食」を考慮すると、鋼製のライナによって漏えいナトリウ
ムとコンクリートとの直接接触の防止を図ることがおよそ不可能であるか又は現実
的でないという場合には、床ライナによってナトリウムとコンクリートの直接接触
を防止するという基本設計ないし基本的設計方針の妥当性は失われる。しかし、
「溶融塩型腐食」によって床ライナの肉厚が減少することを前提にしても、具体的
なライナの設計においてこれを考慮し、あるいは床ライナの肉厚の減少を考慮に入
れた他の対策等によって、要求されるナトリウムとコンクリートの直接接触防止が
可能である限り、右基本設計ないし基本的設計方針自体の合理性が損なわれること
はないというべきである。
 そして、乙イ一六・三・一・三―七四頁、乙イ四八・三・一・三―九〇頁及び乙
ニ五の二(証人P11調書二)四七頁、四八頁によれば、申請者は、本件事故後、
燃焼実験Ⅱで生じたような「溶融塩型腐食」を仮定した二次冷却材漏えい事故時の
ナトリウム燃焼解析を行ったこと、右解析においては、解析条件として、ループ内
のナトリウムドレンが完了するまでに八○分を要するものとし、ナトリウム漏えい
率(単位時間当たりの漏えい量)を一時間当たり○・一トン及び○・〇一トンとし
て解析した結果、本件原子炉施設の二次系配管室、過熱器室及び蒸発器室に設置さ
れている板厚約六ミリメートルの床ライナの腐食による減肉量は、中央値で三・二
ないし三・三ミリメートル(下限値で一・九ないし二・○ミリメートル、最大値で
の腐食が継続することを仮定した上限値で五・二ないし五・五ミリメートル)とな
ったことが認められる。
 そうすると、右で上限値を取った場合は、貫通孔が生じるには至らないとして
も、床ライナの残存肉厚は○・五ない
し○・八ミリメートルとなり、十分な床ライナの肉厚が確保されるとまではいえな
いものの、この程度の腐食量であれば、減肉量に相応した板圧等の具体的設計によ
って床ライナの健全性を維持することは十分可能であるといえるし、また、乙イ四
二によれば、界面反応による腐食によって床ライナの肉厚が減少する程度(減肉
量)は、床ライナの金属が高温に保持されている時間にほぼ比例し、また、その腐
食速度は、床ライナの温度が上昇するに伴い指数関数的に増大することが認められ
るから、ナトリウムドレンに要する時間を短縮化し、あるいはナトリウムの漏えい
継続時間を短縮化する運転操作を採用する等の腐食抑制対策を講じることにより、
腐食を抑制し、床ライナの肉厚の減少を最小限度にとどめることは十分可能である
といえる。したがって、「溶融塩型腐食」という新知見によって、本件安全審査の
合理性が失われるものではないというべきである。
(ハ) 原告らの主張について
(a) 腐食速度について
(い) 原告らは、申請者の行った界面反応による腐食の腐食速度の評価につい
て、これ以上の速度で腐食が進行する可能性がある旨主張する。しかし、乙ニ五の
二(証人P11調書二)四八ないし五一頁及び乙イ四二の一によれば、申請者は、
右評価の前提として、腐食減肉試験を行って「溶融塩型腐食」の腐食速度を求めた
上、上限値の評価については、右試験で得られた腐食速度のうち、九五パーセント
信頼幅の上限値の速度の腐食が漏えいの初期から生じると仮定し、右上限値の腐食
速度のまま推移するものとして評価を行ったものであること、安全委員会は、右腐
食速度について、現段階では空気中における最も高い値を与えると考えて差し支え
ないとしていることが認められる。そうすると、「溶融塩型腐食」の発生を仮定し
た場合であっても、申請者が評価に用いた以上の腐食が発生するおそれはないとい
うことができるし、また、これに反する証拠もない。
(ろ) また、原告らは、本件事故は、低温、低湿分の冬季に発生したが、春から
秋にかけての湿分の多い外気条件下では、水酸化ナトリウムが多量に生成し、燃焼
実験Ⅱと同様、床ライナに貫通孔が生じる可能性がある旨主張する。
 しかし、乙イ四八・三・二・三―八七頁、八八頁によれば、右評価は、気温三五
℃における湿度八○パーセントという、夏季に相当する湿分の多い雰囲気条件下を
部屋の初期条件として
評価したものであることが認められる。また、右のとおり、右評価による床ライナ
の減肉量は、「溶融塩型腐食」には大量の水酸化ナトリウムが存在することが必要
であるのに、水酸化ナトリウムの生成量とは無関係に、漏えいの初期から「溶融塩
型腐食」が発生するものとし、更に、上限値については、当該温度における最大値
の腐食速度のまま推移するものとして評価したものであることが認められるから、
外気条件のいかんによってこれ以上の腐食速度となることは想定し難いというべき
であり、これに反する証拠もない。
 したがって、原告らのこの点についての主張は理由がない。
(b) 漏えい継続時間について
 原告らは、申請者の前記評価において、現状設備ではナトリウム漏えい発生後、
漏えいが停止するまでの時間を八○分としたことについて、現実の事故の際にその
ように手際よくいく保証はなく、本件事故時のように、漏えい停止まで三時間四〇
分を要せば、貫通孔が開く旨主張する。
 確かに、本件事故時の運転手順を前提とする限り、本件事故のようなナトリウム
の漏えいの場合は、八○分で漏えいが停止するとは認められない。しかし、乙イ四
八・三・一・三―七二ないし七四頁、七七頁及び弁論の全趣旨によれば、本件事故
当時の設備においても、運転手順書を改善し、いかなる規模のナトリウム漏えいで
あっても原子炉をトリップし、ナトリウムについて原子炉停止後短時間で行う緊急
ドレンを行うこととすれば、運転員がドレン操作を行うまでの判断に要する時間を
一〇分間としても、八○分でナトリウムの漏えいが停止することが認められる(な
お、乙イ二六.・三・一―三―四四頁によれば、設備を改善すれば、より早期に漏
えいが停止し、床ライナの減肉量も低減されることが認められる。)。そして、右
の運転手順の変更は現実的でないとはいえない。そうすると、申請者が前記評価に
おいてナトリウムの漏えいが停止するまでの時間を八○分としたことが不合理であ
るとはいえない。
 また、原告らは、大規模な破断が生じた場合、炉心の冷却を維持、継続するため
に、ナトリウム漏えい火災をあえて放置しなければならない事態が想定されうる旨
主張する。
 しかし、前記(第四、一、3、(二))のとおり、本件原子炉施設においては、
原子炉の停止後は、系統の補助冷却設備が作動すれば除熱を行い得るように設計さ
れているから、炉心を冷却するために、ナトリウ
ムが漏えいしているにもかかわらず当該ループを停止してドレンをすることなく、
また、漏えいしたナトリウムの燃焼を放置するという事態が生じうることは、三系
統ある二次主冷却系配管の全てにおいて、同時にナトリウム漏えいが生じる場合の
ほかは考えられないが、このような事態が起こる可能性があると認めるに足りる証
拠はない。
 したがって、原告らのこの点についての主張は理由がない。
(c) P1証言について
 原告らは、証人P1の証言内容からすれば、①「二次冷却材漏えい事故」におい
て床ライナに貫通孔が通じる、②「溶融塩型腐食」について抑制対策の講じられて
いない本件原子炉施設に対する本件許可処分は、現在の通説的な科学水準によれば
重大かつ明白な瑕疵が存在する旨主張する。
 しかし、証人P1の証言中に、右の趣旨に解することのできる部分はないという
べきであるから、原告らの右主張は理由がない。
(4) 床ライナの温度上昇に関する新知見と本件安全審査
(イ) 床ライナの温度上昇に関する新知見
 前記(二、4、(二)、⑥、(ハ)、(b)、(ろ))のとおり、本件許可申請
の「二次冷却材漏えい事故」の解析評価において、熱的影響評価の際に前提とされ
た床ライナの設計温度は、五〇〇℃であった(なお、昭和六〇年二月一八日付け原
子炉設置変更許可申請に際して五三〇℃に変更された。)。
 ところが、乙イ四一によれば、本件事故の際の本件床ライナの温度は、局所的に
七〇〇℃ないし七五〇℃に達したと推定されたことが認められる。また、同証拠に
よれば、本件事故後、申請者が、ナトリウム解析コード(ASSCOPSコード
(ASSCOPコード(Ver2・0)))を用いて本件原子炉施設に実際に設置
されている厚さ六ミリメートルの床ライナのナトリウム漏えい時の温度上昇を解析
した結果、床ライナの温度は、①大規模漏えい時(漏えいナトリウムがライナ床面
に全体的にプール状に広がった場合)における二次主冷却系配管室で最高約六二○
℃、過熱器室で最高約七五〇℃、②中規模又は小規模漏えい時における二次主冷却
系配管室で最高約八八○℃、過熱器室で最高約八五〇℃となったことが認められ
る。このように、本件事故及び右解析結果は共に、右床ライナの設計温度を超える
ものであった。
(ロ) 本件安全審査との関係
 そこで、次に、二次冷却材漏えい事故の場合に設計温度を超える場合が生じると
いう新知見に
よって、本件安全審査の合理性が失われるか否かについて検討する。
 床ライナは鉄であり、その融点は約一五〇〇℃であるから、床ライナの溶融が生
じることはない。したがって、問題となるのは、床ライナが熱膨張して壁面と干渉
し、又は局所的なひずみが発生することになれば、これが原因で床ライナに損傷が
生じる可能性である。
 まず、設計温度の意義ついて検討するに、証人P8の証言(P8調書二・九丁
表、同裏)、乙イ四一及び乙イ四五によれば、右設計温度は、「二次冷却材漏えい
事故」の解析評価において、漏えいしたナトリウムがプール状に滞留するという解
析条件の下で、床ライナが全面一様に加熱されても、熱膨張によって壁面と干渉し
ないように設計するための基準となる温度として設定されたものであり、この温度
を超えれば床ライナがその機能を喪失するという温度ではないことが認められる。
 また、前記(2)のとおり、本件安全審査においては、床ライナの寸法(板厚
等)、形状等の具体的設計は、詳細設計に属する事項として、審査の対象としてい
ない。そうすると、床ライナの温度は、床ライナの寸法(板厚等)、形状等の具体
的設計と離れて独立にこれを考慮することは意味がないから、右設計温度の数値自
体が独自に本件安全審査の対象となるものとは解されない。確かに、右設計温度
は、申請者が本件許可申請当時において検討していた床ライナの具体的設計の方針
を明らかにしたものではあるとはいえるが、右方針はライナの詳細設計の段階にお
いて決せられるものであり、本件許可申請の段階では確定的なものではないという
べきである。
 したがって、右設計温度は、設置許可段階としては、漏えいナトリウムの温度に
対応し、熱膨張を考慮した床ライナを設計するという趣旨と解するのが相当であ
り、本件事故において床ライナの温度が設計温度を超えた事実から直ちに本件安全
審査の合理性が失われるものではなく、床ライナに損傷が生じる可能性を具体的に
検討すべきである。
 この点、乙イ四一によれば、本件事故後、申請者が二次冷却材を保養する系統、
機器を収納する部屋のライナの機械的健全性について解析を行ったこと、その結
果、本件原子炉施設に実際に設置されている床ライナは、①漏えいナトリウムが床
ライナ全面に広がった場合については、二次主冷却系配管室(A)北側では約六三
〇℃、二次主冷却系配管室(C)北側では約七〇〇℃
、他の二次主冷却系配管室及び過熱器室では約九五〇℃ないしはそれ以上になって
も、熱膨張により壁面と干渉することはなく、機械的に破損することはない、②漏
えいナトリウムが局所的に滞留した場合については、熱荷重によるひずみが集中す
る部位であっても、九〇〇℃ないし九五〇℃までは、リブ(ひずみを拘束するため
に床ライナ裏面に溶接されている構造物)が剥離することはあるが、床ライナ自体
が損傷することはないとされたことが認められる。
 したがって、右床ライナの温度上昇に関する新知見によって、本件安全審査の合
理性が失われるものではない。
(ハ) 原告らの主張について
(a) 設計温度について
 原告らは、設計温度は、申請者が安全委員会に対して設計を約束した事項である
から、基本設計を構成するものであり、本件事故において右設計温度を超える事態
が生じたことにより、右基本設計の合理性は失われた旨主張する。
 しかし、右(ロ)のとおり、設計温度は本件安全審査の対象とされていないし、
設計温度は申請者が本件許可申請当時において検討していた床ライナの具体的設計
の方針を明らかにしたものではあるとしても、右方針はライナの詳細設計の段階に
おいて決せられるものであり、本件許可申請の段階では確定的なものではないとい
うべきであるから、原告らの主張はその前提を欠くものである。
(b) 解析に用いた計算コードについて
 原告らは、申請者の前記解析に用いられたASSCOPSコードは信頼性を欠く
旨主張する(なお、原告らは、本件許可申請に際しての「二次冷却材漏えい事故」
の解析評価(漏えいナトリウムによる熱的影響評価)に用いられたSPRAY―Ⅱ
コード及びSOFIRE―MⅡコードについても信頼性を欠く旨主張するが、AS
SCOPSコードはSPRAY―Ⅲコードの改定コードであるSPRAY1皿コー
ド及びSOFIRE―MⅡコードを融合させたコードである上、右本件許可申請に
際しての解析評価の床ライナ温度の解析結果は、申請者の前記解析の床ライナ温度
の解析結果よりも低いから、ここではASSCOPSコードについて検討す
る。)。
 この点、甲イ三五七及び乙イ四八・三・一・三―一〇三頁、一〇四頁、一〇六な
いし一〇八頁によれば、右計算コードは、本件原子炉施設建設段階に開発された原
コードを改良し、大規模漏えいのみならず、小、中規模漏えいについても解析でき
るようにしたも
のであること、中規模漏えい時の解析については、申請者が従前行ったナトリウム
燃焼実験との比較から、また、小規模漏えい時の解析については、燃焼実験Ⅰ及び
燃焼実験Ⅱとの比較から、その妥当性を確認したこと(解析結果は、ナトリウム燃
焼実験の測定値とおおむね一致し、また、燃焼実験Ⅰ及び燃焼実験Ⅱにおける測定
値のほとんどを包絡すると共に、測定値よりも高い傾向を示した)が認められ、ま
た、乙イ四一によれば、安全委員会も、右計算コードを用いた前記(イ)の解析結
果と本件事故、燃焼実験Ⅰ及び燃焼実験Ⅱの床ライナ温度及び温度変化の傾向とが
おおむね一致していることから、右解析結果に基づいて検討することは可能である
としたことが認められる。
 したがって、右計算コードは、床ライナの温度を評価する計算コードとして信頼
できるものといえるから、原告らのこの点についての主張は理由がない。
4 原告らの本件事故に関するその他の主張について
(一) LBBの思想について
 原告らは、本件事故時において、ナトリウム漏えい検出器による検知が、火災報
知器による検知に遅れたことは、微小な漏えいを検出できないことを示すものであ
り、このことは、LBB思想(破断等により大規模な漏えいに至る前に小規模漏え
いの段階で漏えいを検知する考え方)を前提とする本件原子炉施設の設計の欠陥を
示すものである旨主張する。
 この点、本件事故時において、ナトリウム漏えい検出器による検知が、火災報知
器による検知に遅れたことは当事者間に争いがない。しかし、証人P8の証言(P
8調書三、四三丁表、同裏)及び乙ニ五の一(証人P11調書一)一九ないし二一
頁によれば、LBB思想は、外径が一インチ(二五・四ミリメートル)に満たない
程度の小口径配管に適用することは元来予定されていないこと、本件さや管は外径
が一〇ミリメートルであり、右思想の適用範囲にないことが認められる。
 したがって、本件事故時にナトリウム漏えい検出器による検知が火災報知器によ
る検知に遅れたことは、本件原子炉施設の設計に欠陥があることを意味するもので
はなく、本件安全審査の合理性を左右するものではないから、原告らのこの点につ
いての主張は理由がない。
(二) ナトリウム・コンクリート反応について原告らは、本件事故によって本件
配管室の壁面コンクリートに深さ一ミリメートル程度の黒灰色の変色が生じたの
は、ナトリウム・コ
ンクリート反応によるものであり、このことより、本件安全審査の合理性は失われ
た旨主張する。
 確かに、右変色は、何らかの化学反応によって生じたと考えるのが自然であるか
ら、ナトリウムとコンクリートとの化学反応が起こったと考えることもあながち根
拠のないものではない。
 しかし、前記(1、(二)、(1))のとおり、本件事故において、ナトリウム
のコンクリートに対する影響は表層部にとどまり、ナトリウムとコンクリートの反
応生成物は検出されず、構造耐力、遮へい性能への影響はないものと判断されてお
り、ナトリウム・コンクリート反応によってコンクリートの健全性が失われた事実
はない。また、乙イ四五によれば、本件配管室の壁面コンクリートの厚さは約一メ
ートル近くあり、熱伝導が悪いために短時間高温に曝されてもコンクリートの内部
までは昇温しないことが認められる。そうすると、原告らの指摘する変色の事実は
‘その原因がナトリウムとコンクリートの化学反応であった否かにかかわらず、本
件安全審査の合理性を左右するものではないというべきである。
 したがって、原告らのこの点についての主張は理由がない。
(三) オーバフロータンクのナトリウム液面計の不備について
 原告らは、本件事故によって、本件原子炉施設のオーバフロータンクのナトリウ
ム液面計は、一目盛りが○・七トンないし○・八トンと感度が低く、漏えい規模を
適切に判断することができず、機能に不備があることが明らかになつた旨主張す
る。
 しかし、オーバフロータンクの感度は、設備の詳細設計に関する事項というべき
であって、本件安全審査の対象となる本件原子炉施設の基本設計ないし基本的設計
方針に関連しないものであるから、右主張は失当である。また、前記(2、
(三))のとおり、本件原子炉施設においては、小、中規模のナトリウムの漏えい
は、ガスサンプリング式ナトリウム漏えい検出器や火災検知器によって検知するこ
ととされており、右オーバフロータンクの感度が低いからといって、ナトリウム漏
えいの検知に不都合はないといえるから、この点でも原告らの主張は理由がない。
(四) ドレン関連機器の不備について
 原告らは、本件事故によって、本件原子炉施設の二次主冷却系のナトリウムドレ
ン関連設備は、原子炉停止後短時間で行う緊急ドレンが一〇回程度しか行い得ない
ものであるから、健全性を欠くことが明らかになった旨主張する
。しかし、ドレン設備の具体的な耐用回数は、設備の詳細設計に関する事項という
べきであって、本件安全審査の対象となる本件原子炉施設の基本設計ないし基本的
設計方針に関連しないものであるから、右主張は失当である。また、前記(第六、
二、4、(二)、(6)、(ロ))のとおり、二次冷却材漏えい事故に対する防止
対策が取られていることにかんがみると、原子炉停止後直ちに行う緊急ドレンが一
〇同程度行えれば(甲イ三〇一によれば、原子炉停止後直ちに行う緊急ドレンを一
〇同程度行っても健全性が損なわれないことが確認されていることが認められ
る。)、二次冷却材漏えい事故には十分対応できるといえる。
 したがって、原告らのこの点についての主張は理由がない。
(五) 水素爆発の危険性について
 原告らは、燃焼実験Ⅱにおいては水素爆発が起こったとして、本件原子炉施設に
おいても水素爆発が起こり得る旨主張する。
 しかし、乙イ九・添四―二〇頁によれば、燃焼実験Ⅱにおける水素濃度は〇・一
七パーセントであったことが認められ、水素の燃焼限界値である四パーセントを下
回っていたことが認められるから、右実験においては水素の蓄積燃焼としての水素
爆発は発生しなかったというべきである。確かに、右証拠によれば、原告らの指摘
するとおり、ナトリウムとコンクリートが接触して発生した水素が燃焼したことが
認められるが、右は水素の蓄積燃焼ではないことが明らかであるから、右燃焼の事
実をもって水素濃度が燃焼限界値以下でも蓄積燃焼を起こすということはできな
い。
 したがって、原告らのこの点についての主張は理由がない。
(六) その他、原告らは、(1)二次主冷却系配管に設置されているナトリウム
漏えい検出器は、①発報した検出器については中央制御室の中央制御盤で特定する
ことができるが、右検出器の具体的な計測値は中央制御室で確認することはでき
ず、中央制御室の外の現場制御盤において確認しなければならない構造となってお
り、ナトリウム漏えいの状況を迅速かつ適切に把握することができない、②漏えい
規模が小さい場合には検出遅れが一時間単位にもなりえるとして、機能上不備があ
る、(2)二次主冷却系配管室に設置されている火災検知器についても、ナトリウ
ムの漏えい検知の機能も有しているところ、右検知器の発報は中央制御室から約
二・六メートル離れた所に設置してある火災報知器により確認しなけれ
ばならない構造となっており、ナトリウム漏えいの状況を迅速かつ適切に把握する
ことができない、(3)運転手順書の記載には不備があり、運転員がこれに依拠し
て運転したことによって、本件事故において原子炉のトリップ等の一連の操作が遅
れ、事故の拡大につながったなどと主張するが、これらの事項は、いずれも本件安
全審査の対象となる本件原子炉施設の基本設計ないし基本的設計方針に関連しない
ことが明らかであるから、本件安全審査の合理性を左右するものではない。
したがって、原告らのこの点についての主張は理由がない。
5 小括
 以上からすれば、本件事故の発生は、本件安全審査の合理性を左右するものでは
ないというべきである。
九 まとめ
 以上のとおり、本件安全審査においては、調査審議の結果、本件原子炉施設の事
故防止対策に係る安全性について、本件原子炉施設が具体的審査基準に適合し、そ
の基本設計ないし基本的設計方針において、事故防止対策に係る安全性を確保し得
るもの、すなわち、事故防止対策との関連において、原子炉等による災害の防止上
支障がないものとしているが、右調査審議及び判断の過程に重大かつ明白な瑕疵と
いえるような看過し難い過誤、欠落があるとは認められない。
第七 本件原子炉施設の公衆との離隔に係る安全性
一 本件安全審査の内容
 乙四、乙七ないし一〇、乙一四の一ないし三、乙一六、乙二二、乙二三及び乙イ
六並びに弁論の全趣旨によれば、本件原子炉施設の立地評価(公衆との離隔に係る
安全性)についての本件安全審査の内容につき、次のとおりと認められる。
1 意義
 公衆との離隔に係る立地条件の適否を判断する(立地評価)ための想定事故(重
大事故及び仮想事故)の解析評価は、「立地審査指針」に基づき、公衆との離隔の
確保の面から原子炉施設の立地条件の適否を評価するために行われるものである。
2 本件安全審査の審査方針
 本件安全審査においては、「立地審査指針」、「評価の考え方」及び「プルトニ
ウムに関するめやす線量について」に基づき、「線量評価指針」等を参考として、
次の項目を具体的な判断基準として、本件許可申請おける立地評価のための想定事
故の解析を審査、評価した。
(一) 原子炉の周囲は、原子炉から「ある距離の範囲内」は非居住区域であるこ
と。右「ある距離の範囲」を判断するためのめやすとして、重大事故の場合につい
て、甲状腺(小児)に対して一五〇
レム、全身に対して二五レムの線量を用いる。
(二) 原子炉から「ある距離の範囲内」であって、非居住区域の外側は低人口地
帯であること。右「ある距離の範囲」を判断するためのめやすとして、仮想事故の
場合について、甲状腺(成人)に対して三〇〇レム、全身に対して二五レムの線量
を用いる。
(三) 原子炉敷地は、人口密集地帯から「ある距離」だけ離れていること。右
「ある距離」を判断するためのめやすとして、仮想事故の場合における全身被曝線
量の積算値に対して二〇〇万人レムを参考とする。
(四) プルトニウムを燃料とする原子炉と公衆が居住する区域との間に「ある適
当な距離」を保つこと。右「ある適当な距離」を判断するためのめやすとして、骨
表面に対して一二ラド、肺に対して一五ラド、肝に対して二五ラドのプルトニウム
に係る線量を用いる。
3 本件許可申請における重大事故の解析内容
(一) 一次冷却材漏えい事故
(1) 事故想定の趣旨
 技術的見地から想定しうる最大規模の放射性物質の量が原子炉格納容器内に放出
される場合の核分裂生成物の放出量と被曝線量を評価するため、一次冷却材漏えい
事故を想定する。
(2) 解析
(イ) 解析条件
① 原子炉は、定格出力の一〇二パーセントで長時間にわたって運転されていたも
のとする。
② 事故後原子炉格納容器上に放出される核分裂生成物の量は、炉心内蔵量に対
し、希ガス一〇パーセント、よう素一パーセントの割合とする。
③ 原子炉格納容器上に放出されたよう素のうち、九〇パーセントはエアロゾルの
形態をとり、残り一〇パーセントはエアロゾルの形態をとらないものとする。
④ 原子炉格納容器内のエアロゾル状よう素はプレートアウト等による減衰を考慮
するが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
⑤ 原子炉格納容器からの漏えい率は1%/dとする。
⑥ 原子炉格納容器からの漏えいは、九七パーセントがアニュラス部に生じ、残り
三パーセントはアニュラス部外に生じるものとする。
⑦ アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率は九五
パーセントとする。また、よう素用フィルタユニットヘの系統切替達成までの一〇
分間はよう素除去効果を考慮しない。
⑧ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑨ 事故継続時間は三〇日間とする。
⑩ 環境
への核分裂生成物の放出は、排気筒より行われるものとする。
⑪ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(ロ) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約二四〇キュリー、希ガス約四
万七〇〇〇キュリーであり、この大気放出に伴う被曝線量は、敷地境界外で最大と
なる場所において小児甲状腺約一・八レム、全身約○・一五レムである。
(二) 一次アルゴンガス漏えい事故
(1) 事故想定の趣旨
 技術的見地から想定しうる最大規模の放射性物質の量が原子炉格納容器内に放出
される場合の核分裂生成物の放出量と被曝線量を評価するため、一次アルゴンガス
漏えい事故を想定する。
(2)解析
(イ) 解析条件
① 原子炉は、定格出力の一〇二パーセントで長時間にわたって運転されていたも
のとする。
② 事故後、原子炉格納容器外の常温活性炭吸着塔内に貯留されている希ガス及び
よう素の全量が常温活性炭吸着塔収納設備内に放出されるものとする。
③ 事故後、原子炉格納容器内の原子炉容器上部カバーガス及び一次アルゴンガス
系圧力調整タンク中の希ガス及びよう素が、常温活性炭吸着塔収納設備に移行する
とし、その量は原子炉格納容器内のカバーガス及び圧力調整タンクの中の量の五パ
ーセントとする。
④ 一次アルゴンガス系収納施設の漏えい率は100%/dで一定とし、漏えいし
た希ガス及びよう素は大気へ放出されるものとする。
⑤ 事故継続時間は三〇日間とする。
⑥ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
(ロ) 解析結果
 大気中に放出される核分裂生成物の量は、よう素約二・五キュリー、希ガス約七
万人○○○キュリーであり、この大気放出に伴う被曝線量は、敷地境界外で最大と
なる場所において小児甲状腺約○・四九レム、全身約○・二五レムである。
4 本件許可申請における仮想事故の解析内容
(一) 仮想事故解析の趣旨
 技術的には起こるとは考えられない事象及び重大事故として取り上げた事象を踏
まえて、より多くの放射性物質の放出量を仮想して評価を行う。
(二) 解析
(1) 解析条件
① 原子炉は、定格出力の一〇二パーセントで長時間にわたって運転されていたも
のとする。
② 事故後、原子炉格納容器上に放出される核分裂生成物の量は、炉心内蔵量に対
し、希ガス一〇〇パーセント、よう
素一〇パーセント及びプルトニウムーパーセントの割合とする。
③ 原子炉格納容器上に放出されたよう素のうち、九〇パーセントはエアロゾルの
形態をとり、残り一〇パーセントはエアロゾルの形態をとらないものとする。
④ 原子炉格納容器内のエアロゾル状よう素はプレートアウト等による減衰を考慮
するが、非エアロゾル状よう素及び希ガスは右減衰効果を考えない。
⑤ 原子炉格納容器からの漏えい率は1%/dとする。
⑥ 原子炉格納容器からの漏えいは、九七パーセントがアニュラス部に生じ、残り
三パーセントはアニュラス部外に生じるものとする。
⑦ アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率は九五
パーセントとする。また、よう素用フィルタユニットヘの系統切替達成までの一〇
分間はよう素除去効果を考慮しない。
⑧ プルトニウムの大気放出量の評価に当たっては、プルトニウムはエアロゾルの
形態をとるものとし、フィルタによる除去効率は九五パーセントとする。
⑨ 原子炉格納容器内の放射能による直接線量及びスカイシャイン線量については
原子炉格納容器等の遮へいを考慮して評価する。
⑩ 事故継続時間は三〇日間とする。
⑪ 環境への核分裂生成物の放出は、排気筒より行われるものとする。
⑫ 環境に放出された核分裂生成物の大気中の拡散については、「気象指針」に従
って評価するものとする。
⑬ 全身被曝線量の積算値の算出に当たっては、大気拡散条件は大気安定度F型、
水平方向拡散幅三〇度及び平均風速一・五メートル毎秒、放出点は地価上高五〇メ
ートルとする。拡散方向は積算値が最大となる南南西とし、人口は昭和五〇年の国
勢調査結果及び西暦二〇二五年の推定値を用いる。
(2) 解析結果
 大気中に放出される放射能量は、よう素約二三〇〇キュリー、希ガス約四七万キ
ュリー及びプルトニウム約五一キュリーである。このよう素及び希ガスの大気放出
に伴う被曝線量は、敷地境界外で最大となる場所において、成人甲状腺約四・五レ
ム、全身約一・四レムであり、全身被曝線量の積算値は、昭和五〇年の人口に対し
て約一三万人レム、西暦二〇二五年の推定人口に対して約一七万人レムである。
 プルトニウムの大気放出に伴う被曝線量は、敷地境界外で最大となる場所におい
て、骨表面、肺及び肝のそれぞれに対し、約○・九九ラド、約○・一九ラド及び約
○・二一ラドである。
5 本件安全審査における評価
(一)
 事象選定の妥当性
 重大事故は、放射性物質の拡大の可能性を考慮し、技術的見地からみて最悪の場
合には起こるかもしれないものの中から、原子炉格納容器内放出に係る事故として
「一次冷却材漏えい事故」が、原子炉格納容器外放出に係る事故として「一次アル
ゴンガス漏えい事故」がそれぞれ選定され、技術的に最大と考えられる放射性物質
の放出量を想定して評価されており、他方、仮想事故は、「技術的には起こるとは
考えられない事象」及び「重大事故」として取り上げた事象等を踏まえて、より多
くの放射性物質の放出量を仮想して評価されているとして、右事象選定は、「評価
の考え方」に従うものであり、妥当であると判断した。
(二) 解析方法の妥当性
 放射性物質の放出量及び被曝線量の評価は、重大事故及び仮想事故の趣旨に照ら
して、それぞれ「安全評価審査指針」を参考として、十分厳しくなるような解析条
件を用いて行われているとして、右解析方法は、「評価の考え方」に適合するもの
であり、妥当であると判断した。
(三) 解析結果の妥当性
 いずれの解析結果においても、放射性物質の大気中への放出量、厳しい気象条件
等を用いて計算された甲状腺及び全身の被曝線量並びに全身被曝線量の積算値は、
「立地審査指針」及び「プルトニウムに関するめやす線量について」の定めるめや
す線量を十分下回っており、「立地審査指針」に示されている非居住区域及び低人
口地帯であるべき範囲は、いずれも本件敷地内に包含されることになり、また、本
件原子炉施設は人口密集地帯からも十分離れており、周辺公衆との離隔は十分確保
されていると認められることから、本件原子炉施設の立地条件は、「立地審査指
針」に十分適合すると判断した。
(四) 結論
 以上から、本件安全審査においては、調査審議の結果、本件原子炉施設の公衆と
の離隔に係る安全性について、本件原子炉施設が具体的審査基準に適合し、その基
本設計ないし基本的設計方針において、公衆との離隔に係る安全性を確保し得るも
の、すなわち、公衆との離隔に係る立地条件において、原子炉等による災害の防止
上支障がないものとした。
二 当裁判所の判断
1 解析において用いられた解析条件に特段不合理な点があるとは認められない。
2 そして、右解析の結果は、「立地審査指針」及び「プルトニウムを燃料とする
原子炉の立地評価上必要なプルトニウムに関するめやす線量について」に示さ
れている非居住区域及び低人口地帯であるべき範囲は、いずれも本件敷地内に包含
されることになるというものであったのであるから、公衆との離隔に係る安全性を
確保し得るという結論においても、特段不合理な点があるとは認められない。
3 以上のとおり、本件安全審査における公衆との離隔に係る安全性についての調
査審議及び判断の過程に重大かつ明白な瑕疵といえるような看過し難い過誤、欠落
があるとは認められない。
三 原告らの主張について
1 事象選定に関する主張について
 原告らは、本件原子炉施設の立地評価のための想定事故の解析評価において想定
されている事故の選定が恣意的である旨主張し、その根拠として、TMI二号炉事
故では、仮想事故を上回る放射線放出が現実に起こったことを指摘する。
 しかし、立地評価のための想定事故の解析評価は、本件原子炉施設の事故防止対
策としての安全設計が妥当であることを確認し、更に「運転時の異常な過渡変
化」、「事故」及び「技術的には起こるとは考えられない事象」の解析評価により
その妥当性を別の側面から確認した上で、なお本件原子炉施設が、その基本設計及
び基本的設計方針において、災害防止上支障がないものであるか否かを判断する一
環として、本件原子炉施設と公衆との離隔の確保の妥当性を確認するために行われ
るものである。
 このように、立地評価のための想定事故の解析評価は、本件原子炉施設の基本設
計ないし基本的設計方針において災害防止上支障ないものであるか否かを判断する
ためのものであり、かつ、事故防止対策としての安全設計の妥当性(前記第五)及
び各種事故等の解析(前記第六)を前提とするものであるから、これに当たって想
定すべき事故は、各種事故等の解析評価において取り扱われた各事故以上のもので
ある必要があるが、基本設計ないし基本的設計方針で採られている事故防止対策を
すべて無効とするような事故を想定することは、解析評価の目的に反することにな
る。したがって、ガードベッセルや原子炉格納容器等の安全防護施設の存在を無視
し、あるいは、これらが全く機能しないような場合において初めて発生し得る事故
の状態までを考慮する必要はない。
 右を前提に考えれば、本件安全審査の立地評価のための想定事故の解析評価にお
ける事象の選定が不合理であるということはできないというべきである。
 そして、原告らの主張するTMI事故は、後記(第
八、九)のとおり、原子炉施設の運転管理に起因して発生したものであるから、右
の趣旨で行われる立地評価において考慮する必要はない。なお、甲イ一五〇によれ
ば、同事故による周辺公衆の被曝線量は、個人平均で約一ミリレムであると推定さ
れていることが認められるから、右事故により周辺公衆が過大な被曝を受けた事実
はない。
 したがって、原告らのこの点についての主張は理由がない。
2 評価手法に関する主張について
 原告らは、本件原子炉施設の立地評価のための想定事故の解析評価について、放
出放射性物質の量、放出形態、気象条件、人口条件等の根拠が不明確であり、想定
した事象の評価手法が恣意的である旨主張する。
 しかし、乙一六・一〇―五―一八頁、一九頁によれば本件安全審査においては、
重大事故及び仮想事故については、放射性物質の量、放出形態、拡散、希釈の状況
等につき「気象指針」に基づいた評価方法が設定きれていること、仮想事故につい
ては、昭和五〇年の国勢調査結果と西暦二〇二五年の人口の推定値が人口条件とし
て用いられていることを確認したことが認められる。
 なお、原子炉施設から環境へ放出される放射性物質からの放射線による公衆の被
曝の形態は、放射性物質の放出量、放出形態等により種々のものが考えられるが、
右解析評価においては、主要な被曝の形態を考慮すれば、必要とされる離隔の程度
は十分合理的に判断可能であるから、考えられる被曝の形態のすべてを考慮しない
としても、右解析評価が不合理であるということはできない。
 したがって、原告のこの点についての主張は理由がない。
四 まとめ
 以上のとおり、本件安全審査においては、調査審議の結果、本件原子炉施設の公
衆との離隔に係る安全性について、本件原子炉施設が具体的審査基準に適合し、そ
の基本設計ないし基本的設計方針において、公衆との離隔に係る安全性を確保し得
るもの、すなわち、公衆との離隔に係る立地条件において、原子炉等による災害の
防止上支障がないものとしているが、右調査審議及び判断の過程に重大かつ明白な
瑕疵といえるような看過し難い過誤、欠落があるとは認められない。
第八 他の原子炉施設における事故について
一 意義
 原告らの主張の中には、過去に他の原子炉施設において発生した事故を挙げ、本
件原子炉施設においても同様の事故が起こる可能性があるとして、本件原子炉施設
が安全性を欠き、本件許可処分
が規制法二四条一項四号に反する旨主張するかのようにみられる部分がある。
 しかし、他の原子炉施設は、その程度はともあれ、本件原子炉施設とはその設
計、構造、設備を異にするものであるから、他の原子炉施設において発生した事故
が直ちに本件原子炉施設において発生するということはできない。もっとも、他の
原子炉施設の事故発生の原因となった事象が起こる可能性が本件原子炉施設におい
ても存在し、本件原子炉施設において右事象からの事故の発生、拡大、事故の影響
の拡大を防止するための十分な対策が取られていない場合には、当該原子炉施設で
発生した事故と同様の事故が本件原子炉施設においても発生し、かつ、その場合に
安全性が確保されないといえる場合があると考えられる。
 本判決においては、本章の第四ないし第七の関連箇所において、適宜、他の原子
炉施設において発生した事故に関する原告らの主張を取り上げて判断を示してきた
ところであるが、本節では、原告らの主張する他の原子炉施設で起きた事故のうち
重大なもの又は本件原子炉施設と関連が深いと考えられるものについて、事故の経
過と原因を検討した上で、これと同様の事故が本件原子炉施設においても発生する
可能性があるか、仮に発生した場合に本件原子炉施設の安全性が確保されない可能
性があり、本件安全審査の妥当性が失われるか否かについて判断を示すことにす
る。
二 チェルノブイリ事故
1 事故の概要及び原因
(一) 事故の概要争いのない事実並びに甲六及び乙イ二四によれば、次のとおり
と認められる。チェルノブイリ四号炉は、当時のソビエト連邦ウクライナ共和国の
チェルノブイリに設置された熱出力三二〇万キロワット、電気出力一〇〇万キロワ
ットの黒鉛減速軽水冷却沸騰水型原子炉(RMBK)である。
 一九八六(昭和六一)四月二六日、外部電源喪失によりタービンの蒸気供給が停
止された場合、惰性で回っているタービン発電機からの電力で非常用炉心冷却系設
備のポンプ等をどの程度稼働させることができるかを確認する試験中、原子炉出力
が急激に増大し、これを抑えることができなかったことから、燃料チャンネル及び
原子炉上部の構造物が破壊され、燃料及び黒鉛の一部が飛散し、原子炉建置も破壊
され、大量の放射性物質が環境へ放出された。
(二) 事故の影響
 事故によって三一名が死亡し、また、三〇キロメートル圏内の住民約一三万五〇
〇〇人が避難した
。特定の地域の住民の被曝線量は○・〇三ないし○・〇四レムに達したとみられる
が、大多数は○・〇二五レム以下の外部被曝線量であり、急性障害はみられなかっ
たとされている。また、ソビエト連邦によれば、避難住民の外部被曝集団線量は約
一六○万人レムとしている(なお、この点については、住民の急性障害が存在した
ことや、子供を中心に晩発性障害(発がん)が多発していること等を示す証拠も存
在するところである。)。
(三) 事故の原因
 事故の原因は、①原子炉が炉心特性として低出力運転時には反応度出力係数が正
の値となり、正の反応度フィードバック特性を有するにもかかわらず、原子炉緊急
停止系の設計が右炉心特性に十分対応したものではなかったこと(設計上の要
因)、②運転員に多数かつ重大な規則違反があったなど、運転管理体制及び発電所
全般の安全確保に対する意識が極めて不十分であったこと(運転規則違反)にあっ
たことが認められる。
 なお、右運転規則違反について、違反ではない、若しくは重大な違反でなく運転
員を責めることはできないとする見解のあることが認められるが(甲イ二七、・甲
イ一七九、甲イ一九九、甲イ三七二等)、これらの証拠を前提としても、運転員が
運転規則と異なる運転を行ったという事実はこれを明らかに認めることができる。
2 本件安全審査との関係
 チェルノブイリ四号炉は、RMBKであり、LMFBRである本件原子炉施設と
は炉型を異にする。そして、右事故の事故原因のうち、①については、本件原子炉
施設では、前記(第四、三、2、(一))のとおり、すべての運転範囲において、
ボイドが発生することはないから、ボイド係数が正であるという問題は生ぜず、か
つ、出力係数は負である。また、甲六によれば、チェルノブイリ四号炉には、反応
度操作余裕(チェルノブイリ四号炉は、制御棒の持つ負の反応度は原子炉を緊急停
止させるに十分なものであったが、制御棒の挿入速度が炉心の長さに比べて遅く、
制御棒を炉心に完全に挿入するには約一八秒を要するものであった。そのため、緊
急停止のために必要な負の反応度を速やかに挿入することができずに原子炉の緊急
停止に失敗する可能性を回避するため、運転中は常に何本かの制御棒を炉心に挿入
しておき、緊急停止の実効性を確保する必要があった。この緊急停止を可能にする
ため制御棒の挿入が、反応度操作余裕の考え方である。)の確保が必要であ
ったが、本件原子炉施設は、一ないし二秒以内に制御棒を炉心に挿入することがで
き、反応度操作余裕は必要でないことが認められる。したがって、①の事故原因は
本件原子炉施設には当てはまらない。また、②の運転員の規則違反については、運
転員の規則違反ではないという見解もあるが、いずれにしても設計上予定されてい
ない運転が意図的にされたことには変わりがないところ、意図的に設計上予定され
ていない運転がされることは、本件原子炉施設の基本設計ないし基本的設計方針に
関連するものではない。したがって、右事故の発生は、本件安全審査の合理性を左
右するものではない。
三 EBR―Iの燃料溶融事故
1 事故の概要と原因
 甲イ四六、甲イ三七六及び乙イ七六によれば、次のとおりと認められる。
 EBR―Iは、米国アイダホ州の国立工学研究所内に建設されている小型の高速
実験炉(電気出力二〇〇キロワット)であり、炉心は四回(マークⅠからマークⅣ
まで)にわたり取り替えられ、その間、多くの実験が行われた。
 マークⅡ炉心での運転において、炉心の温度がある温度以上に上昇すると温度係
数が正になり、炉心に正の反応度が入ることが判明したことから、一九五五(昭和
三〇)年一一月二九日、その原因を解明するために各種の試験が行われた。
 右試験では、故意に二つの原子炉安全系(出力急上昇時に機能するスクラム及び
一次冷却材流量が少ないと原子炉を起動できないようにするインタロック)を外し
た上で原子炉の出力上昇操作を行い、出力上昇に伴って温度係数が正になり、更に
出力が上昇して炉周期が一秒になった時点で、試験担当者が口頭で運転員に急速ス
クラム(制御棒の急速挿入による原子炉の緊急停止)を指示したが、運転員は誤っ
て低速スクラム(制御棒の通常速度での挿入による原子炉の停止)ボタンを押して
しまった。試験担当者は直ちに急速スクラムボタンを押したが、この間の時間遅れ
が約二秒あったことから、出力が急上昇し’炉心は燃料体積の四〇ないし五〇パー
セントが溶融した。
 右事故の原因は、急速スクラムを行うべきであったところ、運転員が誤って低速
スクラムをしたことにあった。また、マークⅡ炉心が正の反応度をもたらしたの
は、燃料の照射に伴う変化の検査のため、燃料要素を取り出しやすいように長手方
向のワイヤスペーサを取り去り、かっ、燃料要素の固定を緩くしてあったために、
高温になると燃料要素
が湾曲したためであった。
2 本件安全審査との関係
 右事故の原因は、故意に二つの原子炉安全系を外した上で原子炉の出力上昇操作
を行ったことにあるが、このように意図的に設計上予定されていない運転がされる
ことは、本件原子炉施設の基本設計ないし基本的設計方針とは関連するものではな
い。また、前記(第四、一、1、(一)、(4))のとおり、本件原子炉施設の炉
心は、燃料要素の外周にワイヤスペーサを設けて相互の接触を防止し、さらに燃料
要素を六角形のラッパ管の中に入れ、燃料要素が過度に変形することを防止すると
共に、軸方向には自由に膨張できる構造とされているので、燃料要素の過度の変形
によって正の反応度が投入され、燃料溶融等に至るおそれは極めて低いといえる。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
四 エンリコ・フェルミ炉の燃料溶融事故
1 事故の概要と原因
 甲イ二六、甲イ四七、乙イ七六及び乙ニ二の七(証人P9調書七)二一丁表ない
し二三丁裏によれば、次のとおりと認められる。
 エンリコ・フェル炉は、電力会社(デトロイト・エジソン社)及びメーカ連合体
が米国、ミシガン州に設置した、濃縮ウラン合金をジルコニウムで被覆した燃料を
用いた商業用ループ型LMFBR(電気出力六万五九〇〇キロワット)である。
 一九六六(昭和四一)年一〇月五日、出力上昇試験中、熱出力三万キロワットに
達したとき、炉内中性子束変化率の乱れと、一部の燃料集合体出口の冷却材温度の
上昇があり、更に原子炉建屋の上部排気ダクト内放射能高の警報が発したため、出
力降下操作を行い、手動スクラムで原子炉を停止したが、二体の燃料集合体の融着
が確認された。
 右事故の原因は、原子炉容器底部の整流板のジルコニウム製カバー(厚さ一ミリ
メートル、ネジで固定)のうちの一枚が、冷却材の流動により振動、剥離し、これ
が燃料集合体の冷却材入口を閉塞したため、冷却材流量が低下して燃料温度が上昇
したことにあった。
2 本件安全審査との関係
 右事故の原因は、要するに原子炉容器内の構造物が脱落して冷却材流路を塞いだ
ことにある。
 しかし、本件原子炉施設においては、前記(第四、一、(一)、(4))のとお
り、炉心燃料集合体の冷却材入口部分(エントランスノズル)に多数の冷却材流入
孔(オリフィス孔)を設け、冷却材流路を多重化することにより、冷却材流路の閉
塞を防止
しており、部品の脱落等により冷却材の流路が閉塞するおそれはない。また、乙一
六・八―九―四二頁及び乙イ七六によれば万一燃料が破損した場合でも複数の破損
燃料検出装置によってこれを早期に検知し、遅発中性子法破損燃料検出装置の信号
が設定値を超えた場合には原子炉は緊急自動停止され、事故を終息できることが認
められる。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
五 スーパーフェニックスの次系カバーガス中の空気混入によるナトリウム汚染
1 事故の概要と原因
 乙イ七六によれば、次のとおりと認められるスーパーフエニックスは、クランス
のクレイマルビルに設置されたタンク型の高速実証炉(熱出力三〇〇万キロワッ
ト、電気出力一二四万キロワット)である。
 一九九〇(平成二)年六月一〇日、出力上昇中にナトサウムの不純物濃度の指標
となるプラギング温度が上昇し、一四〇℃で安定したが、通常の一時的現象と考え
られた同月二〇日、プラギング計の特性曲線上に一八○℃に相当するプラギング温
度が観測されたが、水素化合物によるものであり、水素は中間熱交換器の伝熱管を
透過して二次系に抜けるので、注意を払う必要はないとされた。同月二六日、一次
ナトリウム純化系のコールドトラップのうち一基が閉塞し、同月三〇日にはもう一
基も閉塞した。
 右事故の原因は、フィルタカートリッジ系カバーガスの放射能測定系のポンプシ
ール膜が部分的に裂け、カバーガスに空気が混入し、その結果、一次系ナトリウム
が酸素等により汚染され、プラギング温度が上昇したことにあった。なお、酸素の
混入量は、酸化ナトリウム換算で三〇〇ないし三五〇キログラムと推定された。
2 本件安全審査との関係
 前記(第四、三、5)のとおり、本件原子炉施設においては、一次アルゴンガス
系内の圧力は、右アルゴンガス系が配置される各部屋の雰囲気の気圧よりも若干高
くなるように保持されるから、本件原子炉施設において、仮に右アルゴンガス系の
設備に破損が生じたとしても、アルゴン・カバーガス中に空気が混入することは想
定し難い。また、前記(第四、三、4、(一)、(2)、(イ))のとおり、ナト
リウム中の不純物を除去するためにコールドトラップが設置され、これによって、
本件原子炉施設の通常運転中のナトリウム中酸素濃度は一〇PPm以下に保たれる
から一ナトリウム中に不純物が生じ、右不純物による
腐食によって配管が破損したり、破断したりすることは想定し難い。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
六 スーパーフェニックスのナトリウム漏えい事故
1 事故の概要と原因
 甲イ二九ないし三三、甲イ六二及び乙ニ二の七(証人P9調書七)三八丁表ない
し三九丁裏によれば、次のとおりと認められる。
 一九八七(昭和六二)年三月、スーパーフェニックスの炉外燃料貯蔵槽から液体
ナトリウムが漏えいした。漏えい量は当初五〇〇リットル/日であったが、四月中
旬以降止まった。
 右事故の原因は、炉外燃料貯蔵槽と支持板の溶接が適切にされていなかったこと
に加え、水を張った試験後の不十分な水抜きにより溶接部分にさびが生じ、このさ
びとナトリウムとが反応して生成された水素が材料(炭素鋼)中に浸透したことに
より、残留応力の下で割れが生じ、ついには炉外燃料貯蔵槽を貫通したことによる
と考えられている。
2 本件安全審査との関係
 右事故の原因は、不十分な溶接と水抜きにあるところ、右は本件原子炉施設の基
本設計ないし基本的設計方針に関連しないものである。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
七 フェニックスの異常な反応度低下
1 事故の概要と原因
 甲イ九五、九七、甲イ一七四、乙イ七六及び乙ニ二の七(証人P9調書七)三〇
丁裏、三一丁表によれば、次のとおりと認められる。
 フェニックスは、フランスのマルクールに設置されたタンク型高速原型炉(電気
出力二五万キロワット)である。
 一九八九(平成元年八月、九月、平成二年九月の三回と、炉心の反応度(中性子
検出器の信号)が異常に低下して、原子炉が自動停止した。
 右反応度低下については、当初は、①一次冷却系のアルゴンガスが何らかの原因
で液体ナトリウム中に巻き込まれ、アルゴンガスが炉心周辺部を通過したと推定さ
れ、炉心へのガスの注入試験を含め様々な原因調査が行われた。その結果、ガスの
巻き込みが原因であると仮定した場合には、数百リットルにも及ぶ極めて大量のガ
スが炉心周辺部を通過することが必要になるが、このようなことは現実的には想定
し難いことから、結局、ガスの巻き込みは原因ではないとされた。また、②電気的
なノイズが原因として検討されたが、現在のところ、原子炉容器の下部に設置され
ている検出器による中性子束の変化は、電気的なノイズによ
るものではなく、実際の中性子束の変化を表したものであると考えられている。こ
のため、③燃料集合体の変位等、他の原因に注目した調査が行われている。
2 本件安全審査との関係
 右事故は、原因が解明されているとは言い難いが、前記(第四、一、1―
(一)、(4)、同2、(三)及び第六、二、4、(一)、(3)、(ロ)、
(a))のとおり、本件原子炉施設においては、アルゴンガスの巻き込み対策が十
分されていること、燃料集合体は過大な変形等を防止し得る構造となっているこ
と、中性子束が異常に変化した場合は、原子炉緊急停止装置が働き原子炉が停止す
ることから本件原子炉施設においては、右事故の原因として考えられているいずれ
かの原因によって事故が起こることは想定し難い。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
八 フェニックスの中間熱交換器からの二次系ナトリウム漏えい事故
1 事故の概要と原因
 甲イ五二及び乙イ七六によれば、次のとおりと認められる。
 一九七六(昭和五一)年七月一一日、六基ある中間熱交換器(ステンレス鋼製)
の一つの頂部からナトリウムが漏えいして小火災が発生し、同年一〇月三日も別の
中間熱交換器の同じ箇所からナトリウムが漏えいして火災を引き起こした。
 右事故の原因は、下降管と中間熱交換器胴との間に予想を上回る熱膨張差が生じ
たことにより、二次系ナトリウム出口の上蓋と内壁をつなぐ溶接部(七月の事
故)、二次系ナトリウム出口部の上部プレート(一〇月の事故)に破損が生じたこ
とにある。
2 本件安全審査との関係
 前記(第四、一、3、(二))に加え、乙イ七六によれば、本件原子炉施設の中
間熱交換器については、すべての運転状態において生じると考えられる圧力、熱荷
重、地震荷重等の必要な荷重の組合せに耐え、かつ機能を維持できるよう設計され
ていること、万一漏えいがあった場合も、これを速やかに検出できることが認めら
れる。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
九 TMI事故
1 事故の概要及び原因
 甲イ一六、甲イ一五〇及び甲イ三八八によれば、次のとおりと認められる。
(一) 事故の概要
 TMI二号炉は、米国ペンシルバニア州スリーマイル島上に設置されたPWR
(電気出力九五万九〇〇〇キロワット)である。
 一九七九(昭和五四)年三月二八日、原子炉は定格の九七パーセ
ントの出力で運転されていたが、何らかの事情により、二次系の主給水ポンプが停
止し、ほぼ同時にタービンが停止した。その結果、一次系の温度、圧力が上昇し、
加圧器逃し弁が開き、原子炉がスクラムした。
 これにより、一次系圧力は急速に低下L、加圧器逃し弁の閉設定圧力以下となっ
たが、この弁が故障して開いたままの状態となり、一次冷却材が格納容器に流出
し、小規模の一次冷却材喪失事故の状態となった。
 そして、二分後に非常用炉心冷却装置高圧注水系が自動起動したが、一次冷却材
が局所的に沸騰を起こし、発生した蒸気泡が冷却材を加圧器に押し上げて、一次冷
却材の量が増加しているかの如き現象を呈したことから、運転員は、高圧注水ポン
プ一台を停止し、もう一台の流量を最低限にまで絞った。そのため、一時冷却材は
ますます減少し、蒸気泡が増加したことから、冷却材ポンプの振動が激しくなり,
ポンプの破損をおそれた運転員は、冷却材ポンプ四台全てを停止した。これによ
り、ポンプが運転されている間は循環して炉心を冷却していた水、蒸気の流れが止
まり、蒸気と水が分離し、炉心の上部が蒸気中に露出した。炉心は三分の二ほど露
出したと推測され、露出した燃料は温度が急上昇し、大量の放射性物質が一次系内
に放出された。また、燃料被覆管と蒸気が反応して、大量の水素が発生した。
(二) 事故の影響
 環境へ放出された放射性物質の大部分は、気体状の放射性物質であり、放射性希
ガス約二五〇万キュリー、放射性よう素のうち、よう素一三一が約一・五キュリー
と推定された。放出経路は、主として放射性物質を含んだ一次冷却材が抽出され、
補助建置内の抽出、充填系で脱気される際に出てくる放射性ガスが配管や機器の漏
えい箇所から外へ出たもので、補助建屋の換気系によって、排気筒から環境に放出
されたものであり、液体状の放射性物質は微量であり、問題となるものではなかっ
た。
 環境に放出された放射性物質による周辺公衆の外部全身被曝量については、半径
八○キロメートル以内の住民約二一六万人についての集団線量の現在最も信頼でき
る値としては、家屋の遮へい効果等を考慮した場合、約二〇〇〇人レム(個人の被
曝線量は平均約一ミリレムと推定されている。
(三) 事故の原因右事故の経過によれば、主給水喪失が炉心損傷にまで拡大した
決定的要因は、①加圧器逃し弁が約二時間二〇分にもわたって開放されたままの状
態に置
かれていたこと、②高圧注水ポンプの流量が約三時間一六分にもわたり最小限にし
ぼられた状態にあった点にあった。
2 本件安全審査との関係
 TMI二号炉は、PWRであり、LMFBRである本件原子炉施設とは炉型を異
にし、加圧器逃し弁は存在しないから、本件原子炉施設において、右事故と同様の
事故が発生することは想定し難い。また、右事故の原因は、直接的には運転員が原
子炉の状況を的確に把握できなかったことから適切な運転操作を行えなかったとい
う、計測制御装置と運転管理に問題があったことにあるところ、右は、本件原子炉
施設の基本設計ないし基本的設計方針に関連しないものである。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
一〇 PFRの一次主冷却系循環ポンプ潤滑油の一次系ナトリウム中への混入
1 事故の概要と原因
 乙イ七六によれば、次のとおりと認められる。
 PFRは、実験炉DFRに続いてイギリスのドーンレイに建設された電気出力二
七万キロワットのタンク型高速原型炉である。
 PFRは、一九九一(平成三)年五月から、ほぼ一〇〇パーセントの出力で運転
中であったが、同年六月二九日、一次主冷却循環ポンプの上部ベアリングが過熱
し、プラントを手動で停止した。
 右事故の原因は、同年六月二四日に、ポンプの軸封ガスの流量が零に低下し、こ
れがアルゴンガス系統のフィルターの目詰まりと判断され、翌二五日に運転員によ
り回復措置としてアルゴン系統を負圧にしての換気操作が行われたことから、ポン
プ容器内のカバーガスが減圧され、ナトリウム液位が上昇して潤滑油のドレンタン
ク内に浸入し、以前から蓄積していた最大で一七リットルの潤滑油を押し出す形で
ナトリウム中に混入させ、その後、同月二九日まで潤滑油の流出が続き、推定約三
五リットルのベアリング潤滑油が一次系ナトリウム中へ混入し、潤滑油系統の油量
が不定してベアリングの過熱が起こったことにあった。
2 本件安全審査との関係
 乙イ七六によれば、本件原子炉施設の一次主冷却系ポンプの上部ベアリング潤滑
油のシール部からの漏えいについては、PFRと異なり、二重の回収構造が採用さ
れており、一段目の回収構造で回収しきれず、二段目の回収構造内の油量が異常に
増加した場合には中央制御室に警報を発し、更に増加した場合にはポンプをトリッ
プさせるシステムを採用していること、また、潤滑油のタン
クヘの回収方法は、重力で落下する方式としており、PFRのような負圧操作を行
う必要はないこと、そして、一次主冷却系循環ポンプにはナトリウム液位計が設置
され、液位の異常な上昇へ下降を監視すると共に、ナトリウム液位と油回収構造と
の間に十分なレベル差を設けて、油回収構造にナトリウムを吸い上げてしまうこと
のない設計となっていることが認められる。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
一一 サリー二号炉における配管破断事故
1 事故の概要と原因
 甲イ八ないし一二及び乙イ七七によれば、次のとおりと認められる。
 サリー原子力発電所二号炉は、米国バージニア州サリー郡のジェームズ川ほとり
に設置されたループ型PWR(電気出力七七・五万キロワット)である。
 一九八六(昭和六一年一二月九日、全出力で運転中、三ループのうち一ループの
主蒸気隔離弁が誤って開となったが、これにより入口側ヘッダ圧力がランプ状に上
昇したため、主給水ポンプの入口側配管のエルボ部付近に亀裂が貫通して蒸気が吹
き出し、数秒後に全周破断した。原子炉は、主蒸気流量と主給水流量の不一致警報
が発報した後、「蒸気発生器水位低低」信号によりトリップした。
 右事故の原因は、不十分な水質管理の下に生じた腐食と不適切な配管の接続(テ
ィーとエルボが近接した構造であった)によって生じた冷却水の流れの急変による
侵食(エロージョン/コロージョン)とが重なって配管の内面が著しく減肉され、
破断するに至ったことにあった。
2 本件安全審査との関係
 乙イ七七によれば、本件原子炉施設においては、適切な配管引き回し及び水、蒸
気の流速条件によりエロージョン/コロージョンは抑制されることが認められる。
また、前記(第四、三、4、(一)、(2)、(イ))のとおり、ナトリウム中の
不純物を除去するためにコールドトラップが設置され、これによって、本件原子炉
施設の通常運転中のナトリウム中酸素濃度は一〇PPm以下に保たれる。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
三 福島第二原子力発電所三号炉における金属片の侵入
1 事故の概要及び原因
 甲イ一四、甲イニ二一、甲イ二二二及び乙イ七八によれば、次のとおりと認めら
れる。
 福島第二原子力発電所三号炉は、東京電力が福島県双葉郡富岡町に設置したBW
R(定格電気出力一一〇万キロワット
)である。
 一九八九(昭和六四)年一月一日午後七時二分、出力一〇三万キロワットで運転
中、原子炉再循環ポンプの一つに振動大の警報が発生したが、ポンプの回転数をわ
ずかに低下させたことで警報レベル以下となったため、出力一〇〇万キロワツトで
運転を継続した。同月六日午前四時二〇分、同ポンプから振動大の警報が再発生し
たため、ポンプの回転数を徐々に下げ、階段的に出力を七四万キロワットに下げた
にもかかわらず、振動値が低下しなかったので、原子炉を停止した。
 右事故の原因は、ポンプの水中軸受リングと軸受本体の溶接部が、強度上の余裕
が少ない溶接構造であった上、溶込みが不足していたことから、回転に伴ってリン
グ上下面に圧力差が変動的に生じ、リングの固有振動数と重なると、軸受本体とリ
ングの溶接部に大きな変動応力がかかるため、右溶接部が疲労破断し、リングが脱
落したことにあった。
2 本件安全審査との関係
 乙イ七八によれば、本件原子力施設の一次系主循環ポンプには、水中軸受リング
に相当する構造はないことが認められ、右事故と同様の事故が本件原子炉施設にお
いて発生する可能性はないといえる。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
一三 セイラム一号炉の制御棒不作動
1 事故の概要と原因
 乙イ七五によれば、次のとおりと認められる。
 セイラム一号炉は、米国ニュージャージ州に設置された電気出力一〇九万キロワ
ットのPWRであり、一九六八年八月に建設が開始され、一九七六年一二月に初臨
界となった。
 一九八三年二月二五日、定期検査と燃料入れ替えを終えて運転を再開したが、そ
の際、「蒸気発生器水位低低」信号によって原子炉保護系から原子炉停止信号が発
生したにもかかわらず、原子炉緊急自動停止装置が作動しなかった。プラントのパ
ラメータがスクラムと一致しないことから^制御棒が挿入されていないことに気付
いた運転員が、原子炉停止信号の約三〇秒後に手動で原子炉を停止したため、器械
の損傷等は全くなかった。
1 右事故の原因は、原子炉保護系から原子炉自動停止装置に自動停止信号が入力
されたにもかかわらず、原子炉自動停止装置のブレーカが二台とも開動作に失敗し
たためであり、これは、電流遮断器可動部(ラッチ部)の潤滑が適切でなかったと
いう保守、点検上の過誤に起因するものと考えられている。
2 本件安全審査との関係
 右事故の
原因は、適切な保守点検がされていなかったことにあるところ、設備の保守、点検
は、本件原子炉施設の基本設計ないし基本的設計方針に関連するものではない。
 したがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
一四 西SL―一の臨界事故
1 事故の概要と原因
 甲イ三七五及び甲イ三八五によれば、次のとおりと認められる。
 SL―一は、米国アイダホ州に設置された二〇〇キロウツトの電力及び四〇〇キ
ロワットの暖房用電気等価エネルギーを発生するBWRである。一九六一(昭和三
六)年一月三日、定期保守等のための停止から運転を再開するために、制御棒駆動
モータを取り付ける作業中、原子炉が突如暴走して炉が爆発し、作業に当たってい
た作業員三人が全員死亡した。
 右事故の原因は完全には解明されていないが、制御棒が手で急速に引き上げられ
たことから大きな反応度が添加され、出力が上昇して熱膨張と気泡が発生し、これ
により炉内の圧力が上昇して更に制御棒を引き抜く方向に働き、爆発に至ったもの
と考えられている。
2 本件安全審査との関係
 前記(第四、一、2、(二)、(2)、(ハ))のとおり、本件原子炉施設にお
いては、通常運転時の制御棒引抜最大速度は制限され、かつ、駆動モータの最大駆
動速度は電源と負荷の関係等から物理的に制限されるため、運転時の異常な過渡変
化時又は事故時の基準を超えるような過度な反応度添加率が添加されることはない
から、制御棒の異常な引き抜きによって反応度事故が起こることは想定し難い。し
たがって、右事故の発生は、本件安全審査の合理性を左右するものではない。
一五 まとめ
 以上のとおり、過去に他の原子力発電所において発生した事故は、その発生の原
因となった事象が本件原子炉施設において発生する可能性が存在するとも、また、
本件原子炉施設において右事象からの事故の発生、拡大、事故の影響の拡大を防止
するための十分な対策が取られていないとも認められない。
 したがって、これらの事故が発生した事実から、本件安全審査の合理性が失われ
るものではないというべきである。
 もちろん、他の原子力発電所における事故は、多々の重要な教訓を含むものであ
り、これらの教訓は、今後本件原子炉施設を含む全ての原子炉施設の設計、建設、
運転に当たって生かされなければならないものといえるが、これらの事故の発生が
直ちに本件安全審査の合理性を左
右するとはいえない。
第七章 結論
 以上のとおり、本件許可処分は、法定の手続に則り行われたものと認められ、手
続的な違法があるとは認められない(第四章)。そして、規制法二四条一項三号
(技術的能力に係る部分に限る。)及び同項四号の要件についても、本件安全審査
の調査審議に用いられた審査方針及び審査基準に、本件安全審査の結論を左右する
ような不合理な点があるとは認められず、また、本件原子炉施設が右の審査基準に
適合するとした本件安全審査における調査審議及び判断の過程に重大かつ明白な瑕
疵といえるような看過し難い過誤、欠落があるとも認められないから(三号につい
て第五章、四号について第六章)、本件許可処分は実体的にも適法である。
 よって、本件許可処分が無効であることの確認を求める原告らの請求はいずれも
理由がないから、これを棄却し、訴訟費用の負担について行訴法七条、民訴法六一
条、六五条一項本文を適用して、主文のとおり判決する。
福井地方裁判所民事第二部
裁判長裁判官 岩田嘉彦
裁判官 酒井康夫
裁判官 岩崎邦生
 〔原告の主張〕
          略 語 例
申請者       被告内閣総理大臣に対して、高速増殖原型炉もん
          じゅの原子炉設置許可申請を行った動力炉・核燃
          料開発事業団(平成一〇年一〇月一日に核燃料サ
          イクル開発機構と法人名を改称)
本件許可申請    申請者が、昭和五五年一二月一〇日付けで被告に
          提出した本件許可処分に係る原子炉設置許可申請
          (ただし、昭和五六年一二月二八日付け及び昭和
          五八年三月一四日付けでその一部を補正してい
          る。)
本件許可処分    被告が、昭和五八年五月二七日付けで、申請者の
          原子炉設置許可申請に対し行った許可処分
本件原子炉施設   本件許可処分に係る原子炉及びその付属施設
本件原子炉     本件許可処分に係る原子炉
本件安全審査    被告及び原子力安全委員会が本件許可申請に対し
          て、原子炉等規正法二四条一項四号の要件への適
          合性についてした審査
行訴法       行政事件訴訟法(昭和三七年法律第一三九号)
原子炉等規制法   核原料物質、核燃料物質及び原子炉の規制に関す
         
 る法律(昭和三二年六月一〇日法律第一六六号)
原子炉等規制    核原料物質、核燃料物質及び原子炉の規制に関す
法施行令      る法律施行例(昭和三二年一一月二一日政令第三
          二四号)
原子炉規制     試験研究の用に供する原子炉等の設置、運転等に
          関する規則(昭和三二年一二月九日総理府令第八
          三号)
許容被爆線量等を  原子炉の設置、運転等に関する規則等の規定に基
定める件      づき、許容被爆線量等を定める件(昭和三五年九
          月三〇日科学技術庁告示第二一号)
線量当量限度等を  試験研究の用に供する原子炉等の設置、運転等に
定める件      関する規則等の規定に基づき、線量当量限度等を
          定める件(昭和六三年七月二六日科学技術庁告示
          第二〇号)
評価の考え方    高速増殖炉の安全性の評価の考え方について(昭
          和五五年一一月六日原子力安全委員会決定)
線量評価指針    発電用軽水型原子炉施設周辺の線量目標値に対す
          る評価指針について(昭和五一年九月二八日原子
          力委員会決定)
プルトニウムに   プルトニウムを燃料とする原子炉の立地評価上必
関するめやす    要なプルトニウムに関するめやす線量について
線量について    (昭和五六年七月二〇日原子力安全委員会決定)
気象指針      発電用原子炉施設の安全解析に関する気象指針に
          ついて(昭和五七年一月二八日原子力安全委員会
          決定)
耐震設計審査指針  発電用原子炉施設に関する耐震設計審査指針につ
          いて(昭和五六年七月二〇日原子力安全委員会決
          定)
安全設計審査指針  発電用軽水型原子炉施設に関する安全設計審査指
          針について(昭和五二年六月一四日原子力委員会
          決定)
安全審査会     原子力委員会及び原子力安全委員会設置法(昭和
          三〇年一二月一九日法律第一八八号)一六条に定
          められる原子炉安全専門審査会
本件事故      申請者が平成三年五月に試運転を開始した高速増
          殖原型炉もんじゅにおいて、平成七年一二月八日、
          発生した二次冷却材ナトリウム漏えい事故
燃焼実験Ⅰ     申請者が、平成八年四月八日、申請者の大洗工学
          センター内に内容積約一〇〇立方メートルの鋼製
          円筒容器内に床ライナを模擬した受け皿等を設置
          して行った漏えいナトリウムの燃焼実験
燃焼実験Ⅱ     申請者が、平成八年六月七日、内容積約一七〇立
          方メートルのコンクリート製矩形実験セル内に床
          ライナ等を設置して行った漏えいナトリウムの燃
          焼実験
 はじめに
 本件は、動力炉・核燃料開発事業団(現・核燃料サイクル開発機構)が昭和五五
年一二月一〇日被告内閣総理大臣に対してした高速増殖炉「もんじゅ」の原子炉設
置許可申請(本件許可申請)につき、被告が、原子炉等規制法二三条に基づき昭和
五八年五月二七日付けでした右原子炉の設置許可処分(本件許可処分)に対し、原
告らが右処分が無効であることの確認を求める訴えであり、行訴法三条に規定する
抗告訴訟のうちの無効確認訴訟(同条四項)として提起されたものである。
 本件訴訟においては、まず、原子炉設置許可処分の無効確認訴訟の違法(無効)
事由として主張し得る範囲、司法審査の在り方が争われた。その上で、本件許可処
分が、①手続的に重大かつ明白な瑕疵があるか否か、②実体的にも重大かつ明白な
瑕疵があるか否かが争われた。そして、②のうちの本件安全審査については、本件
許可処分後に得られた知見に照らし、本件安全審査の合理性が損なわれるか否か
も、主な争点の一つとなった。被告は、まず、原子炉設置許可処分の無効確認訴訟
における違法(無効)事由として主張し得るのは、原子炉等規制法二三条、二四条
の要件適合性に係る事由で、かつ、原告ら自身の法律上の利益に関する事項に限ら
れることを明らかにした上で、裁判所の審理・判断の方法及び主張・立証責任につ
いて述べる(第一章)。そして、本件許可処分は、同法二三条、二四条の規定にの
っとって行われたものであり、手続的に適法であること(第二章)、また、本件許
可処分は、実体的にも同法二四条一項の三号(技術的能力に係る要件に限る。)と
四号の各要件に適合し、適法であること(第三章、なお、本件安全審査の具体的内
容については、第四章で別途詳述する。)、本件許可処分後に得られた知見
に照らしても、本件安全審査の合理性は損なわれることはないこと(第五章)を述
べ、結論として、本件請求は理由がなく、速やかに棄却されるべきであること(第
六章)を明らかにする。
第一章 本件訴訟における審理の対象とその判断方法
第一 本件訴の訴訟物と処分の要件
一 本件訴訟の訴訟物
 本件訴訟は本件許可処分の無効確認訴訟である。無効確認訴訟は、当該処分の瑕
疵が著しいために、客観的には効力を有しない行政処分について、処分の外形を除
去することによって国民の法的地位が侵害されるおそれや不安を取り除くことを冒
的とする確認訴訟であり、抗告訴訟の一類型であって、取消訴訟と基本的性質を同
じくする主観訴訟である(行訴法三条四項)。その訴訟物は、行政処分の重大かつ
明白な違法一般(根拠法の定める手続的、実体的要件の欠鋏)の存否である。取消
訴訟の訴訟物が単に行政処分の違法一般とされるのに対し、無効確認訴訟の訴訟物
は、処分の違法が「重大かつ明白」であることという要件が加味される(最高裁昭
和三〇年一二月二六日第三小法廷判決・民集九巻一四号二〇七〇ページ他)のであ
り、両者の訴訟物は大きく異なる。そして、右の行政処分の瑕疵の「明白性」と
は、処分要件の存在を肯定する行政庁の認定判断が誤りであることが、処分成立の
当初から客観的に明白であることを必要とし、ここに客観的に明白とは、処分関係
人の知、不知とは無関係に、また、権限ある国家機関の判定を待つまでもなく、何
人の判断によりてもほぼ同一の結論に到達し得る程度に明らかであることを指す
(最高裁昭和三三年七月五日第一小法廷判決・民集一六巻七号一四三七ページ)。
 原告らは、不必要な原子炉施設や、公益性がないかこれがあったとしても低下し
ている施設については、重大かつ明白な違法性の判断の基準が低くなると主張す
る。
 しかし、前述したとおり、行政処分の無効確認訴訟の訴訟物が重大かつ明白な違
法とされるのは、確立した判例である。右の「重大かつ明白」であるか否かは、当
該処分の違法の内容程度を客観的に判断して決すべき事柄であって、原子炉施設の
必要性や公益性の有無程度によって影響を受けるものではない(なお、本件原子炉
施設の必要性や公益性は、そもそも、本件安全審査の対象ではない)。したがっ
て、原告らの右主張は、理由がない。
二 本件許可処分の要件と違法事由
 本件許可処分は、原子炉等規制法二三条、二四条の規定に基づいて、被告内閣総
理大臣が行政庁としてしたものである。したがって、本件許可処分の違法事由とな
り得るのは、右二三条、二四条が定める各要件の手続的違反と実体的違反に限られ
る。
三 原子炉等規制法二四条一項四号の要件の意義
 ところで、原子炉等規制法二四条一項四号は「原子炉施設の位置、構造及び設備
が核燃料物質(中略)、核燃料物質によって汚染された物(中略)又は原子炉によ
る災害の防止上支障がないものであること。」と規定している右文言を原子炉等規
制法の体系の中で位置づけながら解釈すれば、同号の要件適合性の審査(以下「安
全審査」という。)の対象となるのは、以下に述べるとおり、原子炉施設の安全性
に直接かかわる事項で、かつ、基本設計ないし基本的設計方針の安全性にかかわる
事項に限られることが明らかである。
1 原子炉等規制法における規制の体系
 原子炉等規制法は、その規制対象を、精錬事業(第二章)、加工事業(第三
章)、原子炉の設置、運転等(第四章)、再処理事業(第五章)、廃棄事業(第五
章の二)、核燃料物質等の使用等(第六章)、国際規制物質の使用に分け、それぞ
れの分野別に行政丁の指定、許可、認可等を受けるべきものとしているか。また、
原子炉等規制法第四章の原子炉の設置、運転等に関する規制については、原子炉の
設置、変更の許可(二三条ない二六条の二)の他に、設計及び工事方法の認可(二
七条)、使用前検査(二八条)、保安規定の認可(三七条)、定期検査(二九
条)、原子炉の解体の届出人三八条)等の各規制が定められており、これらの規制
が段階的に行われることとされている。このように、原子炉等規制法における安全
規制は、①核原料物質、核燃料物質及び原子炉の利用につき、これを各種分野に区
分し、それぞれの分野の特質に応じて、それぞれの分野ごとに一連の所要の安全規
制を行うという、分野別安全規制の体系が採られ、かつ、②原子炉施設の設計から
運転に至る過程を段階的に区分し、それぞれの段階に対応して、一連の許認可等の
規制手続を介在させ、これらを通じて原子炉の利用に係る安全確保を図るという、
段階的安全規制の体系が採られている。
2 安全審査の対象となる事項
 原子炉設置許可に際して行政庁がする安全審査の対象となる事項を検討するに当
たっては、1 で検討した原子炉等規制法における安全規制の体系を踏まえて考察
することが必要で
ある。まず、原子炉等規制法の分野別安全規制の体系に照らせば、第四章所定の原
子炉の利用に対する規制は、専ら原子炉設置許可等の回章所定の事項をその対象と
するものであり、他の章において規制されることとされている事項をその対象とす
るものでないことは明らかである。
 また、原子炉等規制法が、原子炉設置許可に際しての安全審査を土台として、そ
の後の各行政規制の段階において、かつ、その全過程を通じて、所要の安全確保を
図ることとしていることに照らせば、同法は、原子炉設置許可の段階においては、
専ら当該原子炉施設の基本設計ないし基本的設計方針のみを規制の対象とするので
あって、後続の設計及び工事の方法の認可、使用前検査、保安規定の認可並びに定
期検査の各段階で規制される原子炉施設の詳細設計や具体的な運転管理に関する事
項等が原子炉設置許可の規制の対象とはならないことも明らかである。
 以上のとおり、原子炉設置許可に際しての安全審査においては、当該原子炉施設
の安全性にかかわるすべてをその対象とするものではなく、原子炉施設自体の安全
性に直接関係する事項であって、かつ、原子炉施設の基本設計ないし基本的設計方
針に係る安全性に関する事項のみをその対象とするのであって、後続の工事計画の
認可、使用前検査、保安規定の認可及び定期検査の各段階で規制される原子炉施設
の詳細設計や具体的な運転管理に関する事項等は原子炉設置許可の規制の対象とは
ならない(伊方発電所原子炉設置許可処分取消訴訟についての最高裁平成四年一〇
月二九日第一小法廷判決・民集四六巻七号一一七四ページ(以下「伊方判決」とい
う。)及び福島第二原子力発電所原子炉設置許可処分取消訴訟についての最高裁平
成四年一〇月二九日第一小法廷判決・裁判集民事一六六号五〇九ページ参照)。
 そして、本件を含め、原子炉等設置許可申請に対する原子炉等規制法二四条一項
四号所定の要件の審査が現に右の範囲内でされていることは、いうまでもない。
3 原告らの主張に対する反論
(一) 分野別安全規制に関する主張について
 原告らは、安全審査は核燃料サイクル全体についての総合的な審査でなければな
らないのに、原子炉等規制法及び本件許可処分が設置許可段階の安全審査を専ら炉
工学的安全審査に限定しているのは憲法三一条に違反すると主張する(訴状九一な
いし九三ページ、原告ら準備書面(二)第一の二1)。
 しかしなが
ら、原子炉等規制法は、前述したとおり、核原料物質、核燃料物質及び原子炉の利
用につき、これを各種分野に区分し、それぞれの分野の特質に応じて、それぞれの
分野ごとに一連の所要の安全規制を行うという分野別安全規制の体系を採り、これ
を通じて原子炉施設の総合的な安全性の確保を図ることとしているのであるから、
右違憲の主張は、前提を誤るものであって失当である。
(二) 段階的安全規制に関する主張について
 原告らは、基本設計と詳細設計の区別の根拠が薄弱であり、また、原子炉の設置
許可では原子力発電に関する技術全体の審査を要求しているとして、「基本設計」
論は誤りであると主張する(原告ら準備書面(二)第一の三、同準備書面(四)第
一)。
 しかしながら、原告らの右主張は、原子炉等規制法が段階的安全規制の体系を採
るものであることを正解しないものであり、失当である(なお、基本設計ないし基
本的設計方針という概念は、工学的分野における設計において一般的に認められた
概念であり、基本設計ないし基本的設計方針とそれ以降の詳細設計との区別は十分
可能であって、両者が混同されることはない。)。
四 原告らの主張する違法事由のうち安全審査の対象外の事項
 原子炉設置許可申請に対する行政庁の安全審査の対象は、三で述べたとおりであ
る。そうすると、原告らの主張する違法事由のうち、以下のものは、被告の審査の
対象に係るものではなく、本件許可処分の要件とは無関係であるから、主張自体失
当である。
1 原子炉施設自体の安全性に直接関係しない事項
(一) 使用済燃料の再処理、輸送に関する主張について
 原告らは、使用済核燃料の再処理の方法及び輸送について審査していないことが
違法であると主張する(訴状一八主ないし一九七ページ、原告ら準備書面(二)第
一の二1、三2)。
 しかし、原告らの指摘する点は原子炉等規制法第五章及び第六章等によって別途
規制されるものであり、原子炉設置許可に係る安全審査の対象とされていない。
(二) 廃炉に関する主張について
 原告らは、廃炉について審査していないことが違法であると主張する(訴状一七
一、一七二ページ)。
 しかし一廃炉に係る安全性は、原子炉等規制法三八条、六五条、六六条等によっ
て別途規制されることとされており、原子炉設置許可に係る安全審査の対象ではな
い。
(三) 固体廃棄物の最終処分に関する主張について
 原告らは、固体廃
棄物の最終処分地について審査していないのは違法であると主張する(訴状一七四
ないし一八○ページ、原告ら準備書面(二)第一の二1、三2)。しかし、固体廃
棄物に係る安全性に関する事項は、原子炉設置許可においては、当該原子炉施設の
敷地内における固体廃棄物の廃棄設備の構造等が災害の防止上支障がないものかど
うか等、当該原子炉施設の基本設計ないし基本的設計方針に係る安全性に関係のあ
る事項が原子炉等規制法二四条一項四号の要件に適合するかどうかという観点から
右審査の対象となるにとどまる。固体廃棄物の最終処分の問題は、原子炉設置許可
に係る安全審査の対象に含まれない。
2 その他安全審査と無関係な事項
 以下の主張は、安全審査とは何ら関係のない主張であって、失当である。
(一)「プルトニウム社会」に関する主張について
 原告らは、本件原子炉施設の開発によりプルトニウム社会・核管理社会が訪れ、
民主主義、平和主義、人格権・プライバシー権、思想信条の自由を侵害されると主
張する(訴状一六一ないし一六四、二二六ないし二四五ページ、原告ら準備書面
(二)第一の二1)。
 しかし、右主張は、趣旨が不明瞭かつ不可解というほかなく、それだけで既に失
当である。
(二) 高速増殖炉開発の経済性に関する主張について
 原告らは、本件施設を含む高速増殖炉開発は、非経済的であり、開発の継続は違
法であると主張する(訴状一九八ないし二二五ページ、原告ら準備書面(二)第一
の二1)。
 しかし、高速増殖炉の経済性は、安全審査の対象ではない。
(三) 温排水に関する主張について
 原告らは、温排水について審査していないことが違法であると主張する(訴状三
七三ないし三八一ページ、原告ら準備書面(二Y第一の二1、三2)。
 しかし、温排水は、蒸気等を冷却するために水を使用する設備からは常に排出さ
れるものである。その熱的影響の問題は、火力発電所の発電設備等でも生じるもの
であり、原子炉施設固有の現象ではないから、原子炉等規制法において規制される
ものではなく、安全審査の対象ともされていない。
(四) 「原子力発電所の集中立地」に関する主張について
 原告らは、原子力発電所の集中立地によって、周辺住民の被ばく量が増加し、ま
た、事故による災害の可能性が高まり、大地震が発生した場合には、複数の原子炉
で事故が同時発生するとして、このような点を看過してされた本件安全審査は違
法であると主張する(訴状四〇三ないし四〇七ページ、原告ら準備書面(二)第一
の二1)。
 しかし、原子炉施設を設置する際には、各原子炉ごとに設置許可時の安全審査を
行い、後に詳述するように、①原子炉施設の平常運転に伴って環境へ放出される放
射性物質による周辺公衆の被ばく線量が、許容被ばく線量を十分下回るばかりでな
く、合理的に達成できる限り低く保つよう設計上の対策が講じられていることと、
②事故の発生により放射性物質の有する潜在的危険性が顕在化しないように、自然
的立地条件との関係をも含めた事故防止対策が適切に講じられていることを確認し
ており、各原子炉施設ごとの安全審査によって十分安全を確保できる。したがっ
て、「原子力発電所の集中立地」自体を更に個別の施設の安全審査の対象とする必
要はない(各原子炉施設ごとの安全審査において①の点を確認されるのであるか
ら、原告らの指摘する「原子力発電所の集中立地」なるものによって周辺公衆の被
ばく線量が増加することがあるとしても、無視することのできる程度にとどまる
し、個々の原子炉施設ごとに②の点も確認されるから、「集中立地」によって放射
性物質の有する潜在的危険性が顕在化する可能性が高くなるにともない。)。
(五) 防災計画に関する主張について
 原告らは、本件原子炉施設の防災対策、周辺住民避難計画は全く不十分なもので
あり、違法であると主張する(原告ら準備書(二)第一の二1、三2)。
 しかし、原告らの指摘する防災対策や周辺住民避難計画は、申請に係る原子炉施
設の安全性とは異なり、いずれも安全審査の対象ではない(ちなみに、防災対策
は、災害対策基本法に基づき所要の対策が講じられることとなっている(同法二条
一号、同法施行令一条参照))。
(六) 必要性、公益性に関する主張について
 原告らは、本件原子炉施設の必要性や公益性が本件安全審査の対象であるかのよ
うに主張する。しかし、本件原子炉施設の必要性や公益性は、四号要件に含まれ
ず、本件安全審査の対象ではない。
第二 行訴法一〇条一項の趣旨の類推による違法主張の制限
 本件申請に対する行政庁の審査対象であり、本件許可処分の実体的要件である原
子炉等規制法二四条一項の各号のうち、一号、二号及び三号(経理的基礎に係る部
分に限る。)の各要件は、原告ら自身の利益に関係のない事由であるから、主観訴
訟である無効確認訴訟において、原告らが本件
許可処分の違法事由として主張することは許されない。
 また、四号の要件に係る事項であっても、原告らの自己の利益に関係のない事由
は、同様に本件許可処分の違法事由として主張することは許されない。
一 無効確認訴訟における違法主張の制限
1 行訴法一〇条一項の規定とその趣旨の類推取消
 訴訟においては、処分の違法性に関する主張制限の規定が置かれている(行訴法
一〇条一項)が、無効確認訴訟にはこれを準用する旨の規定がない。しかしなが
ら、取消訴訟に関する右規定の趣旨は、無効確認訴訟にも類推されるというべきで
ある。
(一) 取消訴訟は、判決によって違法な行政作用を排除し、公益に資することを
目的とするものではなく、行政庁の違法な処分によって自らが被っている権利利益
の侵害を排除し、自己の権利利益の救済を図ることを目的とする主観訴訟である。
したがって、取消訴訟において、原告が主張し得るのは、すべての違法事由ではな
く、自己の法律上の利益に関係のあるものに限られるべきであり、それに関係のな
い主張を許すことは、右の取消訴訟の趣旨に反する。行訴法一〇条一項は、この当
然のことを規定したものとされる(杉本良吉・行政事件訴訟法の解説四〇ペー
ジ)。原子炉設置許可処分取消訴訟に係る伊方判決が、裁判所における審判の対象
を原子炉等規制法二四条一項三号(技術的能力に係る部分に限る。)及び四号の各
要件に限定しているのも、右の趣旨を前提としたものと解される。
 一方、無効確認訴訟もまた主観訴訟であって、行政庁の処分によって原告自身の
被っている権利利益の侵害の救済を目的とするものである点で取消訴訟と共通の性
質を有するものである。そうすると、無効確認訴訟においても、自己の法律上の利
益と関係のない違法事由の主張を認める理由はないから、取消訴訟について当然の
ことを定めた行訴法一〇条一項の規定の趣旨は当然無効確認訴訟にも及ぶというべ
きである(園部逸夫編・注解行政事件訴訟法一八○ページ、南博方編条解行政事件
訴訟法四二〇ページ参照)。
(二) このことは、最高裁平成四年九月二二日第三小法廷判決・民集四六巻六号
五七一ページ(以下「もんじゅ判決」という。)の論理からも、推し量ることがで
きる。
 すなわち、もんじゅ判決は、設置許可申請に係る原子炉の周辺に居住し、原子炉
事故等がもたらす災害により生命、身体等に直接的かつ重大な被害を受けることが
想定され
る範囲の住民は、原子炉設置許可処分の無効確認を求めるにつき、行訴法三六条に
いう「法律上の利益を有する者」に該当肛すると判示した。そして、その理由とし
て、①行訴法三六条にいう当該処分の無効等の確認を求めるにつき「法律上の利益
を有する者」の意義については、取消訴訟の原告適格(行訴法九条)と同義に解す
るのが相当であるとした上、②原子炉等規制法二四条一項の三号(技術的能力に係
る部分に限る。)及び四号が原子炉設置許可基準として設けられた趣旨、右各号が
考慮している被害の性質等にかんがみると、右各号は、単に公衆の生命、身体の安
全、環境上の利益を一般的公益として保護しようとするにとどまらず、原子炉施設
周辺に居住し、右事故等がもたらす災害により直接的かつ重大な被害を受けること
が想定される範囲の住民の生命、身体の安全等を個々人の個別的利益としても保護
すべきものとする趣旨をも含むと解するのが相当であるとした。このように、もん
じゅ判決は、無効確認訴訟における周辺住民の原告適格を基礎づける根拠規定を、
取消訴訟の場合と同様、周辺住民の法律上の利益を保護する趣旨を含む原子炉等規
希法二四条一項の三号(技術的能力に係る部分に限る。)と四号とに限定してい
る。そして、伊方判決のように、原子炉設置許可処分の取消訴訟において主張し得
る違法事由が右規定に係る事由に限定されることからすると、無効確認訴訟におい
て原告適格を認められた周辺住民が主張し得る違法事由もまた、原告適格を肯定す
る根拠規定たり得る同項の三号(技術的能力に係る部分に限る。)と四号とに限定
され、その他の各号は自己の「法律上の利益」に関係しない違法として主張し得な
いと解することが、もんじゅ判決の趣旨に合致することになる。
(三) したがって、無効確認訴訟においても、「自己の法律上の利益に関係のな
い違法」を無効事由として主張することはできない。
2 原告らの主張に対する反論原告らは、無効確認訴訟に行訴法一〇条一項の趣旨
を及ぼすことを否定し、その理由として、同項が準用されていないのは、無効は何
人に対する関係においても無効であり、取消しの場合のように原告との関係におい
て相対的に決する余地はないから、取消しの理由を制限する同条の規定を準用すべ
きではないことを挙げる(原告ら準備書面(二)第一の四2)。しかしながら、原
告らの右主張は、以下に述べるとおり失当である。
(一) 既に述べたように、無効確認訴訟は、取消訴訟と同様に主観訴訟であり、
行訴法三六条にいう「法律上の利益を有する者」の意義は取消訴訟に関する行訴法
九条にいう「法律上の利益を有する者」と同義である(もんじゅ判決)。そして、
行訴法一〇条一項は、行訴法九条とともに、取消訴訟が主観訴訟であることの当然
の帰結であるから、同じく自己の権利利益の救済を目的とする主観訴訟である無効
確認訴訟においても行訴法一〇条一項の規定の趣旨が及ぼされてしかるべきであ
る。
(二) また、取消訴訟においても処分の違法事由として無効事由を主張し得るこ
とは争いがなく、この場合には当然行訴法一〇条一項の規定が適用されるのである
から、たまたま出訴期間を経過したことにより無効原因のみを主張して争われるこ
とになったとしても、同じ主観訴訟に属する取消訴訟と無効確認訴訟とで、右規定
についての取扱いを異にする理由はない(園部逸夫編・注解行政事件訴訟法四六九
ページ、南博方編・条解行政事件訴訟法八三四ページ参照)。
(三) 原告らの指摘する「無効は何人との関係においても無効である」という原
則から、直ちに訴訟において原告の主張し得る違法事由が自己の法律上の利益と無
関係でよいとされるものではない。無効となる違法事由は、主観訴訟という制度に
内在する制約を受け、原告の法律上の利益に関係する重大かつ明白な違法に限定さ
れるのである。ちなみに、無効確認訴訟に準用されていない取消訴訟の規定であっ
ても、例えば、裁量処分の無効確認訴訟に係る最高裁昭和四二年四月七日第二小法
廷判決・民集二一巻三号五七二ページや、無効確認訴訟における事情判決に係る大
阪高裁昭和六一年二月二五日判決・判例時報一一九九号五九ページなどのように、
裁判例によってその趣旨が類推される例はある。以上のとおり、取消訴訟の規定が
単に準用されていないということだけで、無効確認訴訟においてその趣旨を類推す
ることが否定されるものではないことは明らかである。行訴法一〇条一項の規定は
取消訴訟が主観訴訟であることの当然の帰結であるから、同じく主観訴訟に属する
無効確認訴訟にも当然その規定の趣旨が類推されると解すべきものである。
3 原子炉等規制法についての検討
(一) 以上を前提として、原子炉等規制法二四条一項の各号について検討する
に、同項の一号、二号及び三号(経理的基礎に係る部分に限る。)の要件に
係る違法は、原告らの法律上の利益と関係のないものであるから、違法事由として
主張し得ない。
すなわち、原子炉等規制法二四条一項各号のうち、一号は「原子炉が平和の目的以
外に利用されるおそれがないこと。」と、二号は「その許可をすることによって原
子力の開発及び利用の計画的な遂行に支障を及ぼすおそれがないこと。」と、それ
ぞれ規定している。右各要件が定められた趣旨は、原子力の研究、開発及び利用を
専ら平和の目的に限り、かつ、原子力の開発及び利用を長期的視野に立って計画的
に遂行するとの我が国の原子力に関する基本政策に適合せしめ、もって広く国民全
体の公益の増進に資することにある。このような趣旨からみて、右各号が原子炉施
設の周辺住民等の個人的利益の保護を目的として被告の許可権限の行使に制約を課
したものではないことは明らかである。
 また、三号のうち経理的基礎に係る部分は、原子炉の設置には多額の資金を要す
ることにかんがみ、設置者には原子炉の設置、運転等をするに足りる十分な資金的
裏付けがあることを要するとするものである。したがって、この要件も、原子炉施
設の周辺住民等の個人的利益の保護を目的として被告の許可権限の行使に制約を課
したものでないことが明らかである。けこれに対し、原子炉等規制法二四条一項の
三号(技術的能力に係る部分に限る。)と四号は、原告適格を基礎づける根拠規定
であるから(もんじゅ判決)、これらの規定に違反する違法は、原告らの自己の法
律上の利益に関係する違法である。もっとも、同項の三号(技術的能力に係る部分
に限る。)と四号は、いずれも規定の内容が抽象的であり、その規定に違反する事
由には法が保護しょうとする原告の個別的利益に関するもののみならず種々のもの
があるから、その規定に違反する事由であればどのようなものでも違法事由として
主張し得るわけではなく、原告らはその個別的な権利利益に関係する具体的違法事
由に限って主張できることになる(水戸地裁昭和六〇年六月二五日判決・行裁例集
三六巻六号八六二ページ参照)。
 したがって、右各要件に係る違法の主張であってもその具体的内容が原告らの自
己の法律上の利益に関係のない事項に係るものは、審理の対象とはならない。
二 原告らの違法事由の主張のうち制限されるべきもの
1 原子炉等規制法二四条一項一号、二号及び三号(経理的基礎に係る部分に限
る。)の各要件に係る違法事
由の主張について
 一で述べたように、原子炉等規制法二四条一項一号、二号及び三号(経理的基礎
に係る部分に限る。)の各要件に係る違法事由は、本件訴訟において主張すること
は許されない(なお、被告は、念のため、準備書面(三)第二章第二において、本
件許可処分が原子炉等規制法二四条一項一号、二号及び三号(経理的基礎に係る部
分に限る。)の各要件に適合することについても述べた。)。
2 労働者被ばくに関する主張について
 原告らは、労働者被ばくは年々増加しており、遺伝的影響の観点から考えると、
周辺住民に与える影響は大きいが、この点を看過してされた本件許可処分には重大
かつ明白な瑕疵があると主張する(訴状三八二ないし三九〇ページ、原告ら準備書
面(二)第一の二1)。
 しかし、原告らの右主張は、原子炉等規制法二四条一項四号の要件に係る主張で
あるとしても、要するに従業員の安全性に関する事項であり、周辺住民である原告
らの法律上の利益と関係がないことが明らかである。したがって、右違法事由も主
張することは許されず、本件訴訟における審理の対象とならない(なお、本件安全
審査においては、放射線業務従業者が不必要な放射線被ばくを受けないように、適
切な放射線防護設備及び放射線管理設備が設置されることを確認していることはい
うまでもない(乙第九号証一一九ないし一二二ページ))。
第三 原子炉設置許可処分の無効確認訴訟における審理・判断の方法と主張・立証
責任
 以下においては、本件訴訟の審理の対象となる実体的適法性の要件(原子炉等規
制法二四条一項三号のうちの技術的能力に係る要件及び四号要件)について、その
適合性の判断が高度の科学的、専門技術的知見に基づく総合判断であり、これを前
提とした司法審査をすべきであることを述べる。
一 本件許可処分の性質
 原子炉等規制法二四条一項三号(技術的能力に係る部分に限る。)と四号の規定
の趣旨は、原子炉が原子核分裂の過程において高エネルギーを放出する核燃料物質
を燃料として使用する装置であり、その稼働により、内部に多量の人体に有害な放
射性物質を発生させるものであって、原子炉を設置しようとする者が原子炉の設
置、運転につき所定の技術的能力を欠くとき、又は原子炉施設の安全性が確保され
ないときは、当該原子炉施設の従業員やその周辺住民等の生命、身体に重大な危害
を及ぼし、周辺の環境を放射能によって汚染するな
ど、深刻な災害を引き起こすおそれがあることにかんがみ、右災害が万が一にも起
こらないようにするため、原子炉設置許可の段階で、原子炉を設置しようとする者
の右技術的能力と、申請に係る原子炉施設の位置、構造及び設備の安全性につき、
科学的、専門技術的見地から十分な審査を行わせることにある。
 右の技術的能力を含めた原子炉施設の安全性に関する審査は、当該原子炉施設そ
のものの工学的安全性、平常運転時における従業員、周辺住民及び周辺環境への放
射線の影響、事故時における周辺地域への影響等を、原子炉設置予定地の地形、地
質、気象等の自然的条件、人口分布等の社会的条件及び当該原子炉設置者の技術的
能力との関連において、多角的、総合的見地から検討するものであり、しかも、右
審査の対象には、将来の予測に係る事項も含まれているのであって、右審査におい
ては、原子力工学はもとより、多方面にわたる極めて高度な最新の科学的、専門技
術的知見に基、つく総合的判断が必要とされるものである。原子炉等規制法二四条
二項が、内閣総理大臣は、原子炉設置の許可をする場合においては、同条一項三号
(技術的能力に係る部分に限る。)及び四号所定の原子炉設置許可の基準の適合性
について、あらかじめ原子力安全委員会の意見を聴き、これを尊重してしなければ
ならないと定めているのは、右のような原子炉施設の安全性に関する審査の特質を
考慮し、右各号所定の基準の適合性については、各専門分野の学識経験者等を擁す
る原子力安全委員会の科学的、専門技術的知見に基づく意見を尊重して行う内閣総
理大臣の合理的な判断にゆだねる趣旨と解するのが相当である(伊方判決参照)。
二 審理・判断の方法
1 概説
 以上述べたような安全審査及び処分の構造に照らせば、原子炉施設の安全性に関
する判断の適否が争われる原子炉設置許可処分の無効確認訴訟における裁判所の審
理・判断は、裁判所が、右各要件の適合性について改めて独自の審理を行い、その
結果と本件許可処分における判断とを対比して直接その胎適否を決するという方法
(いわゆる司法判断代置方式)は採られるべきではない。本件訴訟における裁判所
の審理・判断は、原子力安全委員会の専門技術的な調査審議及び判断を基にしてさ
れた行政庁の判断に重大かつ明白な瑕疵と評し得る不合理な点があるか否かという
観点から行われるべきである。
 伊方判決も、原子炉設置許可処分の取
消訴訟における裁判所の審理、判断について、「原子力委員会若しくは原子炉安全
専門審査会の専門技術的な調査審議及び判断を基にしてされた被告行政庁の判断に
不合理な点があるか否かという観点から行われるべき」と判示している。
2 違法判断の基準時
 ところで、伊方判決は、原子炉等規制法二四条一項の三号(技術的能力に係る部
分に限る。)と四号の各要件適合性について、「現在の科学技術の水準に照らし、
右調査審議において用いられた具体的審査基準に不合理な点があり、あるいは当該
原子炉施設が右の具体的審査基準に適合するとした原子力委員会若しくは原子炉安
全専門審査会の調査審議及び判断の過程に看過し難い過誤、欠落があり、被告行政
庁の判断がこれに依拠してされたと認められる場合には、被告行政庁の右判断に不
合理な点があるものとして、右判断に基づく原子炉設置許可処分は違法と解すべき
である。」と判示する。
 右判決のうち「現在の科学技術水準に照らし」と判示する部分の趣旨は、必ずし
も明確ではないが、同判決が違法判断の基準時としていわゆる処分時説を排したと
解することはできない。
 そもそも、取消訴訟における違法判断の基準時については、行政庁の一次的判断
権を尊重する観点から、いわゆる処分時説を採ることが判例上確立している(最高
裁昭和二七年一月二五日第二小法廷判決・民集六巻一号二二ページ、最高裁昭和二
八年一〇月三〇日第二小法廷判決・行裁例集四巻一〇号二三一六ページ、最高裁昭
和三四年七月一五日第二小法廷判決・民集一三巻七号一〇六二ページ参照)。伊方
判決がこのように判例法上確立されている処分時説を排したとする根拠は全くな
い。
 してみると、右判決が、原子炉設置許可処分の適法性を現在の科学技術の水準に
よって審理、判断すべきであると判示したのは、科学技術が不断に進歩、発展して
いくものであり、訴訟においてする科学技術に係る事項の判断は科学的経験則の問
題であることにかんがみ、処分時に用いた科学技術の知見がその時点で通説的見解
であっても、その後誤りが指摘され、従来の見解が誤りであったことが現在(裁判
時)の通説的見解になった場合には、裁判所が科学的経験則として現在の通説的見
解を適用して処分の当否を判断すべきであるとしたものであろう。
 ところで、処分後の新知見によって処分時の知見が誤っているとされる場合であ
っても、なお基本設計ないし基本的
設計方針における安全確保対策によって原子炉の安全性を確保し得るのであれば、
「災害の防止上支障がないこと」(原子炉等規制法二四条一項四号)に該当し、当
該処分は違法とはならない。
 したがって、処分後の新知見により当該処分が違法とされるのは、新知見を考慮
に入れれば、当該処分の依って立つ基本設計ないし基本的設計方針中の原子炉の安
全性の根幹にかかわる知見が誤っており、その結果、これを適用してした安全審査
の合理性が失われる場合に限られる。換言すれば、原子炉の事故防止対策のうちの
安全上必要不可欠の知見が誤っており、その基本設計ないし基本的設計方針どおり
の原子炉を設置し、将来これを稼働させた場合には重大な事故が起こる可能性が高
いと判断される場合に限って、取り消し得べき違法と評価されるのである(最高裁
判所判例解説民事編平成四年度三九九ページ以下参照)。
3 要約
 そうすると、裁判所は、原子炉等規制法二四条一項の三号(技術的能力に係る部
分に限る。)と四号の各要件の適合性について、右各要件適合性の調査審議に用い
られた具体的審査基準に重大かつ明白な瑕疵と評し得る不合理な点があり、あるい
は、当該原子炉施設が右の具体的審査基準に適合するとしたその調査審議及び判断
の過程に重大かつ明白な瑕疵と評し得る過誤、欠落があり、被告の判断がこれに依
拠してされたと認められる場合に限って、被告の右判断に重大かつ明白な瑕疵があ
り、右判断に基づく本件許可処分が無効であることを確認できるというべきであ
る。
4 原告らの主張に対する反論
 原告らは、本件原子炉施設は、①ナトリウム漏えい火災による危険がある、②蒸
気発生器伝熱管大量破損の危険性がある、③出力暴走して炉心崩壊が起こる危険性
がある、④地震によって倒壊する危険があるなどとし、本件原子炉施設の安全性の
欠如が明らかになったから、本件安全審査に重大かつ明白な違法があると主張す
る。原告らの右主張の趣旨は必ずしも明確ではないが、
 原告らは、本件訴訟において、裁判所が、本件原子炉施設そのものの安全性の有
無を審理・判断することを前提に右主張をするもののように解し得る。原告らの主
張が右の趣旨であるとすると、右主張は、以下に述べるとおり、失当である。
 すなわち、本件訴訟の審理の対象は、本件許可処分につき定められた手続的要件
と実体的要件(原子炉等規制法二四条一項三号のうちの技術的能力に係
る要件と四号要件)の各適合性である。そして、右実体的要件適合性の審理・判断
の方法としては、前記一及び二1で述べたとおり、裁判所は、原子力安全委員会の
専門技術的な調査審議及び判断を基にしてされた行政庁の判断に重大かつ明白な瑕
疵と評し得る不合理な点があるか否かという観点から行うべきであり、右各要件に
ついて改めて独自の審理を行い、その結果と本件許可処分における判断とを対比し
て直接その適否を決するものではない。まして、裁判所は、本件訴訟において本件
原子炉施設そのものの安全性の有無を直接審理.判断するのではない。
三 主張・立証責任
 本件許可処分の無効事由は、以下に述べるとおり、原告らにおいて具体的な事実
に基づいて主張・立証すべきであり、具体的な事実に基づかない無効の主張は主張
自体失当である。
1 無効確認訴訟における主張・立証責任
 無効確認訴訟における主張・立証責任については、処分の無効を主張する原告に
おいて、行政庁の認定に重大かつ明白な瑕疵があることを具体的な事実に基づいて
主張・立証すべきであり、単に抽象的に処分に重大かつ明白な瑕疵があると主張す
るだけでは足りないというのが、確立した判例である(最高裁昭和三四年九月二二
日第三小法廷判決・民集一三巻一一号一四二六ページ、最高裁昭和四二年四月七日
第二小法廷判決・民集二一巻三号五七二ページ)。
 けだし、行訴法上、無効確認訴訟は、取消訴訟に対して、その原告適格が制限さ
れるなど例外的、補充的な訴訟形式として位置づけられており(行訴法三六条参
照)、①取消訴訟と異なり、出訴期間が経過し、処分の通用力の存在が形式的に確
定した後においても処分の無効を主張することができ、②無効事由は取消事由と質
的に相違があり、その瑕疵について重大かつ明白という要件が付加されているから
である。
 したがって、本件訴訟においても、原告らにおいて、本件許可処分に重大かつ明
白な瑕疵があることを具体的な事実に基づいて主張・立証すべきである。
2 裁量処分という性質からみた主張・立証責任原子炉等規制法二四条一項の三号
(技術的能力に係る部分に限る。)と四号の各要件適合性の判断は、多方面にわた
る極めて高度な科学的、専門技術的な知見に基づく総合的な判断を要するものであ
ることは、前示のとおりである。この観点からみても、行政庁の裁量にゆだねられ
た事項について、その行政庁の裁量判断に不合理
な点があることの主張・立証責任は、これを争う原告らが負うべきである(行訴法
三〇条参照、最高裁昭和四二年四月七日第二小法廷判決・民集二一巻三号五七二ペ
ージ)。
 ところで、伊方判決は、「原子炉設置許可処分についての右取消訴訟において
は、右処分が前記のような性質を有することにかんがみると、被告行政庁がした右
判断に不合理な点があることの主張、立証責任は、本来、原告が負うべきものと解
されるが、当該原子炉施設の安全審査に関する資料をすべて被告行政庁の側が保持
していることなどの点を考慮すると、被告行政庁の側において、まず、その依拠し
た前記の具体的審査基準並びに調査審議及び判断の過程等、被告行政庁の判断に不
合理な点のないことを相当の根拠、資料に基づき主張、立証する必要があり、被告
行政庁が右主張、立証を尽くさない場合には、被告がした右判断に不合理な点があ
ることが事実上推認されるものというべきである」と判示している。
 右判決は、取消訴訟においては、行政庁に、事実上その判断に不合理な点がない
ことについて主張・立証の必要があるとしただけであって、本来の主張・立証責任
が原告にあるとしていることは明らかである。
3 事実上の主張・立証の必要
 なお、伊方判決は、原子炉設置許可の取消訴訟について、立証の難易ないし公平
の観点から、事実上その判断に不合理な点のないことを主張・立証する必要性があ
るとし、行政庁が右主張・立証を尽くさないときにその判断に不合理な点があるこ
とを事実上推認するという手法を採っている。これは、取消訴訟においてはいまだ
処分の通用力の存在が形式的には確定していないことに照らせば、一応の合理性が
あるといえよう。
 しかしながら、無効確認訴訟は、処分の通用力の存在が形式的に確定した後にお
いて処分の効力を争うものであって、行訴法上も前記のとおり例外的、補充的な訴
訟形式として位置づけられていることに照らすと、このような訴えについてまで、
立証の難易ないし公平の観点から右のような手法を採るべき必要性は全くない。か
えって、出訴期間の制限のない無効確認訴訟において右のような手法をとると、時
間の経過に伴う資料の散逸のおそれなどから、被告に対して過酷な主張・立証の必
要を課することになりかねず、公平にも反する。
 したがって、本件訴訟においては、原告らにおいて、本件許可処分に重大かつ明
白な瑕疵があることを具体的
な事実に基づいて主張・立証すべきであり、取消訴訟と同様の事実上の推認をする
ことは許されない(もっとも、被告は、以上の理論的立場は別にして、本件訴訟に
おいて、本件許可処分が手続と実体の両面にわたって適法であることを具体的事実
に基づき十分に主張・立証を尽くしてきた。)。
4 原告らの主張に対する反論
 原告らは、本件許可処分の判断に不合理な点があることの主張・立証は、被告の
側でまず、その安全性に欠ける点のないことについて十分な根拠を示し、かつ、非
公開の資料を含む必要な資料を提出した上で立証する必要があり、被告が右立証を
尽くさない場合には、本件許可処分の判断に不合理な点があることが事実上推定さ
れると解すべきであると主張する。
 しかしながら、前記3で述べたとおり、無効確認訴訟である本件訴訟において
は、原告らにおいて、本件許可処分に重大かつ明白な瑕疵があることを具体的な事
実に基づいて主張・立証すべきであり、取消訴訟と同様の事実上の推認をすること
は許されない。したがって、原告らの右主張は理由がない(原告らの右主張は、原
子炉設置許可処分の取消訴訟に係る伊方判決が、事実上の主張・立証の必要につい
て、「被告行政庁の側において、まず、依拠した前記(注・安全審査を指す。)の
具体的審査基準並びに調査審議及び判断の過程等、被告行政庁の判断に不合理な点
のないことを相当の根拠、資料一に基づき主張、立証する必要があり」と判示する
ところを超えて、何らの法的根拠もなく独自の見解を述べるものであって、この点
において既に失当である。なお、原告最終準備書面三四、三五ページの記載は同準
備書面第三章の結論部分であるが、行政訴訟と民事訴訟とを混同したものと言わざ
るを得ず、回章のそれまでの論述とも適合しないものである。)。
第四 まとめ
 以上のとおり、本件訴訟の審理の対象は、被告が原子炉等規制法二三条、二四条
に基づいてした本件許可処分について、①重大かつ明白な瑕疵と評し得る手続的要
件違反があるか否か、②重大かつ明白な瑕疵と評し得る実体的要件違反があるか否
かの二点である。
 そして、②の実体的要件に関しては、原子炉等規制法二四条一項の三号(技術的
能力に係る部分に限る。)と四号の各要件適合性のみが審理の対象となる。これら
の要件適合性は、被告の高度な科学的、専門技術的な知見に基づく総合的な判断で
あるから、(a) 被告が本件許可処
分に際して意見を聴いた原子力安全(委員会の調査審議に用いられた具体的な審査
基準に重大かつ明白な瑕疵と評し)得る不合理な点があり、あるいは、(b) そ
の調査審議及び判断の過程に重大かつ(明白な瑕疵と評し得る過誤、欠落又は著し
い不合理があり、このため、右意見を尊重してした本件許可処分に重大かつ明白な
瑕疵があるか否かの点について審理・判断されるべきである。
本件許可処分の手続的適法性
 本件許可処分は、以下に述べるとおり、原子炉等規制法二三条、二四条の規定に
のっとって行われたものであり、手続的に適法である。
 第一原子炉設置許可の手続研究開発段階にある原子炉の設置許可申請から設置許
可に至るまでの手続は、次のとおりである。
一 研究開発段階にある原子炉を設置しようとする者は、原子炉等規制法二三条、
原子炉等規制法施行令六条、原子炉規則一条の三に基づき、内閣総理大臣に対し、
原子炉の設置許可申請を行う。内閣総理大臣は、右許可申請が原子炉等規制法二四
条一項各号所定の許可要件に適合しているか否かを審査する。審査は、その所部の
機関である科学技術庁が行う。
二 科学技術庁は、右審査に当たり、必要に応じ、原子力安全技術顧問(原子力の
安全に関する各専門分野において、高度な専門技術的知見を持つ学識経験者の中か
ら、科学技術庁長官が委嘱した者)からその専門技術的見地からの意見を徴する。
科学技術庁は、その意見を求めるに当たり必要があるときは、関係の原子力安全技
術顧問による会合を開催する。
三 内閣総理大臣は、右許可申請の原子炉等規制法二四条一項一号、二号及び三号
(経理的基礎に係る部分に限る。)の各要件適合性については原子力委員会に、同
項三号(技術的能力に係る部分に限る。)及び四号の各要件適合性については原子
力安全委員会にそれぞれ諮問する。右諮問に際しては、科学技術庁が行った安全審
査の内容をまとめた安全審査書案が原子力安全委員会に提出される。
四 原子力委員会は、申請が原子炉等規制法二四条一項一号、二号及び三号(経理
的基礎に係る部分に限る。一の各要件に適合するか否かについて審議し、内閣総理
大臣に対しその結果を答申する。
五1 原子力安全委員会は、申請が原子炉等規制法二四条一項三号(技術的能力に
係る部分に限る。)及び四号の各要件に適合するか否かについて審議し、内閣総理
大臣に対しその結果を答申する。
2 原子力安全委員会は
、四号の要件適合性については、必要に応じ、同委員会に設置されている原子炉安
全専門審査会(以下「安全審査会」という。)にその調査審議を指示する(原子力
委員会及び原子力安全委員会設置法一六条)。
3 安全審査会は、原子炉の安全性に関する専門の事項について適切かつ効率的に
調査審議を行うため部会を置くことができ(原子炉安全専門審査会運営規程七
条)、通常は、原子炉設置許可申請ごとに部会が置かれる。部会は、調査審議の方
針等を検討した上、専門分野別にグループ分けを行い、グループ単位あるいは部会
全体で調査審議を行う。部会は、その状況及び結果を適宜安全審査会に報告し、安
全審査会における審議に付する。
4 さらに、原子力安全委員会は、四号の要件適合性を審議するに当たり、公開ヒ
アリング等を実施して、当該原子炉施設固有の安全性について地元住民の意見等を
聴取し、これを参酌する(「原子力安全委員会の当面の施策について」昭和五三年
一二月二七日原子力安全委員会決定、昭和五七年一一月二五日一部改正)。
六 内閣総理大臣は、原子力委員会及び原子力安全委員会の右各答申を十分に尊重
し(原子炉等規制法二四条二項)、またあらかじめ通商産業大臣の同意(原子炉等
規制法七一条一項一号)を得た上、当該設置許可申請の許否について最終的な判断
をし、処分を行う。
第二 本件許可処分の手続的適法性
 本件許可処分は、以下に述べるとおり、第一で述べた手続にのっとって行われ
た。
一 申請者は、昭和五五年一二月一〇日、内閣総理大臣に対し、原子炉等規制法二
三条に基づき、本件許可申請をした(なお、申請者は、昭和五六年一二月二八日と
昭和五八年三月一四日の二回にわたって、右申請書及び同添付書類の一部を補正し
た。)。
二1 内閣総理大臣は、直ちに、科学技術庁に右申請に係る審査を行わせた。
2 科学技術庁は、必要に応じ、原子力安全技術顧問から専門技術的見地からの意
見を聴取する(乙第一七号証四、五ページ)などした上、本件許可申請は原子炉等
規制法二四条一項各号の許可要件に適合すると判断した。
三 内閣総理大臣は、昭和五七卑五月一四日、科学技術庁の右意見を付して、本件
許可申請につき、原子炉等規制法二四条一項一号、二号及び三号(経理的基礎に係
る部分に限る。)の各要件適合性については原子力委員会に、また、同項三号(技
術的能力に係る部分に限る。)及び四号の各要件適合性につ
いては原子力安全委員会にそれぞれ諮問した。原子力安全委員会への諮問に際して
は、科学技術庁における安全審査の内容をまとめた安全審査書案(乙第九号証、昭
和五七年三月作成。なお、昭和五八年三月にその一部が修正されている(乙第一〇
号証)。)を原子力安全委員会に提出した(乙第一七号証五、六ページ)。
四 原子力委員会は、右諮問を受けて審議した結果、昭和五八年四月二六日、内閣
総理大臣に対し、本件許可申請が右各要件に適合していると認める旨答申した(乙
第一七号証六、七ページ)。
五1 原子力安全委員会は、右諮問を受けて、昭和五七年五月一四日、安全審査会
に対し原子炉等規制法二四条一項四号に係る事項について調査審議を指示した。安
全審査会は、当時、原子炉工学、核燃料工学、熱工学、放射線物理学等の原子炉施
設に関する専門的分野を始め、地震学、地質学及び気象学等に及ぶ広範な分野から
選ばれた審査委員四四人により構成されていた(乙第一七号証七ページ)。
2 安全審査会は、右指示に係る調査審議を適切かつ効率的に行うため、昭和五七
年五月一八日、二八人の審査委員から成る第一六部会を設置した。
 同部会は、主として原子炉施設に係る事項を担当するAグループ、主として公衆
の被ばく線量評価等の環境面に係る事項を担当するBグループ、主として地質・地
盤、地震、耐震設計等の自然的立地条件に係る事項を担当するCグループに分か
れ、各グループにおいて詳細な検討をした。また、同部会は、随時、全体の会合を
開いて各グループに関係する事項の検討を行い、現地調査も行った。そして、同部
会は、適宜その審査状況を安全審査会に報告し、安全審査会における審議に付した
(乙第一七号証七、八ページ)。
 第一六部会における会合等の開催回数は、次のとおりである。
全体会合      七回
現地調査      八回
Aグループ  会合二一回
Bグループ  会合一四回
Cグループ  会合一〇回
3 原子力安全委員会は、昭和五七年七月二日、福井県敦賀市において公開ヒアリ
ングを開催した。右公開ヒアリングにおいて提出された意見等のうち、原子炉等規
制法二四条一項三号(技術的能力に係る部分に限る。)に係る事項については、直
接これを参酌し、同項四号に係る事項については、同年九月二日、安全審査会にこ
れを参酌するよう指示した(乙第一七号証八、九ページ)。
4 第一六部会は、昭和五八年四月一二日
、それまでの調査審議の結果を安全審査会に報告した。安全審査会は、右報告を基
に調査審議を更に行い、同年四月二〇日、本件許可申請が原子炉等規制法二四条一
項四号の要件に適合すると判断する旨の調査審議結果を原子力安全委員会に報告し
た(乙第一七号証九ページ)。
5 原子力安全委員会は、本件許可申請の原子炉等規制法二四条一項三号(技術的
能力に係る部分に限る。)の要件適合性については自ら審議し、また、同項四号の
要件適合性については安全審査会の右報告を踏まえた上で審議した。その結果、原
子力安全委員会は、昭和五八年四月二五日、内閣総理大臣に対し、本件許可申請が
右各要件に適合していると認める旨答申した(乙第一七号証九、一〇ページ)。
六 内閣総理大臣は、原子力委員会及び原子力安全委員会の右各答申を十分に尊重
し、また、昭和五八年四月二八日に通商産業大臣の同意を得た上、本件許可申請が
原子炉等規制法二四条一項各号の要件に適合していると判断し、同年五月二七日、
原子炉等規制法二三条一項に基づき、本件許可処分をした(乙第一七号証一〇ペー
ジ)。第三 原告らの主張に対する反論
一 原子力三原則違反の主張について
原告らは、本件許可処分の審査手続には「自主、民主、公開」を規定する原子力基
本法二条の適用があるとの前提に立って、安全審査会の審査過程と審査資料が非公
開であることや、公開ヒアリングの手続が非民主的であることは、同条に違反する
と主張する(訴状九三ないし九六ページ、原告ら準備書面(二)第一の二)。
 しかしながら、原子力基本法は、原子力の研究、開発及び利用の全般にわたる包
括的な法規範ではあるものの、それぞれの法規制の具体的な内容のほとんどすべて
を他の法律にゆだねている。したがって、同法が直接国民の権利義務に影響を及ぼ
したり、国民と国家との間の具体的な法律関係を形成することはない(同法一九条
につき、最高裁昭和三六年一二月七日第一小法廷判決・民集一五巻一一号二六八五
ページ参照。原子炉設置許可処分につき、高松高裁昭和五九年一二月一四日判決・
行裁例集三五巻一二号二〇七八ページ、仙台高裁平成二年三月二〇日判決・行裁例
集四一巻三号五八六ページ、水戸地裁昭和六〇年六月二五日判決・行裁例集三六巻
六号八四四ページ参照)。
 そして、同法二条に規定する原子力の研究、開発及び利用に関する民主、自主及
び公開の各原則(いわゆる原子力三原
則)は、同法の法的性格、原子力三原則の内容自体から明らかなとおり、原子力の
研究、開発及び利用にかかわりを有するすべての者がそのよりどころとすべき基本
的精神ないし基本方針を宣言したものであって、個々の原子力の利用に係る許可手
続を直接規制するものではない。
 したがって、原告らの右主張は、その前提において失当である。
二 審査体制に関する主張について
 原告らは、本件安全審査における原子力安全委員会、安全審査会の構成は不公正
であり、反対派が存在しないため、委員会での議論は原子炉の安全性についての総
合的な議論がされる仕組みとなっておらず、このような構成による右委員会のした
判断に基づく本件許可処分は重大かつ明白な瑕疵があると主張する(訴状八九ペー
ジ)。しかしながら、原子力安全委員会や安全審査会の構成員は、いずれも法令の
規定に基づき、所要の専門技術的な知見を有する専門家が適切に選定されており、
原告らの指摘するような事実はない(乙第一七号証七ページ、乙第一八号証三五四
ないし三五六ページ)。
第三章 本件許可処分の実体的適法性
 本件許可処分は、原子炉等規制法二四条一項三号(技術的能力に係る部分に限
る。)と四号に適合するものであって、実体的にも適法である。
第一 原子炉等規制法二四条一項三号要件(技術的能力に係る部分に限る。)適合
性の審査
 被告は、以下に述べるとおり、申請者は、原子炉等規制法二四条一項三号に規定
する技術的能力を有するものと判断した(乙第一四号証の三の四ページ)。
一 技術的能力に係る要件の審査原子炉等規制法二四条一項三号のうち、技術的能
力に係る要件に適合しているかどうかについての審査は、原子炉が高度の技術を集
約して建設、運転されることにかんがみ、主として原子炉の建設、運転による災害
の防止を図るという観点から、申請者がそれに必要な組織、要員を確保することに
なっているか等を中心に、人的、組織的な面から事業者としての適格性があるか否
かを判断するものである。
二 申請者の技術的能力に係る要件適合性
 被告は、以下の①及び②の事項を確認し、その結果、申請者は、本件原子炉の建
設、運転に当たって、十分な要員を確保しているとともに、業務を適確に遂行する
に十分な人的・組織的体制を準備しており、右技術的能力に係る要件に適合すると
判断した(乙第一四号証の三の四ページ)。
 ①申請者は、本件原子炉施設の建設
に当たり、法令に基づく諸手続、設計、工事計画、品質保証及びこれらに付随する
対外連絡等の業務に本社技術者約一五〇人を直接従事あるいは関与させ、また、本
件原子炉施設運転開始時には約一八○人の技術者を確保することとしている(乙第
一六号証五―四ページ)。右技術者は、それぞれ土木建築系、保健物理(放射線防
護)系、炉物理系等の知識を有しており、管理者の約半数は、高速増殖炉の研究・
開発、計画等に一〇年以上の経験を有している(乙第一六号証五―二ページ)。
 ②申請者は、本件原子炉施設の建設、運転を行うに当たって、建設に必要な組織
(技術者等で組織されるもんじゅ建設事務所等を設置するとともに、運転を適確に
遂行する組織体制を設けることとしている(乙第一六号証五-一ページ)。また、
技術者の養成については、高速実験炉「常陽」と新型転換炉「ふげん」発電所の運
転・保守の実務経験を通じて技術者の養成を行い、原子力関係機関への研修派遣や
「もんじゅ」用のシミュレータでの訓練等を通じても技術者の養成を行うこととし
ている。さらに、原子炉主任技術者及び第一種放射線取扱主任者その他法令上必要
な有資格者を確保している(乙第一六号証五-四、五ページ)。
三 原告らの主張に対する反論
 原告らは、平成七年一二月八日に本件原子炉施設において発生した事故(以下
「本件事故」という。)における事故隠し等によって申請者の危険な体質が明らか
となり、また、申請者が事故の拡大を防止し得ず、通報の遅れ、ビデオ隠し、虚偽
報告等を行ったことは、原子炉等規制法二四条一項三号の技術的能力に係る要件を
欠くものであると主張する(原告ら準備書面(六)七ないし二六、七七、七八ペー
ジ、準備書面(一三)一、二ページ)。しかしながら、原告らの右主張は、右要件
の趣旨を正解しないものであって、失当である。すなわち、右要件は、主として原
子炉の建設、運転による災害の防止を図るという観点から、申請者がそれに必要な
組織、要員を確保することになっているかどうか等を中心に、人的、組織的な面か
ら事業者としての適格性があるか否かを判断するものであることは、前述したとお
りである。
 したがって、原告らの指摘するごとき具体的な事項は、右要件の審査とは何のか
かわりもないものであり、審査の対象とはならない。
 また、原告らは、平成九年三月一一日、申請者の東海再処理工場で発生した、放
射性廃棄物
アスファルト固化工程での火災と爆発事故について、申請者が右事故情報を隠匿
し、虚偽報告を行い、これにより刑事処分を受けたことを指摘し、申請者は原子炉
を適確に運転遂行する能力を欠くとも主張する。
 しかし、原告らの指摘する右事項もまた、原子炉等規制法二四条一項三号の技術
的能力の要件の審査とは何のかかわりもない。右要件の審査の対象が申請者の人
的・組織的な能力に限られることは、前述のとおりであり、個々人の具体的な能力
や対応は審査の対象外であることはいうまでもない。原告らの右主張は、右要件の
趣旨を正解しないものであって、失当である。
 なお、原告らは、三号の技術的能力は、安全審査の対象であるとして、現在の知
見から判断すべきであると主張するが、その趣旨は明らかでない。
 繰り返し述べるように、三号の技術的能力に係る要件は、主として原子炉の建
設、運転による災害の防止を図るという観点から、申請者がそれに必要な組織、要
員を確保することとなっているか等を中心に、人的、組織的な面から事業者として
の適格性があるか否かを判断するものであるから、このような審査基準に基づく判
断が、処分時と裁判時で異なることは一般的には考えられない。本件においても、
右基準を変更すべき理由は何ら見当たらないし、本件三号要件の判断を左右すべき
事情もない。原告らが指摘する前記事情は、いずれも審査対象外の事情であって、
現在の科学技術水準とは関係のない事項である。したがって、原告らの右主張も失
当である。
第二 原子炉等規制法二四条一項四号要件適合性の審査(安全審査)
 被告は、本件安全審査において、以下に述べるとおり、本件許可申請が原子炉等
規制法二四条一項四号の要件に適合すると判断した(乙第九号証一ページ)。
一 安全審査において確認すべき事項
 原子炉等規制法二四条一項四号の規定する原子炉施設の安全の確保とは、その文
言上、核燃料物質、核燃料物質によって汚染された物又は原子炉による災害の防止
上支障がないものであることを意味することが明らかである。したがって、そこで
想定されている原子炉施設の潜在的危険性とは、放射性物質にかかわる危険性であ
る。
 もとより、本件原子炉施設は、プルトニウムを燃料とし冷却材としてナトリウム
を使用するものであり、この点においてウランを燃料とし冷却材として水を使用す
る軽水炉とは異なる。しかしながら、炉心でウランやプル
トニウムなどの重い原子核が中性子を吸収することによって起こる核分裂反応の際
に発生するエネルギーを熱源として利用するという本質的な点においては、本件原
子炉も軽水炉も共通しているのである(軽水炉の仕組みを別紙第一図(以下「別紙
第一図ないし第八図」を単に「第一図ないし第八図という。」に、本件原子炉の仕
組みを第二図にそれぞれ示す。)。
 したがって、本件原子炉施設における安全の確保の問題は、軽水炉と同様、当該
原子炉施設の位置、構造及び設備について、放射性物質の有する危険性を顕在化さ
せない対策をどのように講じるかということにある(本件原子炉施設の構造を第三
図に示す。)。このような観点からは、安全審査において、本件原子炉施設の基本
設計ないし基本的設計方針において確認すべき事項は、液体金属冷却高速増殖炉
(LMFBR)の特徴を踏まえて、
①本件原子炉施設の平常運転によって放射性物質の有する潜在的危険性が顕在化し
ないように、平常運転時における被ばく低減対策が適切に講じられていること
②本件原子炉施設に事故が発生することにより放射性物質の有する潜在的危険性が
顕在化しないように、自然的立地条件との関係をも含めた事故防止対策が適切に講
じられていることの二点に尽きるということができる(P6調書(一)四丁裏ない
し六丁裏)。
 したがって、本来、右①及び②の点が確認されれば、本件原子炉施設の位置、構
造及び設備が、その基本設計ないし基本的設計方針において、原子炉等による災害
の防止上支障がないものであり、申請に係る原子炉施設が原子炉等規制法二四条一
項四号の要件に適合することが確認されていると言ってよい(P6調書(一)四八
丁表)。
 しかし、安全審査においては、右①及び②の点について確認するだけでなく、申
請者の実施した②の事故防止対策に係る安全評価の妥当性をも併せて確認してい
る。この安全評価は、通常運転状態を超えるような異常な事態をあえて想定した上
で解析評価を行い、そのような事態においても、当該原子炉施設の基本設計ないし
基本的設計方針において事故防止対策のために考慮された機器系統などの設計が妥
当であることを念のため確認するものである(P6調書(一)四七丁裏)。このよ
うに、安全審査において右安全評価の妥当性について審査したのは、原子炉施設が
放射性物質を有しているという点を考慮し、念には念を入れるという考え方に基づ
くものである(P6調書(一)四八丁裏)。
二 安全審査における審査基準
 審査基準に関する基本的な考え方原子炉施設の安全性に関する審査は、第一章で
述べたとおり、多方面にわたる極めて高度な科学的、専門技術的知見に基づく総合
的な判断が要求されるものである。しかも、科学技術は不断に進歩、発展するもの
であるから、安全審査の基準を具体的かつ詳細に法律で定めることは、困難である
のみならず、安全審査の弾力性を失わせ、科学技術の進歩、研究の成果を必要に応
じて速やかに取り入れていく上で障害となる。その一方、安全審査の信頼性の確
保、客観性の確保、予測可能性等の観点からは、審査基準を明確にしておくことが
望ましい。
 そこで、原子力安全委員会は、この二つの相反する要請を考慮した上、原子炉施
設の安全性に関する事項について、各種の審査基準(昭和五三年一〇月以前に原子
力委員会が定めたもので、原子力安全委員会の設置に伴い、同委員会が用いること
としているものを含む。)を定め、安全審査に当たっては、右審査基準を適用し、
又は参考にしている(乙第九号証二八、二九ページ)。
 また、本件許可申請に対しては、事前に、計画中の原子炉がLMFBRであるこ
とを念頭に調査審議を行い、「高速増殖炉の安全性の評価の考え方について」(昭
和五五年一一月六日原子力安全委員会決定。以下「評価の考え方」という。乙第四
号証四八八ないし四九五ページ)を示した。
 これらの審査基準は、安全審査を担当する科学的、専門技術的な知見を有する者
が審査をするに当たっての基本的枠組みを提供するものである。したがって、原子
炉施設に関する技術的事項の細部にわたってまで逐一具体的な指示を与えるもので
ある必要はない。
2 具体的審査基準
(一) 本件安全審査において用いた審査基準は、以下のとおりである。①「原子
炉立地審査指針及びその適用に関する判断のめやすについて」(昭和三九年五月二
七日原子力委員会決定。以下「立地審査指針」という。乙第四号証三ないし六ペー
ジ)
②「評価の考え方」
③「発電用原子炉施設の安全解析に関する気象指針について」(昭和五七年一月二
八日原子力安全委員会決定。なお、それ以前は同名の指針(昭和五二年六月一四日
原子力委員会決定)を用いた。以下「気象指針」という。乙第四号証一二二ないし
一五一ページ)
④「プルトニウムを燃料とする原子炉の立地評価上必要なプルトニウ
ムに関するめやす線量について」(昭和五六年七月二〇日原子力安全委員会決定。
以下「プルトニウムに関するめやす線量について」という。乙第四号証七ないし二
七ページ)
⑤「許容被曝線量等を定める件」(昭和三五年九月三〇日科学技術庁告示第二一
号)
(二) また、参考として用いた指針は、以下のとおりである。
①「発電用軽水型原子炉施設に関する安全設計審査指針について」(昭和五二年六
月一四日原子力委員会決定。以下「安全設計審査指針」という。乙第四号証二八な
いし五四ページ)
②「発電用軽水型原子炉施設の安全評価に関する審査指針」(昭和五三年九月二九
日原子力委員会決定。以下「安全評価指針」という。乙第四号証二六二ないし三〇
五ページ)
③「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針について」(昭和
五一年九月二八日原子力委員会決定。以下「線量評価指針」という。乙第四号証六
〇ないし一二一ページ)
④「発電用軽水型原子炉施設における放出放射性物質の測定に関する指針」(昭和
五三年九月二九日原子力委員会決定、乙第四号証一五二ないし二六一ページ)
⑤「発電用軽水型原子炉施設の火災防護に関する審査指針について」(昭和五五年
一一月六日原子力安全委員会決定、乙第四号証三〇六ないし三一三ページ)
⑥「発電用原子炉施設に関する耐震設計審査指針について」(昭和五六年七月二〇
日原子力安全委員会決定。以下「耐震設計審査指針」という。乙第四号証三七六な
いし三九一ページ)
⑦「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針につい
て」(昭和五六年七月二三日原子力安全委員会決定、乙第四号証三九二ないし四〇
二ページ)
⑧「「我が国の安全確保対策に反映させるべき事項」について」(昭和五六年七月
二三日原子力安全委員会決定、乙第四号証四六七ないし四七五ページ)
⑨「「我が国の安全確保対策に反映させるべき事項」について(審査、
設計及び運転管理に関する事項(基準関係の反映事項は除く。)」(昭和五五年六
月二三日原子力安全委員会決定、乙第四号証四七六ないし四八五ページ)
⑩「「放射性液体廃棄物処理施設の安全審査に当たり考慮すべき事項ないしは基本
的な考え方」について」(昭和五六年九月二八日原子力安全委員会決定、乙第四号
証四八六、四八七ページ)
⑪「被曝計算に用いる放射線エネルギー等について」(昭和五〇年一一月一九日決
定、乙第四号証六四
六ないし六六一ページ)
⑫「発電用軽水型原子炉施設の安全審査における一般公衆の被曝線量評価につい
て」(昭和五二年六月一七日決定、乙第四号証六〇四ないし六四五ページ)
⑬「原子力発電所の地質、地盤に関する安全審査の手引き」(昭和五三年八月二三
日決定、乙第四号証七〇五ないし七〇七ページ)
 さらに、先行炉の審査経験及び諸外国の審査基準も参考とした。3 原告らの主
張に対する反論
(一) 安全審査指針等の違憲性に関する主張について
 原告らは、原子炉の安全性を審査する際の審査基準は法律に根拠がなく、原子力
安全委員会の内規である各種の審査指針にゆだねていることは憲法三一条に違反す
ると主張する(訴状九〇ページ)。
 しかしながら、原子炉等規制法二四条一項四号が「原子炉施設の位置、構造及び
設備が核燃料物質(中略)、核燃料物質によって汚染された物(中略)又は原子炉
による災害の防止上支障がないものであること」と規定するにとどめているのは、
原子炉施設の安全性に関する審査が、多方面にわたる極めて高度な最新の科学的、
専門技術的知見に基づいてされる必要がある上、科学技術は不断に進歩、発展して
いるのであるから、原子炉施設の安全性に関する基準を具体的かつ詳細に法律で定
めることは困難であるのみならず、最新の科学技術水準への即応性の観点からみて
適当ではないからであり、十分首肯し得るものである。しかも、設置許可に当たっ
ては、申請に係る原子炉施設の位置、構造及び設備の安全性に関する審査の適正を
確保するため、各専門分野の学識経験者等を擁する原子力安全委員会の科学的、専
門技術的知見に基づく意見を聴き、これを尊重するという、慎重な手続が定められ
ていることを併せて考慮すれば、右規定は合理的であるというべきである。本件原
子炉施設の安全審査は、その合理性を十分首肯し得る原子炉等規制法二四条一項四
号の規定に基づいてされたものであるから、それが法律の規定に基づかないもので
あることを前提とする原告らの右主張は、その前提を欠くものというべきである
(伊方判決参照)。
 また、原告らは、安全審査指針等は、原子炉等規制法などの法律の授権に基づか
ずに、原子力安全委員会や原子力委員会が策定したにとどまるから、このような安
全審査指針等を判断基準としてされた本件安全審査は憲法四一条、七三条一項に違
反するとも主張する。しかしながら、前述したとおり、本件
安全審査は、原子炉等規制法二四条一項の規定に基づいて行われたものである。原
告らの右主張もまた、その前提において失当である。安全審査の水準に関する主張
について原告らは、本件原子炉が研究開発段階にあるため運転経験が少なく設計も
標準化されていないという特性を有し、潜在的危険性が大きいという前提に立っ
て、本件安全審査では安全性の判断は厳格に行う必要があり、被告には高い水準で
の安全性が確立していることの立証責任があるとも主張する。
 しかしながら、本件原子炉は、開発段階のLMFBRであるという特徴を有する
ものの、核分裂反応の際に発生するエネルギーを熱源として利用するという本質に
おいて、軽水炉と共通するものである。LMFBRの潜在的危険性すなわち放射性
物質の有する危険性が軽水炉と比べて高いという事実はなく、原告らの主張はその
前提において失当である。なお、本件安全審査では、LMFBRという特徴を踏ま
え、①本件原子炉施設の平常運転によって放射性物質の有する潜在的危険性が顕在
化しないように、平常運転時における被ばく低減対策が適切に講じられているこ
と、②本件原子炉施設に事故が発生することにより放射性物質の有する潜在的危険
性が顕在化しないように、自然的立地条件との関係を含めた事故防止対策が適切に
講じられていることの二点を確認するとともに、さらに、念には念を入れるという
考え方から、申請者の確認した②の事故防止対策に係る安全評価の妥当性をも併せ
て確認することとしている(前記一参照)。そして、右安全評価に際しては、LM
FBRの運転実績が僅少であることを考慮して、軽水炉においても実施する「運転
時の異常な過渡変化」及び「事故」に係る安全評価等を行うだけでなく、「技術的
には起こるとは考えられない事象」に係る安全評価をも実施することにより、原子
炉施設の安全裕度も確認している。したがって、本件原子炉施設において右潜在的
危険性が顕在化するような事態は、その基本設計ないし基本的設計方針において考
えられない。
三 本件安全審査の結論
 被告は、本件安全審査において、第三章 第二の二の一で挙げた審査基準に照ら
し、本件原子炉施設が、その基本設計ないし基本的設計方針において、①平常運転
時の被ばく低減対策が適切に講じられていること、②自然的立地条件との関係を含
めた事故防止対策が適切に講じられていることを確認し、併せて、③申
請者の実施した事故防止対策に係る安全評価が妥当であることを確認し、その結
果、原子炉等規制法二四条一項四号の要件に適合すると判断した(乙第九号証一ペ
ージ、乙第一四号証の三の四ページ)。右審査の具体的内容は、次章において述べ
る。
第四章 本件安全審査の具体的内容
 本章においては、本件許可申請が原子炉等規制法二四条一項四号の要件に適合す
ると判断した本件安全審査の具体的内容について、順に詳述する。
第一 本件原子炉施設の平常運転時における被ばく低減対策に係る安全性被告は、
本件安全審査において、以下に述べるとおり、本件原子炉施設はその基本設計ない
し基本的設計方針において、平常運転時における被ばく低減対策に係る安全性が確
保されると判断した(乙第九号証一三一ページ)。
一 平常運転時の被ばく低減対策に係る審査事項平常運転時の被ばく低減対策に係
る安全性に関する審査事項は、以下のとおりである。
1 公衆の許容被ばく線量
 人間の放射線被ばくによる障害は、①放射線を被ばくした個人に現れる身体的障
害と、②その個人の子孫に現れる遺伝的障害とに分けられる。
①の身体的障害は、更に、急性障害と晩発性障害とに分けられる。身体的障害のう
ちの急性障害は、被ばく線量と現れる症状との関係が判明している。身体的障害の
うちの晩発性障害で、比較的高線量を被ばくした場合についても、その線量と障害
の発生率との関係についてある程度の知見が得られている。これに対し、低線量の
場合については、障害の有意な発生を認めるという知見は得られていない。
②の遺伝的障害は、高線量の場合ですら人体について影響があるとの実証性のある
ものは得られておらず、動物実験等の結果に基づき、その可能性を推定されるにと
どまる。
 以上のことを考慮して、国際放射線防護委員会(ICRP)は、いかに低い被ば
く線量でも障害が生じるかもしれないという慎重な仮定の下に、長年にわたるエッ
クス線やラジウムその他の放射性物質の使用経験や、人間その他の生物の放射線障
害に関する知識に照らして、身体的障害及び遺伝的障害の発生する確率として無視
し得る線量(一年間につき五〇〇ミリレム)を社会的に容認できる被ばく線量の限
度として勧告した(昭和三三年(一九五八年)勧告)。
 また、ICRPは、公衆に対する被ばく線量限度を勧告するに当たっては、放射
線被ばくについてこの線量を超えさえしなければよいとい
うのではなく、合理的に達成できる限り少なくするという、いわゆるALARAの
考え方も併せて勧告している。我が国は、この勧告を尊重して、「許容被曝線量等
を定める件」二条により、原子炉施設における周辺監視区域外の許容被ばく線量
を、一年間につき五〇〇ミリレムと定めた。
 なお、その後、ICRPの昭和五二年(一九七七年)勧告及び昭和六〇年(一九
八五年)パリ声明を受けて、右の「許容被曝線量等を定める件」を改廃し、「線量
当量限度等を定める件」三条(昭和六三年七月二六日科学技術庁告示第二〇号)に
より、周辺監視区域外の線量当量限度を、実効線量当量で一年間につき一ミリシー
ベルト(一ミリシーベルトは一〇〇ミリレム)としている。
2 平常運転時の被ばく低減対策の妥当性
 平常運転時の被ばく低減対策の審査においては、本件原子炉施設の平常運転時に
おける環境への放射性物質の放出について、周辺公衆の被ばく線量が、法令に定め
る周辺監視区域外の許容被ばく線量を下回るだけでなく、合理的に達成できる限り
低く保つという、いわゆるALARAの考え方に基づいて、設計上の対策が講じら
れていることが確認されなければならない(乙第四号証四八九、四九〇ページ)。
このような観点から、安全審査では、以下の三点を確認することとしている(乙第
四号証三三、四〇、四一、四九一ページ)。①放射性物質が燃料被覆管から一次系
(一次主冷却系及び一次アルゴンガス系などから成るもの)中に現れるのを抑制し
(安全設計審査指針の指針14)、一次系中に現れた放射性物質については、これ
をできるだけ一次系内に閉じ込められる設計になっていること(「評価の考え方」
の別紙の一⑥)。
 ②一次系外に現れた放射性物質については、その形態に応じて適切に処理し得る
放射性廃棄物廃棄施設が設けられる設計になっていること(安全設計審査指針の指
針52ないし54)。
 ③平常運転に伴って環境に放出される放射性物質の放出量及び環境における濃
度、線量率等を適切に監視することができる設備が設けられる設計になっているこ
と(同指針58)。
二 本件原子炉施設の平常運転時の被ばく低減対策に係る審査被告は、本件安全審
査において、以下に述べるとおり、前記一の2において述べた三点を確認し、その
結果、本件原子炉施設は、その基本設計ないし基本的設計方針において、平常運転
時の被ばく低減対策に係る安全性が確保される
と判断した。
1 放射性物質の一次系中への出現の抑制と一次系内への閉込め被告は、本件安全
審査において、以下の事項を確認し、その結果、本件原子炉施設は、その基本設計
ないし基本的設計方針において、放射性物質が燃料被覆管内から一次系中に現れる
のを抑制し、一次系中に現れる放射性物質については、これをできるだけ一次系内
に閉じ込められる設計になっていると判断した。
(一) 本件原子炉施設に内包される放射性物質としては、①燃料としての核燃料
物質、②燃料の核分裂反応によって生じる核分裂生成物、③炉心燃料集合体等の炉
心構成要素である構造材等が中性子により放射化されることによって生じる放射化
生成物(この中には、一次冷却材として使用されるナトリウムが中性子により放射
化されて生じる放射性ナトリウムや、原子炉のカバーガスとして使用されるアルゴ
ンガスが中性子により放射化されて生じる放射性アルゴンガスも含まれる。)があ
る(炉心燃料集合体等を第四図に示す。)。
 右①及び②については、耐スエリング性に優れ、熱的・機械的荷重による変形に
十分耐え得る強度を有するステンレス鋼製の燃料被覆管の中に閉じ込める(乙第一
六号証八―一―五、八―三―七ページ)。また、右③については、炉心構成要素等
の構造材等に一次冷却材であるナトリウムとの共存性に優れたステンレス鋼を用
い、一次冷却材であるナトリウムの純度管理を行い得るコールドトラップ等を設け
て右構造材等を腐食の生じ難い状態に保つ(乙第一六号証八―一―二五ページ)こ
とにより、放射性物質が腐食によって一次冷却材中に溶け出して一次系中に現れる
ことを抑制する。②右に述べた抑制対策にもかかわらず、燃料被覆管にピンホール
(極めて微小な穴)等の欠陥があった場合には、放射性物質が一次冷却材中に漏え
いする。また、一次冷却材の純度管理を行っても、一次冷却材中に放射化生成物が
現れることは避けられないし、一次冷却材としてナトリウム、原子炉のカバーガス
としてアルゴンガスをそれぞれ使用するため、このナトリウム及びアルゴンガスが
放射化することも避けられない。
 これらの一次系中に現れた放射性物質は、自重、熱荷重、地震荷重等に対し十分
な強度を持たせた機器、配管等から構成される一次系内に閉じ込められる。また、
右一次系中に現れた放射性物質のうち燃料被覆管から漏えいした放射性物質につい
ては、一次アルゴンガス系に
放射能を減衰できる常温活性炭吸着塔や希ガス除去・回収設備等を設けることによ
り、減少させる(第五図に一次アルゴンガス系を示す。乙第一六号証八―一―六、
八―七―一五、一六、八―八―七ページ)。
2 一次系外に現れた放射性物質の処理
 本件安全審査において、被告は、以下の事項を確認し、その結果、本件原子炉施
設は、その基本設計ないし基本的設計方針において、一次系外に現れた放射性物質
をその形態に応じて適切に処理し得る放射性廃棄物廃棄施設が設けられる設計にな
っていると判断した(放射性廃棄物処理の概要を第六図に示す。乙第九号証一一五
ないし一一八ページ)。
(一) 気体状のものについては、以下の対策が採られる。①一次アルゴンガス系
設備の圧力制御等によって発生するものに対しては、排気筒から周辺環境に放出す
るまでに、活性炭吸着塔装置によりキセノンは約三〇日間、クリプトンは約四〇時
間それぞれ保持し、放射能を減衰させる(乙第一六号証八―一二―三ページ)。②
建屋の換気により発生するものに対しては、換気空調設備において粒子状の放射性
物質を捕そくするフィルタ(排気用フィルタ)を通した後に、排気筒から周辺環境
に放出する(乙第一六号証八―一四―二ページ)。(二) 液体状のものについて
は、以下の対策が採られる(乙第一六号証八―一二―四ないし六ページ)。
①燃料取扱及び貯蔵設備や共通保修設備等の各設備からの廃液等は、廃液蒸発濃縮
装置や脱塩塔等により浄化した後に、一部は共通保修設備で機器洗浄水として再使
用し、その余は復水器冷却水で混合希釈して放水口から放出する。
②本件原子炉施設の従業員が使用した衣類等の洗濯排水は、洗濯廃液蒸発濃縮装置
等で浄化した後に復水器冷却水で混合希釈して放水口から放出する。
③なお、右浄化後の処理水のうち、周辺環境へ放出されることとなるものについて
は、復水器冷却水で混合希釈する前に放射性物質の濃度が十分低いことを確認する
ために、いったんモニタタンクに貯留し、万一、放射性物質の濃度が高い場合に
は、再度浄化処理する。(三) 固体状のものについては、以下の対策が採られる
(乙第一六号証八―一二八ページ)。
①右に述べた液体廃棄物処理設備の廃液蒸発濃縮装置及び洗濯廃液蒸発濃縮装置か
ら出る濃縮廃液や脱塩塔等の使用済樹脂は、アスファルト固化装置によりアスファ
ルトと混合して固化し、ドラム缶詰めする。
②使用済活性
炭は、ドラム缶詰めする。
③使用済排気用フィルタは、その発生場所で放射性物質が飛散しないように梱包す
る。
④機器の点検や修理の際に使用した布、紙、小物部品等の圧縮可能な雑固体廃棄物
は、圧縮、減容してドラム缶詰めする装置(ベイラ)により圧縮処理し、ドラム缶
詰めする。
⑤右の各ドラム缶等は、鉄筋コンクリート構造の固体廃棄物貯蔵庫に貯蔵保管す
る。
⑥使用済制御棒集合体等は、固体廃棄物貯蔵プール及び原子炉補助建物内の水中燃
料貯蔵設備に貯蔵保管する。
3 放射性物質の放出量等の監視被告は、本件安全審査において、以下の事項を確
認し、その結果、本件原子炉施設は、その基本設計ないし基本的設計方針におい
て、平常運転に伴って環境に放出される放射性物質の放出量及び環境における濃
度、線量率等を適切に監視することができる設備(放射線管理設備)が設けられる
設計になっていると判断した(乙第九号証一二一、一二二ページ)。
①気体廃棄物については、排気筒からの放射性物質の濃度を連続的に測定、監視す
るために、排気筒に排気筒モニタを設ける(乙第一六号証八―一二―四、八―一三
―七ページ)。
②液体廃棄物については、環境へ放出する前に放射性物質の濃度が十分低いことを
確認するため、これをいったんモニタタンクに貯留し、放射性物質の濃度をサンプ
リングして測定する装置を設ける(乙第一六号証八―一二―四、八―一三―一一ペ
ージ)。また、排水が合流し放出される復水器冷却水放水路には、放射性物質の濃
度を連続的に測定、監視するために、排水モニタを設ける(乙第一六号証八―一三
―八ページ)。
③環境中における線量率等の監視については、本件原子炉施設の周辺に、空間線量
率等を測定、監視するモニタリングポスト等の設備を設ける(乙第一六号証八―一
三―一〇ページ)。なお、本件安全審査においては、事故時に必要な放射線管理設
備は、事故時においても対応し得る設計とすることを確認した(乙第九号証一二二
ページ)。
三 本件原子炉施設の平常運転に伴う周辺公衆の被ばく線量評価の妥当性
 以上述べた審査により、本件原子炉施設は、その基本設計ないし基本的設計方針
において、平常運転時の被ばく低減対策に係る安全性が確保されているということ
ができる。しかし、安全審査においては、これに併せて、申請者が実施した、平常
運転に伴って環境に放出される放射性物質による周辺公衆の被ばく線量評価の
妥当性についても、念のため審査することとしている。これは、周辺公衆の被ばく
線量が、許容被ばく線量を下回るだけでなく、本件原子炉施設の被ばく低減対策に
よって合理的に達成できる限り低く保たれ得ることを定量的に確認するものである
(乙第九号証一二三ページ)。
1 平常運転に伴う周辺公衆の被ばく線量評価に係る審査事項平常運転に伴う周辺
公衆の被ばく線量評価の方法及び結果の妥当性に関する審査事項は、以下のとおり
である。
(一) 評価方法の妥当性「評価の考え方」は、平常運転に伴う周辺公衆の被ばく
線量評価について、「線量評価指針」を参考にするとともに、「気象指針」を適用
することを求めている(乙第四号証四八九、四九〇ページ)。これらによると、被
ばく線量の評価方法の妥当性の審査において確認すべき事項は、以下のとおりであ
る。
(1) 原子炉施設の平常運転に伴って環境へ放出された放射性物質は、大気中や
海水中で拡散、希釈し、また時間的経過とともにその放射能は減衰する。しかし、
周辺公衆は、右のような放射性物質からの放射線によって外部被ばくするか、又は
放射性物質を吸入したり放射性物質を取り込んだ海産物等を摂取したりすること等
によって内部被ばくすることがあり得る。このため、原子炉施設の平常運転に伴う
周辺公衆の被ばく線量の評価に当たっては、以下の各廃棄物について、それぞれの
被ばく経路ごとに評価しなければならない(乙第四号証八二、八三ページ)。
(2) 気体廃棄物については、①当該原子炉施設から大気中に放出される放射性
希ガス及び放射性よう素の年間放出量を想定し(乙第四号証六一、八三ページ)、
次に、②当該原子炉敷地における風向、風速等の条件等に基づき、放出後の大気中
での拡散、希釈の状況を計算し(乙第四号証七〇、一〇二ページ)、その上で、③
放射性希ガスについては、拡散、希釈した放射性希ガスからの放射線による周辺公
衆の外部被ばく線量を(乙第四号証七一ページ)、④放射性よう素については、こ
れを吸入あるいは付着した葉菜等の摂取による周辺公衆の内部被ばく線量を、それ
ぞれ評価しなければならない(乙第四号証七三ないし七七ページ)。
(3) 液体廃棄物については、①当該原子炉施設から海水中に放出される放射性
物質の年間放出量を想定し(乙第四号証六九ページ)、次に、②復水器冷却水の年
間放出量等に基づいて放出後の海水中での拡散、希釈の状
況を計算し(乙第四号証七〇、一〇二、一〇三ページ)、その上で、③放射性物質
を取り込んだ海産物の摂取による周辺公衆の内部被ばく線量を評価しなければなら
ない(乙第四号証七二、七三、七五ないし七七ページ)。
(二) 評価結果の妥当性
 周辺公衆の被ばく線量の評価値が妥当であるといえるためには、適切妥当な評価
方法の下で算定された被ばく線量が、前記1で述べた原子炉施設における周辺監視
区域外の許容被ばく線量を下回るだけでなく、合理的に達成できる限り低く保たれ
ていると評価できるものでなければならない(乙第四号証五七、五八ページ)。
2 本件原子炉施設の平常運転に伴う周辺公衆の被ばく線量評価に係る審査
 被告は、本件安全審査において、以下に述べるとおり、申請者が実施した、本件
原子炉施設の平常運転に伴って環境へ放出される放射性物質による周辺公衆の被ば
く線量評価について審査し、その評価の方法と結果が共に妥当であることを確認
し、その結果、本件原子炉施設の平常運転に伴って環境へ放出される放射性物質に
よる周辺公衆の被ばく線量は、許容被ばく線量を下回るだけでなく、合理的に達成
できる限り低く保たれ得ると判断した(乙第九号証一三一ページ)。
(一) 評価方法の妥当性
 被告は、本件安全審査において、以下に述べるとおり、申請者が行った本件原子
炉施設の平常運転に伴う周辺公衆の被ばく線量評価の方法が、前記1(一)におい
て述べた事項に適合していることを確認し、その結果、右被ばく線量評価の方法は
妥当であると判断した(乙第九号証一三一ページ)。
(1) 気体廃棄物の年間放出量については、定格熱出力の一パーセントに相当す
る熱を発生している燃料被覆管に欠陥がある状態(以下「燃料被覆管欠陥率一パー
セント」という。)で運転が継続されているものとして、燃料被覆管から放射性物
質が一次系に漏えいする量を計算し、放射性物質の各放出経路ごとの発生量、活性
炭吸着塔装置における減衰率等を考慮して算定されている(乙第一六号証九―四―
三、六ないし一〇ページ)。
(2) 気体廃棄物の拡散、希釈の状況については、「気象指針」に適合した気象
観測の方法や大気拡散の計算等によってされている(乙第一六号証九―五―一ペー
ジ)。
(3) 液体廃棄物の年間放出量については、気体廃棄物の場合と同様に、燃料被
覆管欠陥率を一パーセントと仮定し、処理設備の性能(液体廃棄物の処理
に係る設備の除染係数等)等を考慮して算定されている(乙第一六号証九―四―一
二、二三ページ)。また、右計算の結果におけるトリチウム以外の元素の放射性核
種の年間放出量は約○・一四キュリーであるところ、処理水の再使用の条件等を考
慮して、これを○・二キュリーとし、トリチウムについては、海外の高速炉の実績
を参考にして二五〇キュリーとされている(乙第一六号証九―四―一二ページ)。
(4) 液体廃棄物の拡散、希釈の状況については、復水器冷却水と混合されて放
水口に放出された液体廃棄物が、実際には、その放出後、前面海域において拡散
し、希釈されることによってその濃度は低くなるにもかかわらず、その効果を無視
し右放水口における濃度をそのまま用いている(乙第一六号証九―五―六ペー
ジ)。
(5) 右周辺公衆の被ばく線量の計算は、いずれも「線量評価指針」に示された
方法により行われている(乙第九号証一二八ないし一三〇ページ、乙第一六号証九
―五―一ないし一九ページ)。
(二) 評価結果の妥当性
 被告は、本件安全審査において、本件原子炉施設の平常運転に伴う周辺公衆の被
ばく線量の最大値(周辺監視区域外の被ばく線量の最大値)につき、①放射性希ガ
スからのガンマ線による全身被ばく線量が年間約○・〇七四ミリレム(乙第一六号
証九-五-六ページ)、②液体廃棄物中の放射性物質に起因する全身被ばく線量が
年間約○・〇六六ミリレム(乙第一六号証九―五―八ページ)、③合計した全身被
ばく線量が年間約○・一四ミリレム(乙第一六号証九―五―八ページ)、また、④
放射性よう素に起因する甲状腺被ばく線量が最大となる幼児の場合で年間約○・六
六ミリレム(乙第一六号証九―五―一九ページ)と評価されることを確認した(乙
第九号証一二八、一二九、一三一ページ、乙第一〇号証四ページ)。
 その結果、本件原子炉施設の平常運転に伴って環境へ放出される放射性物質によ
る周辺公衆の被ばく線量は、周辺監視区域外の許容被ばく線量年間五〇〇ミリレム
をはるかに下回るだけでなく、二で述べた設計上の対策によって、合理的に達成で
きる限り低く保たれ得ると判断した(乙第九号証一三一ページ)。
四 原告らの主張に対する反論
 原告らは、本件原子炉施設の平常運転時の被ばく低減対策に係る審査には種々の
重大かつ明白な瑕疵があると主張する。
 しかしながら、本件安全審査においては、二及び三において述べ
たとおり、本件原子炉施設の平常運転時における環境への放射性物質の放出につい
て、周辺公衆の被ばく線量が法令に定める周辺監視区域外の許容被ばく線量を下回
るだけでなく、合理的に達成できる限り低く保つよう設計上の対策が講じられてい
ることを確認しており、原告らの右主張はいずれも失当である。以下、念のため、
原告らが右主張の根拠として挙げる事項には何ら理由のないことについて述べる。
1 許容被ばく線量に関する主張について
 原告らは、被ばく線量と人体への影響との関係は、直線的比例関係であり、しき
い値は存在しないのであるから、「許容被ばく線量」に科学的根拠はなく不当であ
ると主張する。(訴状一四一ないし一四七ページ、原告ら準備書面(三)二〇一な
いし二〇八ページ)。しかしながら、原告らの右主張は、以下に述べるとおり何ら
理由がない。
 「許容被曝線量等を定める件」における原子炉施設の周辺監視区域外の「許容被
ばく線量」年間五〇〇ミリレムは、ICRPの一九五八年勧告を尊重して定められ
たものであり、合理的な根拠がある。
 すなわち、ICRPは、放射線被ばくによる障害のうち、低線量の被ばくについ
ては、障害の発生がないか、又は、その発生頻度が小さいため、因果関係が明らか
にされておらず、しきい値の存在を積極的に肯定するまでの知見が得られていない
ことから、いかに低い被ばく線量でも影響が生じるかもしれないという慎重な仮定
の下に、長年にわたる放射性物質の使用経験等に照らして、身体的障害の発生する
確率として無視し得る線量を、社会的に容認できる被ばく線量の限度として、右の
勧告をしたものである。そして、許容被ばく線量は、しきい値がないことを前提と
して行われたICRPの右勧告に基づいて定められたものである(乙第四号証五七
ページ)。
 なお、ICRPは、公衆に対する許容被ばく線量限度の勧告に併せて、公衆の被
ばく線量を合理的に達成できるかぎり低く保つという、いわゆるALARAの考え
方をも勧告しており、本件安全審査も、前述のとおり、ALARAの考え方に基づ
いて審査している。
2 平常運転に伴う周辺公衆の被ばく線量評価に関する主張について
(一)気体廃棄物の評価に関する主張について
(1) 原告らは、評価条件として、燃料被覆管の欠損率(欠陥率)を一パーセン
トとする根拠はないと主張する(訴状三九二、三九三ページ)。
 しかしながら、後記第三
の二1(二)において述べるとおり、燃料被覆管は健全性が維持され得るものであ
り、これに加え、本件原子炉施設には、燃料の破損の発生及び破損燃料の存在する
位置を検知し得る破損燃料検出装置が設置され(乙第一六号証八―九―八ペー
ジ)、かつ、燃料破損時に設定値を超えると、炉心を保護するため「破損燃料検
出」の原子炉トリップ信号が自動的に発せられ、原子炉は緊急停止する設計になっ
ていること(乙第一六号証八―九―九、二八、四二ページ)を併せ考慮すると、燃
料被覆管の欠陥率が一パーセントの状態(燃料要素約三万三千本(乙第一六号証八
―三―二八ページ)のうちの約三三〇本が破損した状態)で運転されることはおよ
そ考えられない。したがって、右条件は十分保守的であり、原告らの右主張は理由
がない。
(2) 原告らは、気体廃棄物中に存在するコバルト六〇、マンガン五四、ストロ
ンチウム九〇、セシウム一三七等の粒子状放射性物質を評価していないのは不当で
あると主張する(訴状三九六ページ)。
 しかしながら、右核種は、原子炉施設の平常運転時の気体廃棄物中にはほとんど
存在しない(乙イ第六九号証)ので、被ばく評価に与える影響は小さい。したがっ
て、右核種についての評価は不要である。
 なお、右核種は、液体廃棄物による被ばく評価においては、その放出量及び放出
経路が評価された上で、考慮されている(乙第一六号証九―四―一二、一八、九―
五―六ないし八)。
(3) 原告らは、原子炉格納施設の換気による希ガスの放出回数を年間一〇回と
する根拠はないと主張する(訴状三九四ページ)。
 右換気は、原子炉停止時に従業員が原子炉格納容器内に立入る際にされるもので
ある(乙第一六号証八―一四―三ページ)ところ、右放出回数は先行軽水炉の最近
の運転実績等を参考にして想定したもの(乙第九号証一二五ページ)であって、我
が国の原子力発電所の年間停止回数の平均値が二回未満であることからみても、右
回数は十分安全側の想定であり、妥当な条件設定である。したがって、原告らの右
主張は理由がない。
(4) 原告らは、①気体廃棄物中の希ガスによる全身被ばく線量評価は、適切な
現地実験を行わずにパスキル拡散式を用いて計算していること、②大気中の濃度計
算では、風がほとんどない静穏時の拡散を有風時に置き換えて計算していることな
ど、計算過程に問題があり不当であると主張する(訴状三九四ないし三九
六ページ)。
 しかしながら、申請者による右線量評価は、「気象指針」において定められた方
法(乙第四号証一二六、一二七、一三七ないし一三九、一四六ページ)に依拠した
ものであり、何ら不当な点はない。
 なお、「気象指針」が静穏時の風速を秒速○・五メートルとして有風時の拡散式
を適用することとしているのは、静穏時に適用できる適切な拡散式が現在存在しな
いところ、一般的に静穏時とされている場合でも、感度のよい微風速計で見ると秒
速○・五メートル以上の風速を示していることが多く、静穏時においても大気によ
る拡散希釈は行われているものと考えられる上、静穏時における放射性雲からのガ
ンマ線被ばくも極端に高い実測値が得られていない(乙第四号証一四六ページ)こ
とから、右拡散式の適用は不合理なものではない。
(二) 液体廃棄物の評価に関する主張について
(1) 原告らは、放射性液体廃棄物の年間放出量について、①共通保修設備廃液
の二〇パーセントが処理後再使用しないまま放出するとしていること、②液体廃棄
物中の放出核種とその構成比、③トリチウムの放出量を二五〇キュリーとしている
ことの三点は、根拠がなく恣意的であると主張する(訴状三九六、三九七ペー
ジ)。
 しかしながら、原告らの右主張はいずれも理由がない。
 すなわち、①については、そもそも共通保修設備廃液は、蒸発濃縮後、濃縮廃液
は固体廃棄物として処理し、蒸留水は脱塩塔で更に浄化した後、原則として再使用
されるものであるから(乙第一六号証九―四―一一、一二ページ)、その二〇パー
セントが放出されるとした評価条件は十分安全側の評価である。
 ②については、燃料被覆管の欠陥率を一パーセントとし、処理設備の性能等を考
慮して算定した液体廃棄物の年間放出量に基づいて設定されたものであり、妥当で
ある(乙第一六号証九―四―一二ページ)。③については、海外の高速炉の実績を
参考にして設定されたものであり、妥当である(乙第九号証一二七ページ)。
(2) 原告らは、被ばく線量評価に用いられた濃縮係数は、仮定的なものであ
り、これに基づいた被ばく線量評価は現実性がないと主張する(訴状三九七、三九
八ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 本件安全審査において申請者が用いた濃縮係数は、「線量評価指針」に示されて
いる数値であり(乙第四号証八○ページ、乙第一六号証九―五
―二六ページ)、右濃縮係数の値は、UCRL(カルフォルニア大学の放射線研究
所)の報告書に基づくものである。右報告書の濃縮係数の報告値は、海産生物の食
用部分に対する安定元素(放射性崩壊をしない
元素)の濃度測定値を広く文献から求め、これを取りまとめて代表的な値を算出し
たものであり、また、右報告書は、フィールドで観察された放射性核種の濃縮係数
と安定元素の濃度から求めた濃縮係数とを対比し、両者が一致することも確認して
いる(乙第四号証一〇七ページ)。したがって、右濃縮係数は十分信頼できるもの
である。
(3) 原告らは、「線量評価指針」が、海産物摂取量について、周辺住民の中で
も標準的なものを対象とし、極端な摂取をする極めて少数の住民を対象としていな
いのは、安全側に立った評価とはいえないと主張する(訴状三九八ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり、失当である。
 本件原子炉施設の平常運転に伴う周辺公衆の被ばく線量評価の妥当性を安全審査
において確認する目的は、平常運転時の被ばく低減対策が適切に行われていること
を前提に、念のために、本件原子炉施設の平常運転に伴う周辺公衆の被ばく線量が
許容被ばく線量を下回るだけでなく、合理的に達成できる限り低く保たれ得ること
を定量的に確認することにある(乙第四号証五八ページ)。「線量評価指針」が、
食物摂取による被ばく線量の評価を、現実に存在する被ばく経路について、集落に
おける各年齢グループの食生活の態様等が標準的である人を対象として行うことと
しているのも、このような右評価の目的によるものである(乙第四号証六一、八一
ページ)。したがって、前述のような安全側の前提に加えて、原告らの主張するご
とき、あえて特殊な食生活を送る周辺公衆を対象としなければならない理由はな
い。
(4) 原告らは、放射性液体廃棄物による外部被ばく線量評価を行っていないの
は、過小評価であると主張する(訴状三九八、三九九ページ)。
 確かに、外部被ばく経路として、液体廃棄物中の放射性物質に起因する海水浴、
ボート遊び中等に受ける外部全身被ばく等も考えられるが、これらは、海産物摂取
による被ばく経路からのものに比べ、一桁以上小さい寄与しか与えない。そうする
と、被ばく線量評価の対象として考慮する必要はなく、「線量評価指針」も右の考
え方の下に、その旨を定めているものである(乙第四号証
八二ページ)。したがって、原告らの右主張は失当である。
3 1CRPの放射線リスク評価値に関する主張について原告らは、しきい値がな
いと仮定するICRPの放射線のリスク評価値等を挙げ、本件原子炉施設の平常運
転に伴って環境へ放出される放射性物質による被ばくによって相当数の者が死亡す
ると主張する(訴状一四三、一四四ページ、原告ら準備書面(三)二〇一ないし二
〇八ページ)。
 しかしながら、以下に述べるとおり原告らの右主張には理由がない。
 本件安全審査において妥当性を確認した、本件原子炉施設の平常運転に伴う周辺
公衆の被ばく線量の最大値は、放射性希ガスからのガンマ線による全身被ばく線量
が年間約○・〇七四ミリレム、液体廃棄物中の放射性物質に起因する全身被ばく線
量が年間○・〇六六ミリレム、合計した全身被ばく線量が年間約○・一四ミリレム
とされている(乙第九号証一三一ページ、乙第一〇号証四ページ)。
 一方、日本国内における自然放射線の地域差は、四〇ミリレム(○・四ミリシー
ベルト)程度ある(乙第二号証二九四、二九五ページ)が、自然放射線が異なる地
域を相互に比較しても晩発性障害や遺伝的障害の発生率には有意な差は全く認めら
れていない(乙第二号証二九四ページ)。
 したがって、自然放射線の地域差よりもはるかに小さい本件原子炉施設の平常運
転による被ばくによって相当数の者が死亡するなどという原告らの主張は、そもそ
も何らの根拠もない。
 なお、ICRPの放射線のリスク評価値は、放射線防護上、人体の安全を守ると
いう放射線防護の基本目的を重視して、晩発性障害と遺伝的障害にはしきい線量が
ないとの安全側の仮定に立った上で、①高線量の場合は、現在までに得られている
線量と晩発性障害及び遺伝的障害の発生率との関係に関する知見を基にして、②低
線量の場合も、線量のいかんにかかわらず晩発性障害や遺伝的障害が発生するもの
として、それぞれ推定されたものであり(乙第四号証五七ページ)、右リスク評価
値を根拠として必然的に右リスク評価値に相当する死者が生じるとしたものではな
い。したがって、原告らの右主張はリスク評価値の意味を曲解するものである。
第二 自然的立地条件に係る安全性
 原子炉施設の安全を確保するためには、前述の平常運転時における被ばく低減対
策が適切に講じられることに加え、事故防止対策が適切に講じられなければならな
い。
 事故防止対
策としては、①原子炉の施設そのものに所要の事故防止対策が講じられるべきこと
はいうまでもないが、その前提として、②本件原子炉施設をめぐる自然的立地条件
によって、放射性物質の有する危険性が顕在化することのないように十分な配慮が
なされることが必要である(P6調書(一)六丁裏)。
 ところで、右②に関する学問的、技術的知見は、それ自体一つのまとまりのある
分野を構成するから、まず、本項で自然的立地条件に係る安全性の審査について述
べた上で、第三で施設の事故防止対策に係る安全性の審査について述べることとす
る。
 自然的立地条件に係る原子炉施設の安全性についての判断は、当該原子炉施設の
自然的立地条件に対応して、右施設がその基本設計ないし基本的設計方針におい
て、工学的、技術的に安全なものとして設計、建設され得るかどうかに関する総合
的な審査に基づいてされる。
 右の審査において考慮すべき自然的立地条件には、地盤、地震、気象、水理等が
あるが、とりわけ慎重に審査されるべきは、事柄の性質からして、地盤及び地震に
係る安全性である。そこで、以下においては、地盤及び地震に係る安全性の審査に
ついて述べる。
 なお、被告は、当然のことながら、地盤及び地震以外の自然的立地条件について
も、本件安全審査において慎重に審査し、本件原子炉施設の設置に係る安全性が十
分確保され得ると判断した(乙第九号証三一、六一ないし六六ページ、乙第一四号
証の三の六、九ページ)。
一 本件原子炉施設の地盤に係る安全性
1 地盤に係る安全性に関する審査事項
 原子炉施設の地盤が安全であるというためには、地盤に係る条件が、当該原子炉
施設における大きな事故の誘因とならないことが必要である。
 このような観点から、安全審査では、原子炉施設の地盤に係る安全性に関して、
次の二点を確認することとしている(乙第四号証七〇五ないし七〇七ページ、乙ニ
第三号証の一の五丁裏、一九丁裏、二〇丁表)。
① 原子炉施設の敷地を含む周辺地域の地盤が、当該原子炉施設に損傷を与えるよ
うな活断層の活動等による大きな地変や地震等による大規模な地すべりや山津波な
どを発生させるおそれがないこと。
② 原子炉施設の支持地盤が、その施設を支持するに足りる十分な地耐力があり、
かつ、施設の自重や想定される地震時の荷重によって地盤破壊や不等沈下等を起こ
すおそれがないこと。
2 本件原子炉施設の地盤に係る安
全性の審査
 被告は、本件安全審査において、以下に述べるとおり、本件原子炉施設の敷地及
びそれを含む周辺地域の地盤に本件原子炉施設の安全性を損なうような問題はない
ことを確認し、その結果、地盤に係る条件は、本件原子炉施設における大きな事故
の誘因とはならないと判断した(乙第九号証五五、六〇ページ、乙ニ第三号証の一
の四七丁裏、四八丁表)。
(一) 本件原子炉施設の敷地を含む周辺地域の地盤について
 被告は、本件安全審査において、以下の事項を確認し、その結果、本件原子炉施
設の敷地を含む周辺地域の地盤は、本件原子炉施設に損傷を与えるような活断層の
活動等による大きな地変や地震等による大規模な地すべりや山津波などの発生する
おそれがないと判断した(乙第九号証五五ページ)。
(1) 本件原子炉施設の敷地は、福井県の敦賀半島北端部に位置し、背後を標高
三〇〇ないし六〇〇メートルの山地によって囲まれた段丘あるいは扇状地を呈する
丘陵部にある(乙第一六号証六―一―一ページ)。
(2) 敦賀半島北端地域には、有史以来、本件原子炉施設に損傷を与えるような
活断層の活動等による大きな地変は認められておらず、現在もその徴候は認められ
ない。
(3) 申請者の行った文献調査、空中写真判読、地表地質踏査、ボーリング調査
等の結果によれば、本件原子炉施設の敷地の背後山地の基盤は、ほぼ堅硬、均質な
黒雲S1花崗岩(中生代から新生代第三紀初期にかけて貫入したもの)によって構
成されており、十分な安定性がある。右背後山地の切取斜面や本件原子炉施設後背
地の盛土斜面は、その強度及び変形特性等について詳細な調査結果に基づく安定解
析の結果によれば、地震等による崩壊が起こることはない(乙第九号証五四、五五
ページ、乙第一六号証六―三―三一ページ、乙ニ第三号証の一の一九丁裏、二〇丁
表)。
(二) 本件原子炉施設設置場所の地盤について
 被告は、本件安全審査において、以下の事項を確認し、その結果、本件原子炉施
設を支持する地盤は、施設を支持するのに十分な地耐力があり、かつ、施設の自重
や想定される地震時の荷重によって地盤破壊や不等沈下等を起こすおそれはないと
判断した(乙第九号証六〇ページ、乙ニ第三号証の一の一九丁裏)。
(1) 本件原子炉施設の基礎岩盤は、申請者の行った文献調査や、試掘坑調査、
トレンチ調査、ボーリングコアの確認等の現地調査の結果によれば、大部分が
岩級分類CH級ないしB級の堅硬、均質な花崗岩から構成されている(乙第九号証
五七ページ、乙第一六号証六―三―三五、三六ページ)。
 右基礎岩盤の岩盤試験(平板載荷試験)の結果によれば、最も大きい分布率を占
める岩級分類CH級の岩盤(乙第九号証五七ページ)の場合、最大一平方センチメ
ートル当たり約二一〇キログラムの荷重を与えても破壊には至らなかった(乙第九
号証五八ページ、乙第一六号証六―三―三八ページ)。
 したがって、右基礎岩盤は、原子炉建物の常時の接地圧一平方センチメートル当
たり約五キログラムに対してはもちろんのこと、地震時に生じる最大接地圧一平方
センチメートル当たり約一四キログラムに対しても、十分な支持力がある(乙第九
号証五八、五九ページ、乙第一六号証六―三―三九ページ、乙ニ第三号証の一の一
四丁裏、一五丁表)。
(2) 右基礎岩盤の岩盤試験(岩盤せん断試験)に基づき、地震時のすべりに対
する抵抗力を検討した結果によれば、地震時の原子炉建物基礎底面岩盤のすべり抵
抗力(せん断抵抗力)は約二一五万トンであった。
 これに対し、予想される最大の地震動(後述する基準地震動S1)により原子炉
建物基礎底面に作用する力(最大せん断力)は約四三万トンであることから、すべ
りに対して約五の安全率を有している。このことから、右基礎岩盤は、地震力によ
るすべりに対しても十分な余裕がある(乙第九号証五九ページ、乙第一六号証六―
三―三九ページ、乙ニ第三号証の一の一八丁表)。
 ③本件原子炉施設の基礎岩盤の大部分を占める岩級分類CH級ないしB級の岩盤
は、岩石試験・岩盤試験による変形特性によれば、機械的な押し固めである圧密や
クリープによる沈下は問題とはならない。また、右基礎岩盤には一部岩級分類CL
級以下の岩盤があるものの、全体面積に占める割合が五パーセント以下と少なく、
CH級以上の堅硬な岩盤の間に分散している。したがって、不等沈下は予想されな
い(乙第九号証五九、六〇ページ、乙第一六号証六―三―三九ページ、乙ニ第三号
証の一の一九丁表)。
二 本件原子炉施設の地震に係る安全性
1 地震に係る安全性に関する審査事項
 LMFBRが、地震に係る安全性を確保し得るものであるためには、想定される
いかなる地震力に対しても、これが安全上重要な施設の機能を失わせ、大きな事故
の誘因とならないように十分な耐震性を有していなければならない(乙第
四号証三七七ページ)。
 このような観点から、安全審査では、LMFBRの地震に係る安全性に関して、
① 耐震設計方針の妥当性
② 耐震設計に用いられる基準地震動の妥当性
の二点を確認することとしている。
(一) 耐震設計方針の妥当性「耐震設計審査指針」及び「評価の考え方」による
と、耐震設計方針として、以下の内容が要求されている。
 ①原子炉施設の建物及び構築物は、原則として剛構造にし、重要な建物及び構築
物は岩盤に支持させる(乙第四号証三七七ページ)。これにより原子炉施設の固有
周期が短周期側に集中し長周期倶に卓越周期を有する地震動との共振が回避される
とともに、表層地盤による地震動の増幅による影響が排除される。
 ②原子炉施設の各設備は、LMFBRの設計の特徴を十分踏まえ、地震により発
生する可能性のある放射線による環境への影響の観点から、耐震設計上の重要度分
類(A(Asを含む)クラス、Bクラス、Cクラス)を適切にした上で、重要度に
応じて適切な地震力を算定し、これに耐え得るように耐震設計をする(乙第四号証
三七七ないし三七九ページ、四九二ページ)。
 ③LMFBRの機器、配管等は、軽水炉との構造上の相違(低圧、薄肉、高温構
造)を考慮して耐震設計を行う(乙第四号証四九二ページ)。
 以下、耐震設計上の重要度分類について述べた上で、分類されたクラス伽ごとに
要求される具体的な耐震設計方針について述べる。
(1) 耐震設計上の重要度分類
 耐震設計上の施設別重要度を、地震により発生する可能性のある放射線による環
境への影響の観点から、次のように分類する(乙第四号証三七七ページ)。
 Aクラスは、①自ら放射性物質を内蔵しているか、又は内蔵している施設に直接
関係しており、その機能喪失により放射性物質を外部に放散する可能性のある施
設、②右放散の可能性のある事態を防止するために必要な施設及び事故発生の際に
外部に放散される放射性物質による影響を低減させるために必要な施設であって、
その影響、効果の大きいものをいう。Aクラスの施設のうち特に安全上重要な施設
は、Asクラスという。
 Bクラスは、Aクラスの②で述べたことの影響、効果が比較的小さい施設をい
う。
 Cクラスは、A及びBクラス以外の一般産業施設と同等の安全性を保持すればよ
い施設をいう。
(2) クラス別の耐震設計の意義
 A、B及びCクラスの施設は、算定された地震力に対し
て弾性とみなされる範囲の状態を維持できるように耐震設計をする(乙第四号証三
八一、三八二、三九一ページ)。
 ここでいう弾性とは、構造物に地震力等の荷重が加えられても損傷しないことは
もちろん、荷重が取り除かれた後は、変形を残さず元の形に戻る性質をいう。な
お、弾性領域を超えると、荷重の増大に伴い材料の変形が急激に増大し、荷重を除
去しても変形が元に戻らない塑性領域に入るが、塑性領域に入っても直ちに破壊に
至るわけではない。
(3) Aクラスの施設の耐震設計方針について
ア Aクラスの施設は、①基準地震動S1に基づく動的解析から求められる地震力
と、②静的解析から求められる地震力(静的地震力)のうち、いずれか大きい方の
地震力に耐え得るように耐震設計をする(乙第四号証三七九ないし三八一ペー
ジ)。
 右①の動的解析に基づく地震力は、水平地震力については基準地震動S1に基づ
く動的解析から求め、鉛直地震カについては基準地震動S1の最大加速度振幅の二
分の一の値を鉛直震度として求める。
 右②の静的地震力は、建物・構築物については、水平地震力は建築基準法に基づ
いて定められる層せん断力係数を三倍して算定し、鉛直地震カは震度○・三を基準
とし、建物及び構築物の振動特性、地盤の種類等を考慮して求めた鉛直震度に基づ
いて算定する。また、機器・配管系については、水平地震力は建物・構築物におい
て採用する層せん断力係数を一・二倍して算定し、鉛直地震力は建物・構築物にお
いて採用する鉛直震度を一・二倍して算定する。
 以上いずれの場合も、水平地震力と鉛直地震力とは、同時に不利な方向に作用す
るものとする。
イ Asクラスの施設は、アに述べた耐震設計に加えて、更に基準地震動に基づく
動的解析から求められる地震力に対しても、その安全機能が保持できるように設計
する(乙第四号証三七九ないし三八一ページ)。
 すなわち、Asクラスの施設は、基準地震動S1に基づき求められる地震動に対
し、弾性とみなされる範囲を維持できるように設計するだけでなく、更に基準地震
動S2による地震力に対して、右施設の状態が弾性とみなされる範囲を超えた場合
にも、施設の機能に影響を及ぼすおそれのない範囲に維持できるように設計する
(乙第四号証三八一、三八二、三九一ページ)。したがって、専ら地震学的見地か
ら念のため想定した地震が発生した場合でも、Asクラスの施設に変形が生じる
ことがあっても、放射性物質の閉込め等の期待される機能は、なお十分な安全余裕
をもって維持することができる。
 右の動的解析に基づく地震力は、水平地震力については基準地震動S2に基つく
動的解析から求め、鉛直地震力については基準地震動S2の最大加速度振幅の二分
の一の値を鉛直震度として求め、これらの地震力が同時に不利な方向の組合せで作
用するものとする。
(4) Bクラスの施設の耐震設計方針について
 Bクラスの施設は、次の静的地震力に耐え得るように設計する。
 すなわち、静的地震力として、Bクラスの建物・構築物については、前記の建築
基準法に基づいて定められる層せん断カ係数を一・五倍して水平地震力を求め、こ
れと常時作用している荷重及び運転時に施設に作用する荷重とを組み合わせる(乙
第四号証三七九ないし三八二ページ)。また、Bクラスの機器・配管系について
は、建物・構築物において採用する層せん断力係数を一・二倍して水平地震力を求
め、これと通常運転時、運転時の異常な過渡変化時の荷重とを組み合わせる(乙第
四号証三八○、三八二ページ)。
 ただし、Bクラスの施設のうち、共振するおそれのあるものについては、動的解
析を行い、それに耐え得るように設計する(乙第四号証三七九ページ、乙第九号証
七二ページ)。
(5) Cクラスの施設の耐震設計方針について
 Cクラスの施設は、次の静的地震力に耐え得るように設計する。
 すなわち、静的地震力として、Cクラスの建物・構築物については、建築基準法
に基づいて定められる層せん断力係数を一・○倍して水平地震力を求め、これと常
時作用している荷重及び運転時に施設に作用する荷重とを組み合わせる(乙第四号
証三七九、三八一、三八二ページ)。また、Cクラスの機器・配管系については、
建物・構築物において採用する層せん断力係数を一・二倍して水平地震力を求め、
これと通常運転時、運転時の異常な過渡変化時の荷重とを組み合わせる(乙第四号
証三七九、三八二ページ)。
(二) 基準地震動の妥当性
(一) ③で述べたとおり、Aクラスの施設の耐震設計に当たっては、基準地震動
S1、S2を用いた動的解析の結果をも考慮することが必要である。このAクラス
の施設の耐震設計に用いる地震動は、敷地の解放基盤表面における地震動(基準地
震動)に基づいて評価しなければならない(乙第四号証三八○ページ)。これは、
原子炉施設が直接支持さ
れる基盤(岩盤)における地震動を考慮すべきだからである。この基準地震動は、
敷地に最も大きな影響を与えると考えられる地震に基づき想定する必要がある。
 そこで、安全審査では、右基準地震動の妥当性について、次の二点を確認するこ
ととしている(乙第四号証三八○、三八一ページ、乙第九号証三二ページ)。
① 原子炉施設の敷地周辺において将来発生することがあり得ると考えるべき地震
が、過去の地震等から適切に選定されていること。
② これらの地震が原子炉施設の敷地に及ぼすと考えられる影響を十分吟味した上
で、敷地基盤における設計用の基準地震動が適切に策定されていること。以下、そ
れぞれについて詳述する。
(1) 耐震設計上想定すべき地震の選定の妥当性
 基準地震動を策定するに当たり、敷地に最も大きな影響を与えると考えられる地
震を想定する必要がある。そして、施設の重要度に応じた耐震設計に用いる地震動
を策定するため、地震の強さの程度に応じ、次のア及びイを想定する(乙第四号証
三八○ページ)。
ア 設計用最強地震の想定
 設計用最強地震とは、工学的見地から、起こることを予期することが適切と考え
られる地震である(乙第四号証三八三ページ)。
 具体的には、①歴史的資料からみて、過去に本件原子炉施設の敷地又はその付近
に影響を与えたと考えられる被害地震(歴史地震)が、近い将来再び起こり、敷地
及びその周辺に同様の影響を与えるおそれがあるものと、②近い将来右敷地に影響
を与えるおそれがあると考えられる活動度の高い活断層による地震のうち、敷地の
基盤に最も大きな影響を与えるものを想定する(乙第四号証三八○、三八三ペー
ジ)。
 設計用最強地震は、基準地震動S1を与える地震である。
イ 設計用限界地震の想定
 設計用限界地震は、地震学的見地に立てば、設計用最強地震を超える地震の発生
を完全には否定できないことから、地震学上設計用最強地震を上回る強さの地震が
比較的近い時代に発生したことがあると判断される場合、更に工学的見地からの検
討を加えて、これが将来再び起こると仮定したものである(乙第四号証三八三、三
八四ページ)。
 具体的には、①過去の地震の発生状況、②その活動度の大小の程度を考慮した敷
地周辺の活断層の性質及び③地震地体構造に基づき、工学的見地からの検討を加
え、敷地の基盤に最も大きな影響を与えるものを想定する(乙第四号証三八○、三
八四ページ
)。
 設計用限界地震は、基準地震動S2を与える地震である。
 なお、基準地震動S2のために考慮する近距離地震として、マグニチュード六・
五の直下地震をも想定する(乙第四号証三八五ページ)。
(2) 基準地震動S1、S2の妥当性基準地震動S1は設計用最強地震から、基
準地震動田は設計用限界地震からそれぞれ求める。
 このため、設計用最強地震及び設計用限界地震として選定した地震から適切に基
準地震動S1、S2が策定されなければならない。
 このような観点から、安全審査では以下の二点を確認することとしている。
 ①設計用最強地震と設計用限界地震による敷地解放基盤表面における地震動(基
準地震動)を策定するための地震動特性(地震動の最大速度振幅、周波数特性、継
続時間及び振幅包絡線の経時的変化の三要素)が適切に策定されていること(乙第
四号証三八○、三八一ページ)。
 ②右策定された地震動特性に基づいて基準地震動S1、S2の模擬地震波が適切
に策定されていること(乙第九号証五一ないし五三ページ)。
ア 地震動特性の妥当性
(ア) 最大速度振幅解放基盤表面の地震動の水平方向における最大速度振幅は、
地震動の実測結果に基づいた経験式あるいは適切な断層モデルに基づいた理論値を
参照して定めることができる。この場合、地震と敷地との相互関係は、地震のエネ
ルギー放出の中心から敷地までの距離で表すものとする(乙第四号証三八五、三八
六ページ)。
(イ) 周波数特性
 基盤における地震動の周波数特性は、地震のマグニチュード、エネルギー放出の
中心からの距離及び基盤の振動特性等に支配されることから、これらの因子につい
て考察する。このほか、敷地の基盤における地震動、常時微動観測結果、又は類似
の基盤における既往の測定資料等を参考にして定める(乙第四号証三八六ペー
ジ)。
(ウ) 継続時間及び振幅包絡線の経時的変化地震動の継続時間は、地震動の開始
からそれが実効上消滅したとみなされるまでの時間を考慮する。また、地震動の継
続時間及び振幅包絡線と地震のマグニチュードとの間には密接な相関があると考え
られることから、それぞれ設計用最強地震及び設計用限界地震のマグニチュードに
応じて定める(乙第四号証三八六ページ)。
イ 基準地震動S1、S2の模擬地震波の妥当性
 設計用最強地震及び設計用限界地震として選定した地震による応答スペクトルを
包絡するように基準地震動
S1、S2の応答スペクトルをそれぞれ作成し、右応答スペクトルとアで述べた地
震動特性に適合するように基準地震動S1、S2の模擬地震波を作成する(乙第九
号証五一ないし五三ページ)。
2 本件原子炉施設の地震に係る安全性の審査
 被告は、本件安全審査において、「評価の考え方」に基づき、「耐震設計審査指
針」を参考にして、本件原子炉施設の耐震設計方針について審査を行い、その結
果、以下に述べるとおり、本件原子炉施設の耐震設計方針は妥当であり、想定され
るいかなる地震力に対しても、これが安全上重要な施設の機能を失わせ、大きな事
故の誘因となることはなく、本件原子炉施設の耐震性は十分確保し得ると判断した
(乙第九号証七一ページ)。
(一) 本件原子炉施設の耐震設計方針の妥当性
 被告は、本件安全審査において、以下に述べるとおり、本件原子炉施設の耐震設
計の基本的方針は、LMFBRの設計の特徴を踏まえ、妥当なものであることを確
認した(乙第九号証七一ページ)。
(1) 本件原子炉施設の建物及び構築物は原則として剛構造とし、重要な建物及
び構築物は堅硬な岩盤上に直接設置される(乙第九号証一〇ページ、乙第一六号証
八―一―九八ページ)。
(2) 本件原子炉施設の各設備は、地震により機能を失った場合に想定される環
境への影響の観点から、LMFBRの設計の特徴を十分に踏まえ、高い耐震性を必
要とする順にA(Asを含む)クラス、Bクラス及びCクラスの三種類に分類した
上、重要度に応じた適切な地震力を定め、いずれの施設もこれに耐え得るように設
計する(乙第九号証七一ないし七四ページ、乙第一六号証八―一―九八ないし一〇
〇ページ)。
 各施設の重要度分類は、以下のとおりである。
 主要な施設の重要度は、次のとおり分類する。
ア Aクラスの施設
① 原子炉冷却材バウンダリを構成する機器・配管
② 制御棒と制御棒駆動機構(原子炉自動停止時の制御棒挿入に関する部分)
③ 原子炉格納容器
④ 補助冷却設備と二次主冷却系設備(中間熱交換器からみて蒸気発生器の止め弁
まで)
⑤ 炉外燃料貯蔵槽のうち燃料貯蔵容器及び回転ラックと、水中燃料貯蔵設備の燃
料池及び貯蔵ラック
⑥ ガードベッセル
⑦ アニュラス循環排気装置
⑧ 原子炉カバーガス等のバウンダリを構成する機器・配管
 等
 このうち、①ないし⑤はAsとする。
イ Bクラスの施設
① 一次ナトリウム純化系設備
② 廃棄物処理設

③ 二次ナトリウム補助設備

ウ Cクラスの施設
① 発電機、蒸気タービン設備、復水設備等
② その他A及びBクラスに属さないもの
 また、主要施設の有する機能を維持するため必要な補助施設についても、主要設
備と同様の重要度に分類する。
 さらに、これらの主要施設及び補助施設を支持する構造物は、その施設の耐震設
計に用いられる地震動によって支持機能を失わないことを確認する。
 また、分類された各クラスごとの具体的な耐震設計方針は、前記1(一)におい
て述べた「評価の考え方」及び「耐震設計審査指針」によって要求される耐震設計
方針に適合している(乙第九号証七四ないし七八ページ、乙第一六号証八―一―一
〇〇ないし一〇七ページ)。
(二) 本件原子炉施設の耐震設計に用いられる基準地震動の妥当性
 本件原子炉施設におけるAクラスの施設の耐震設計に用いられる基準地震動も、
以下に述べるとおり、耐震設計上想定すべき地震から適切に策定したと認められた
(乙第九号証五三ページ)。
① 耐震設計上想定すべき地震の選定の妥当性
 被告は、本件安全審査において、以下の事項を確認し、その結果、本件原子炉施
設の耐震設計上想定すべき地震を適切に選定していると判断した(乙第九号証四
八、四九ページ)。
ア 設計用最強地震の想定
(ア) 本件原子炉施設敷地周辺における過去の主な地震の選定に当たっては、
「資料日本被害地震総覧」(既往の種々の地震資料に基づき、最新の研究成果を採
り入れて編集され、かつ、信頼性があると認められているもの)、「理科年表」、
「一八八五年~一九二五年の日本の地震活動」(いわゆる「宇津カタログ」)等の
地震資料を用いた(乙第九号証三三、三四ページ、乙第一六号証六―五―一、一九
ページ)。
 その結果、設計用最強地震を想定する上で考慮すべき歴史地震は一〇あるが、そ
のうち敷地に与える影響がその他の地震よりも大きいと認められる歴史地震とし
て、①濃尾地震(明治二四年(一八九一年)、マグニチュード七・九(なお、右
「宇津カタログ」ではマグニチュード八・○と評価しており、本件安全審査ではこ
れも考慮している。)、本件原子炉施設の敷地からみた震央距離五七・ニキロメー
トル)、②寛文近江の地震(寛文二年(一六六二年)、マグニチュード七・八、震
央距離五四・一キロメートル)、③天平美濃の地震(天平一七年(七四五年)、マ
グニチュード七・九、震央距離六
一・一キロメートル)、④越前岬沖地震(昭和三八年(一九六三年)、マグニチュ
ード六・九、震央距離二一・○キロメートル)、⑤天正畿内の地震(天正一三年
(一五八六年)、マグニチュード八・一、震央距離七八・八キロメートル)を選定
した(第七図参照。乙第九号証四八、四九。へージ、乙第一六号証六―五―1九、
二九ページ、乙ニ第三号証の一の二九丁表、同裏)。
(イ) また、敷地周辺の活断層について、詳細な文献調査、空中写真判読による
調査及び現地調査を実施し、海域については海上保安庁の調査結果等を基に検討し
た。
 その結果、設計用最強地震を想定する上で考慮すべき活断層は七あるが、そのう
ち活動性の高い疑いのあるものとして、柳ケ瀬断層(南部)から想定される地震
(マグニチュード七・○、震央距離二五・○キロメートル)を選定した(乙第九号
証三九、四九ページ、乙第一六号証六―五―二九ページ、乙ニ第三号証の一の四二
丁表、同裏)。
イ 設計用限界地震の想定
(ア) ア(イ)で述べた調査結果の結果、設計用限界地震を想定する上で考慮す
べき活断層は七あるが、そのうち敷地に与える影響がその他の活断層よりも大きい
と認められる活断層による地震として、①甲楽城断層から想定される地震(マグニ
チュード七・○、震央距離一一・五キロメートル)、②木ノ芽峠断層から想定され
る地震(マグニチュード七・二、震央距離一六・五キロメートル)、③S―二一な
いしS-二七断層から想定される地震(マグニチュード六・九、震央距離一二・一
キロメートル)、④柳ケ瀬断層から想定される地震(マグニチュード七・二、震央
距離二一・○キロメートル)を選定した(第七図参照。乙第一六号証六―五―二九
ページ、乙ニ第三号証の一の四二丁裏)。
 このほか、地震地体構造の見地から想定される地震(マグニチュード七・八、震
央距離六〇・○キロメートル)や、直下地震(マグニチュード六・五)も想定して
いる(乙第九号証四九ページ、乙第一六号証六―五―二九ページ)。
(イ) ア(イ)で述べた柳ケ瀬断層(南部)から想定される地震と、(ア)で述
べた甲楽城断層から想定される地震、木ノ芽峠断層から想定される地震、S―二一
ないしS―二七断層から想定される地震、柳ケ瀬断層から想定される地震の各規模
(マグニチュード)は、マグニチュードと活断層の長さとの関係を表す経験式(松
田式)によって求めている(乙第一六号証
六―五―一二ページ)。
ウ 想定すべき地震の選定の妥当性
 歴史地震や活断層から想定した地震のうち、ア、イで選定した以外のものは、本
件原子炉施設の敷地に与える影響が、以上のとおり選定した各地震による影響を上
回るものはない。したがって、ここで選定した地震で代表させても支障がなく、設
計用最強地震及び設計用限界地震として想定すべき地震の選定は妥当である(乙第
九号証四九ページ、乙ニ第三号証の一の二九丁裏、四三丁表)。
(2) 基準地震動S1、S2の妥当性
 被告は、本件安全審査において、以下の事項を確認し、その結果、本件原子炉施
設の敷地に想定される基準地震動は、選定した地震の地震動特性に基づいて策定し
たものであり、耐震設計に用いられる基準地震動は適切であると判断した(乙第九
号証五三ページ)。
ア 地震動特性の妥当性
(ア) 最大速度振幅
 (1)において選定した地震による本件原子炉施設の敷地における地震動の最大
速度振幅は、活断層については中心からの距離を、歴史地震については震央距離
を、それぞれ金井式に適用して求めている。金井式は、地震動の最大速度振幅、震
源距離及びマグニチュードの関係を表す経験式であり、震源距離とマグニチュード
の値が与えられれば、ある地点での地震動の最大速度振幅を求めることができる
(乙第九号証五〇ページ、乙第一六号証六―五―一九、二〇ページ)。
(イ) 周波数特性
 地震動の周波数特性は、いわゆる大崎スペクトルに基づいて定めている(乙第一
六号証六―五―二〇ページ)。大崎スペクトルは、解放基盤表面での標準応答スペ
クトルであり、岩盤における地震観測資料を整理し、工学的な検討を加えて提案さ
れているものである。
 なお、申請者の行った調査の結果によれば、本件原子炉施設の敷地地盤は堅硬、
均質で相当な広がりのある岩盤であり、その横波速度が毎秒平均一・九キロメート
ルであって(乙第一六号証六―三―三八ページ)、右標準応答スペクトルが適合す
る範囲にある(乙1第九号証三三ページ)。
 これらのことから、周波数特性は、考慮すべき地震の規模、震央距離及び敷地の
地盤特性を反映したものであり、また、信頼性のある方法によって作成していると
認められる(乙第九号証五〇、五一ページ)。
(ウ) 継続時間及び振幅包絡線の経時的変化
 地震動の継続時間は、地震動の開始から実効上消滅したとみなされるまでの時間
により定めており
、また、振幅包絡線の経時的変化は、地震の規模、継続時間に関連させて定めてい
る(乙第九号証五一ページ、乙第一六号証六―五―二〇、二一ページ)。
イ 基準地震動S1、S2の模擬地震波の妥当性
 基準地震動S1、S2の応答スペクトルは、アで述べた地震動特性に基づき、
(1)で選定した地震から求めた応答スペクトルを包絡するように設定している
(乙第九号証五一、五二ページ、乙第一六号証六―五―二一、三二ページ)。
 基準地震動S1、S2の模擬地震波は、アで述べた地震動特性(地震動の継続時
間と振幅包絡線の経時的変化)を条件とし、位相を乱数とした正弦波の重ね合わせ
によって右の応答スペクトルに合致するように作成しており、その結果、基準地震
動S1の模擬地震波の最大速度振幅は一九・○カイン、基準地震動S2のそれは二
二・八カインとなっている(乙第九号証五一、五二ページ、乙第一六号証六―五―
二一、三二ページ)。
三 原告らの主張に対する反論
1 本件原子炉施設の地盤に係る安全性に関する主張について
 原告らは、本件原子炉施設の地盤に係る安全性の審査には種々の重大かつ明白な
瑕疵があると主張する。
 しかしながら、本件安全審査においては、一において述べたとおり、①本件原子
炉施設の敷地を含む周辺地域の地盤は、本件原子炉施設に損傷を与えるような活断
層の活動等による大きな地変や地震等による大規模な地すべりや山津波などの発生
するおそれがないこと、②本件原子炉施設を支持する地盤は、施設を支持するに足
りる十分な地耐力があり、施設の自重や想定される地震時の荷重によって地盤破壊
や不等沈下等を起こすおそれがないことを確認している。したがって、原告らの右
主張は失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(一) 施設の地盤の安全性に関する主張について
 原告らは、本件原子炉施設の地盤は地震時の変位を受けたり、不等沈下するおそ
れが大きいと主張し、その根拠として、①本件原子炉施設の設置予定地の岩盤は、
地震に弱い劣悪なサンドイッチ地盤であること、②右地盤の一部に岩級分類CL級
以下の岩盤が存在すること、③右地盤は、基盤をカットして造成した土地と沖積地
との双方をまたいでいることを指摘する(訴状三七二ページ、原告ら準備書面
(五)二1(二))。
 しかしながら、以下に述べるとおり、原告らの右指摘は理由がない。
 ①の「サ
ンドイッチ地盤」という言葉は、そもそも、昭和五三年六月の宮城県沖地震後に、
新聞記者が、硬い地層と軟らかい地層とが上下方向に交互に重なり合っている表層
地盤を指して名付けたものであり(甲ハ第二二号証一〇八、一〇九ページ)、原子
炉施設が設置されるような基礎岩盤を対象としたものではない。本件原子炉施設の
設置場所の基礎岩盤は、敷地造成工事により上部堆積層をすべて除去し、堅硬な岩
盤を露出させたものであり、表層地盤ではない(乙第一六号証六―三―三九ペー
ジ、乙ニ第三号証の一の六丁表)から、右主張は前提を誤っており、失当である。
 また、②、③については、確かに、右基礎岩盤中には、CL級以下の岩盤が一部
存在するものの、それはごくわずかなものがCH級以上の堅硬な岩盤に包み込まれ
たような形をして存在するにすぎず、大部分は岩級分類CH級ないしB級の堅硬、
均質な花崗岩から成る岩盤で構成されているのであるから、地盤(基礎岩盤)の安
全性に影響を及ぼすものではない(乙第一六号証六―三―三八、一三一ないし一三
七ページ、乙ニ第三号証の一の一〇丁表ないし一丁裏、一九丁表、乙ニ第三号証の
二の七丁表ないし九丁裏)。
(二) 敦賀市の報告書に関する主張について
 原告らは、本件原子炉施設の地盤が不安定であると主張し、その根拠として、敦
賀市が昭和五六年三月に作成した「原子力発電所周辺地域地質調査書」中に「原子
炉本体だけでなく、その付属設備、たとえば用配水管など延長の長いものの工事と
の関係は、特に注意を要する」との記載があることを挙げる(原告ら準備書面
(五)二1(二))。
 しかしながら、原告らが指摘するのは、右報告書中の、「以上の調査事項・結果
とも現在の学問レベルでよく努力したものと評価できる。しかし、人類の知識は次
々と進歩し増している。(中略)今回特に問題となった2つのリニアメントは原子
炉本体の場所ではないので、原子炉の耐震設計との関係から問題とされる。しかし
原子炉本体だけでなく、その付属設備、たとえば用配水管など延長の長いものの工
事との関係は、特に注意を要すると考えられる。」との記載の一部分である。右部
分は、本件原子炉の付属施設についても耐震設計上の配慮をすべきことに注意を喚
起したものにすぎず、本件原子炉施設の地盤が不安定であることを示したものでは
ない。したがって、原告らの指摘する前記記載部分は、原告らの右主張の根
拠とはなり得ない。
(三) 施設の背後山地の安全性に関する主張について
 原告らは、本件原子炉施設の背後山地は、山津波や地滑りが発生するおそれがあ
る軟弱地盤であると主張し、その根拠として、右地質調査書が「山地の崩壊・土石
流の発生などが問題」であるとしていることを指摘する(原告ら準備書面(五)二
1(一))。
 しかしながら、右地質調査書は、その一〇〇ないし一〇一ページにおける申請者
調査の検討の中で、木村教授の所見に基づき本件原子炉施設の立地点には有意な活
断層がないことを述べた上、さらに「はせ田地区の地形は、特に山地部の比高が高
く、傾斜の勾配も急である。従って、むしろ活断層よりも山地の崩壊・土石流の発
生などが問題」であると述べているのである。このような文脈からみて、右箇所
は、単に、山地部の比高及び傾斜勾配に着目して山地の崩壊等の可能性を一般的に
指摘したにすぎない。したがって、原告らの右指摘する点は、原告らの右主張の根
拠とはなり得ない。
 なお、平成一〇年九月二二日、台風七号の影響による集中豪雨のため、本件原子
炉施設の敷地内において土砂が流出したが、本件原子炉施設には、何ら安全上の影
響を及ぼすものではなかった(乙ハ第一三号証)。
2 本件原子炉施設の地震に係る安全性に関する主張について
 原告らは、本件原子炉施設の地震に係る安全性の審査には種々の重大かつ明白な
瑕疵があると主張する。
 しかしながら、二において述べたとおり、本件安全審査においては、想定される
いかなる地震力に対しても、これが大きな事故の誘因とならないよう、耐震設計が
講じられ得ることを確認しており、原告らの右主張はいずれも失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(一) 活断層の評価に関する主張について
(1) 原告らは、本件原子炉施設周辺の断層について、地形学的には野坂断層と
海底断層(S―二一ないしS―二七)とは連続していると評価すべきであると主張
する(訴状三七〇ページ)。
 しかしながら、海上保安庁の音波探査結果からは、S―二一ないしS―二七の海
底断層と野坂断層との間の海域には断層が認められておらず(乙第一六号証六―三
―二六、二七、一〇一ページ)、他に原告らの主張の根拠となる証拠はないから、
右両断層の連続性を認めることはできない。したがって、原告らの右主張は理由が
ない。
(2) 原告らは、海底
断層S―一、甲楽城断層、山中断層、柳ケ瀬断層等は、一連の断層群として評価す
べきであると主張する(原告ら準備書面(一二)の九、一〇ページ)。
 しかしながら、準備書面(六)の一八ないし二一ページにおいて述べたとおり、
本件安全審査においては、本件原子炉施設の耐震設計上考慮すべき活断層の認定に
ついて、敷地周辺の活断層に関する詳細な文献調査、空中写真判読による調査、現
地調査及び海域についての海上保安庁の調査結果等を基にして検討した結果、原告
らが挙げる活断層の連続性は認められず(乙第一六号証六―三―一二ないし一五ペ
ージ)、一連の断層群として評価し得ないことを確認している。各断層が雁行して
いることのみをもって、一本の断層系として評価すべきとの意見(P4調書(イ)
六三丁裏、同⑳四七丁表)は、右調査結果をすべて無視するものであって、何らの
根拠にもならない(乙ハ第四号証二二〇ページ、P4調書伽四七丁表ないし四八丁
裏)。したがって、原告らの右主張は理由がない。
(3) 原告らは、城ケ埼沖合から敦賀半島の白木―丹生間の谷を通り、S―一六
断層の北端までの延長約一九キロメートルに横ずれ断層があるとして、これを「敦
賀半島西岸断層」と称し、この断層は断層系とみられるいくつかの活断層であっ
て、これによってマグニチュード六・九の震源の極めて浅い直下型の地震が生じる
ことを想定すべきであると主張する(原告ら準備書面(五)二2)。
 しかしながら、原告らのいう「敦賀半島西岸断層」(以下「原告主張断層」とい
う。)の存在は、以下に述べるとおり何ら根拠のないものであって、原告らの右主
張は理由がない。
ア 原告らは、原告主張断層が存在する根拠として、まず、白木沖のS―1六、S
―一七断層の延長線上の白木―丹生間にリニアメントが存在することを指摘する
(原告ら準備書面(五)2(二)(1))。
 しかしながら、リニアメントには断層運動によって形成されたものとそれ以外の
原因によって形成されたものがあるところ、原告らが指摘するリニアメントには、
断層運動により生成されたことを示す地質的特徴(断層変位地形)が認められな
い。むしろ、右リニアメントに沿って所々に粘土脈が存在し、その周辺の花崗岩が
粘土化し、軟弱化したため、この軟弱化した部分が浸食されて、線状の地形が形成
されたものと考えるのが合理的である(乙第一六号証六―三―三〇ページ、乙ニ第

号証の一の三六丁裏ないし三七丁裏)。したがって、右リニアメントは断層運動に
より形成されたものではない(乙ニ第三号証の一の三八丁裏)。
イ 原告らは、原告主張断層が存在する根拠として、特牛埼側地塊を敦賀半島西岸
断層に沿って八○○メートル南方に移動させた場合、山の尾根筋や海岸線が東西に
わたってなめらかに連続することを指摘する(原告ら準備書面(五)2(二)
(2))。
 しかしながら、仮に、原告らが主張するように右地塊が北方に移動したものであ
るならば、右地塊の北縁には東西方向の断層が認められなければならない(乙ニ第
三号証の一の四四丁表、同裏)。しかし、右地塊の北縁にあるS―一二ないしS―
一四の断層の走向方向は、いずれもほぼ南北方向であって、東西方向ではない(乙
第一六号証六―三―一〇一ページ、乙ニ第三号証の一の四四丁裏)。また、右地塊
の北縁の更に北側をみても、S―1ないしS―六の断層群の走向方向は南北方向で
あって、東西方向の断層は存在しない。したがって、原告らの右主張は失当であ
る。
ウ 原告らは、原告主張断層が存在する根拠として、白木峠南方一キロメートルに
存在する尾根筋には、西側斜面が途中で断ち切られたような三角形状の地形「三角
末端面」が観察できることを指摘する(原告ら準備書面(五)2(二)3)。
 しかしながら、仮に、右三角形状の地形(乙ニ第三号証の一添付図⑭の赤丸印)
が断層運動によって形成されたもの(断層変位地形としての三角末端面)であるな
らば、①右西側斜面の裾を通ってリニアメントが走行しているのが普通であるが、
右西側斜面付近にはリニアメントが走行していない(なお、白木―丹生間にほぼ南
北方向に認められるリニアメントは断層運動により形成されたものではない(乙ニ
第三号証の一の三八丁裏)。)、②原告らが右西側斜面の付近を通るとするリニア
メントの走向方向(P4調書(四)添付図①の赤線)と右西側斜面の等高線の走向
方向(乙ニ第三号証の一添付図⑭の赤丸印)とは一致しなければならないが、右リ
ニアメントの走向方向(ほぼ南北方向)と右等高線の走向方向(ほぼ南南東―北北
西方向)とは斜交する、③断層運動によって三角末端面が形成される場合には複数
の三角末端面の裾が線状に配列することが普通であるが、右西側斜面付近を含む原
告主張断層の走向方向には右三角形状の地形以外に三角形状の地形は認められてお
らず、また、断
層運動による変位地形(乙ニ第三号証の一添付⑨)も認められていない(乙ニ第三
号証の一の四四丁裏ないし四七丁表)。
 以上のとおりであって、右三角形状の地形が断層運動によって形成されたもので
あるとは到底言い得ない。
エ 原告らは、海上保安庁水路部の海底音波探査の結果から、海底断層S―一七と
本件原子炉施設との間の海域や、白木―丹生間のリニアメントの南側部分(美浜原
子力発電所設置場所の南方付近)の海域はいくつもの地層が乱れており、枝分かれ
した断層がいくつも認められるとの前提に立って、右地点を原告主張断層が走行す
ると主張する(原告ら準備書面(五)2(二)(5)、準備書面(一一)三、
四)。
 しかしながら、海上保安庁水路部の資料によれば、白木北方沖合については、S
―一七断層の部分についてのみ、海底断層の存在を推定しているだけであり、右断
層と陸域との間には断層の存在を推定しておらず、また、美浜原子力発電所設置場
所の南方付近の海底にも断層の存在は示されていない(乙第一六号証六―三―一〇
一、一〇三ページ)。白木―丹生間には地形的低地帯が認められるが、これは、熱
水変質を受け、やや軟質化した花崗岩が分布している部分が選択的に侵食されるこ
とによって形成されたものである。さらに、白木前面海底では、基盤面の傾斜ある
いは凹状地形の側壁が海上音波探査の結果に反映されていると考えられる(乙第一
六号証六―三―三〇ページ)。
 以上のとおり、S―一七断層と陸域との間に活断層の存在を示す地形的な特徴は
認められず、原告の右主張は前提において失当である。
(4) なお、原告ら提出の甲ハ第六六号証中には、敦賀断層と柳ヶ瀬断層とが約
七〇〇年前に同時に活動した可能性があり、これを古文書のデータなどと照らし合
わせると、一三二五年にこれらの断層が同時に活動して地震を引き起こした可能性
が高く、将来、敦賀断層と柳ヶ瀬断層とが同時に動いた場合、マグニチェード七・
二の地震が発生する可能性がある旨の記載がある。
 確かに、本件安全審査においては、敦賀断層と柳ヶ瀬断層とが同時に活動するこ
とは想定していない。しかしながら、右指摘に係る一三二五年に起こった地震(正
中近江の地震)については、設計用最強地震として考慮されており、敦賀断層(木
ノ芽峠断層)及び柳ヶ瀬断層によって起きる各地震については、それぞれマグニチ
ュード七・二を想定し、設計用限界地震と
して考慮されていることを確認している(乙第九号証三四、四八、四九ページ、乙
第一六号証六―五―二九ページ)。したがって、甲ハ第六六号証は、本件安全審査
の合理性を何ら左右するものではない。
(5) 原告らは、甲ハ第六七号証を挙げて、甲楽城断層による地震をマグニチュ
ード七・三、本件敷地との最短距離約一二・五キロメートル(震央距離一五キロメ
ートル)として評価すべきであるところ、本件安全審査でマグニチュード七・○、
震央距離一一・五キロメートルと評価したのは誤りであると主張する。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 すなわち、被告は、本件安全審査において、甲楽城断層について、以下のアない
しウの事項を確認し、その結果、陸域にみられるリニアメントと海域にみられる伏
在断層とは連続するものとし、大谷沢から干飯崎沖までの長さ二〇キロメートルの
断層として考慮することが適切であると判断した。そして、この結果をもとに、甲
楽城断層による地震はマグニチュード七・○、震央距離は、一一・五キロメートル
と評価したのである(乙第九号証三九、四〇、四七ページ、乙第一六号証六―三―
一四、一五、六―五―三一ページ)。
ア 地形調査の結果から、現海岸はリニアメント付近にあった断層崖が海岸浸食に
よって後退し、現在に至ったものと推定される。これによれば、当断層はこの海底
に認められるリニアメント状地形の位置に推定するのが適切と考えられる。
イ 海上保安庁の資料及び申請者の行った音波探査の結果によれば、海底のリニア
メント状地形に沿って大谷付近から干飯崎沖約一八・五キロメートルにわたり伏在
断層が推定される。
ウ 陸域については、大谷と敦賀市杉津の中間の沢に長さ約一・五キロメートルの
リニアメントが認められるにすぎない。そして、現地の露頭調査では、この陸域の
リニアメントの位置に対応する大谷付近の大谷沢口に幅五〇ないし一二〇メートル
の比較的規模の大きな破砕帯が認められる。
 なお、甲ハ第六七号証における甲楽城断層に関する記載を検討するに、確かに、
右書証の中の「中部日本のブロック境界に認められる空白域と歴史地震が知られて
いない構造線での地震危険度」と題する図(同号証一九八ページ)中の「D」に
は、原告らが指摘する部分と思われる空白域の図示がある。しかし、金折祐司は、
右のような空白域から想定される地震について、「歴史
地震の発生が知られていないブロック境界については、地震の空白域や次の地震で
破壊する領域を予測することが困難である」として、地震の想定の困難性を指摘し
た上で、「仮に、それを構成する大規模な活断層を次の地震での破壊域とみなし、
地震危険度評価を試み」るとして、右Dの空白域を破壊域とあえて仮定し、想定さ
れる地震のマグニチュード等を導いてみたものである(同号証一九九ページ)。以
上のとおり、右記載部分は、空白域において地震が発生する蓋然性を前提にしたも
のではないから、原告らの主張する断層から想定される地震をもって、耐震設計上
考慮すべき地震とすべき必要はない。したがって、甲ハ第六七号証の右記載は、本
件安全審査における甲楽城断層の評価を不合理とする根拠とはなり得ない。
(6) 原告らは、①兵庫県南部地震によって、型が違って連続していない複数の
断層が飛び火して同時に動くことがあり得ることが証明されたとの前提に立って、
②山中断層と甲楽城断層と柳ヶ瀬断層、白木―丹生リニアメントとS―一五~二七
断層、S―二一~二七断層と野坂断層及び敦賀断層と花折断層が同時に動くと主張
した上、地震地体構造を考えると、③花折断層で地震が起こるとしても、敦賀断層
も動くとみるべきであり、震央距離は六〇キロメートルではなく、五〇キロメート
ル程度になる、④山中断層と甲楽城断層と柳ヶ瀬断層は、一体となった断層系とし
て考える必要があり、甲楽城断層の位置にマグニチュード七・八の地震を考えるこ
とになるはずであると主張する。
 しかしながら、原告らの右主張は、いずれも理由がない。
 まず、①についてみるに、兵庫県南部地震は、その余震分布等からみて、既知の
活断層の密集帯である六甲―淡路断層帯(原子力安全委員会はこれを一連の断層と
して評価している(甲ハ第六〇号証一六ページ)。)の一部が変位して発生したも
のとみられ(甲ハ第六〇号証九、一〇ページ)、原告らの指摘するような、何ら関
連性のない複数の活断層が同時に変位することによって発生したものではない。原
告らの主張①は誤りであり、したがって、原告らの主張①を前提とする②ないし④
の主張は、いずれもその前提を欠き、失当である。
 なお、念のため、付言すると、②及び④については、山中断層と甲楽城断層と柳
ヶ瀬断層、白木―丹生リニアメントとS―一五5一七断層、S―二一~二七断層と
野坂断層及び敦賀断層と花折
断層は、いずれも別個のものであり、これらが同時に活動する可能性がないこと
は、前記(一)ないし(二)で述べたとおりである。また、③については、敦賀断
層(木ノ芽峠断層)と花折断層は、距離的にも離れており(乙第一六号証六―三―
七九ないし八二ページ)、一連の断層として評価する余地はない。
(二) 耐震設計審査指針に関する主張について
(1) 原告らは、本件安全審査において適用した耐震設計審査指針がマグニチュ
ード六・五の直下型地震を想定するものとしているのは妥当でないと主張する(訴
状三七〇ページ)。
 しかしながら、以下に述べるとおり、原告らの右主張は理由がない。
 原告らの指摘するように、耐震設計審査指針は、設計用限界地震の想定に当たっ
て、近距離地震(震源距離一〇キロメートルを想定)として、マグニチュード六・
五の直下地震をも考慮するものとしている(乙第四号証三八五ページ)が、前記二
1(イ)(二)(1)で述べたとおり、設計用限界地震の想定は、①過去の地震の
発生状況、②その活動度の大小の程度を考慮した敷地周辺の活断層の性質、③地震
地体構造に基づき、地震学的知見に工学的見地からの検討を加えて、このうち敷地
に対して最も影響の大きいものを想定することが前提となっている。直下地震は、
右のように原子炉施設が設置される場所に即して、十分な文献調査や現地調査をし
た上で、想定される設計用限界地震について、更に無条件で考慮するものとされた
ものである。指針がこのように定めているのは、原子炉施設が放射性物質を有して
いるということから、念には念を入れるという安全性確保の考え方に基づき、地表
に現れていない活断層の存在とこれによる地震発生の可能性を否定し得ないという
地震学的見地に配慮したものである(乙ニ第三号証の二の六二丁裏)。
 右のとおり、現地周辺について十分な調査がされることを前提に、更にどの程度
の規模の地震を無条件で想定することを要求するかは、原子力安全委員会が、安全
審査の経験を踏まえ、地震学、地質学等の知見を工学的に判断して定めるものであ
る(乙第四号証三七六ページ)。耐震設計審査指針が定めるマグニチュード六・五
の直下地震は、我が国の地震に関する知見が総合的に考慮されたものであり、右の
直下地震の位置づけからして、合理的かつ妥当な基準というべきである。
 原告らは、日本海中部地震がマグニチュード七・七(震源は秋
田県沖約一〇〇キロメートルとされている。甲ハ第四八号証七五ページ)であった
ことを指摘して、右基準の設定を非難するが、指針における直下地震の位置づけを
理解しないものであって失当である。
 また、原告らは、マグニチュード六・五の直下地震を想定することが不合理であ
る根拠として、以上の他にも、①一九二七年北丹後地震(マグニチュード七・
三)、一九四三年鳥取地震(マグニチュード七・二)、一九四八年福井地震(マグ
ニチュード七・一)、一九八四年長野県西部地震(マグニチュード六・八)は、い
ずれも活断層がないか、ほとんどないところで発生したものであり、活断層がなく
てもマグニチュード六・五以上の大地震が起こる、②松田時彦は、地表地震断層の
生じない最大地震をマグニチュード七・一にすべきだと主張する、③島崎邦彦は、
これを六・八に変えた方が良いと主張することをも指摘する。
 しかし、①については、耐震設計審査指針における直下地震の位置づけを正解し
ないものであり、失当である。②、③についても、現行の直下地震の基準(原子力
安全委員会が、安全審査の経験を踏まえ、地震学、地質学等の知見を工学的に判断
して定めたものである。)の合理性を否定する知見ではない。したがって、原告ら
の右主張は、いずれも失当である。
 さらに、原告らは、「耐震設計審査指針」における直下地震に関する規定は、直
下地震を想定し七いるにもかかわらず、①基礎岩盤が断層によって破壊されること
を想定しておらず、また、②直下地震による衝撃的破壊について考慮されていない
のは、不合理であると主張する。
 しかしながら、以下に述べるとおり、原告らの右主張も失当である。
 ①については、地盤に係る安全審査は、「原子力発電所の地質、地盤に関する安
全審査の手引き」(乙第四号証七〇五ないし七〇七ページ)に基づき、原子炉施設
の敷地地盤のボーリング調査等を行い、原子炉施設の安全性に影響を及ぼすような
断層の存在しないことを確認することとしている。したがって、直下地震の想定に
当たり、基礎岩盤が断層によって破壊される事態を想定する必要はない。
 ②については、原告らの指摘する衝撃的破壊は、兵庫県南部地震において被災原
因の一つとなった可能性があると言われているが、仮説の域を出ず、確証が得られ
たものではない(甲ハ第六〇号証一一ページ)。そもそも、「耐震設計審査指針」
は、想定されるいかな
る地震力に対してもこれが大きな事故の誘因とならないように耐震設計の方針等を
定めたものであり、直下地震についても十分に考慮することとしていることは、前
記二1で述べたとおりである。したがって、直下地震の想定に当たり衝撃的破壊を
考慮していないことは、何ら不合理ではない。
(2) 原告らは、「耐震設計審査指針」における地震の上下動の力の設定が、動
的地震力については基準地震動の最大加速度(水平方向)の二分の一とし、静的地
震力については水平方向の標準せん断力の二分の一としているのは不当であると主
張し、その根拠として、兵庫県南部地震による観測記録中には上下動が水平動を上
回るものが見られることを指摘する(原告ら準備書面(一二)二三ないし二六ペー
ジ)。
 しかしながら、準備書面(六)の二四ないし二六ページにおいて述べたとおり、
原告らの指摘する観測記録は、軟弱な表層地盤における観測記録や、構造物の影響
を強く受けている高層ビルの地下階の観測記録等であり、いずれも上下方向の加速
度が相対的に大きくなる場合のある箇所の記録である。一方、これらを除外した観
測記録の上下動と水平動との最大加速度振幅の比は、平均的にほぼ二分の一を下回
る結果が得られている(甲ハ第六〇号証二一ページ)。したがって、原告らの右主
張は理由がない。
 なお、一般に、地震時の構造物の設計を支配するのは水平地震力であり、鉛直地
震カの影響は小さいものと考えられるところ、原子炉施設の建物及び構築物は、厚
い壁で構成される鉄筋コンクリートの壁式構造にしてあるため、上下方向には特に
剛性の高い構造となっている。したがって、鉛直方向の地震力が原子炉施設の耐震
安全性に及ぼす影響は小さい。
(3) 原告らは、甲ハ第六七号証の中で引用されている松田時彦の考え方を指摘
して、「耐震設計審査指針」が前提とする「過去起きたから危険だ」という考え方
は、「過去起きていないから危険だ」という考え方に転換されており、もはや「耐
震設計審査指針」は時代遅れの遺物でしかないと主張する。
 しかしながら、甲ハ第六七号証の中には、原告らの指摘するような、「過去起き
たから危険だ」という考え方がもはや時代遅れである旨の記載は一切存在しない。
他に、原告らの右指摘を裏付ける客観的な証拠はないから、原告らの右指摘は、全
くの誤りというほかない。
 なお、原告らの引用する松田の考え方とは、地震予知の見
地から、活断層のうち要注意活断層を選別するものである。松田は、かかる観点か
ら、その選別のための基準として、「無地震経過率の大小」(地震の再来を前提に
地震後の経過率の大きい活断層を要注意活断層とする考え方)や、「歴史地震の有
無」(一つの長い断層のうち、この一部が比較的最近地震(歴史地震)を発生させ
ている場合、その残余の区間が地震を発生させる可能性が高いという考え方)を提
示したものである(甲ハ第六五号証九二ページ)。すなわち、右松田の考え方を正
確に述べるならば、「過去に起きて以来現在までに起きていないから危険だ」とい
うべきであって、過去の地震歴を考慮するという考え方が変わったものではない。
原告らは、「過去に起きたから危険だ」という考え方が、「過去に起きていないか
ら危険だ」という考え方に転換したと述べるが、これが右松田の考え方を曲解した
ものであることは明らかである。
 「耐震設計審査指針」は、右のような要注意活断層を選別することとしていない
が、原子炉施設の設置場所に即した具体的個月的調査がされることを前提にしてお
り、災害防止の観点から最も重要なAsクラスの施設(これらの施設の機能が維持
される限り、放射性物質の異常な放出は回避される施設)の耐震設計に際しては、
地震を引き起こす可能性のある活断層をすべて考慮することとしている(前記1
(二)(1)参照)。したがって、「耐震設計審査指針」が、右の要注意活断層の
選別の定めを置いていなくても、耐震安全性を確保する上で問題はなく、右指針の
合理性は何ら損なわれない。
(4) 原告らは、「耐震設計審査指針」は、本来区分する理由のないS1、S2
を区分して歴史地震を重視し、その一方で活断層を軽視しているのは不合理である
と主張する。しかしながら、前記1(一)(1)ないし(5)で述べたとおり、基
準地震動S1、S2の区別は、耐震設計上の重要度分類(施設をA、B、Cクラス
に分け、更にAクラスのうち特に安全上重要な施設をAsクラスとする)に対応し
たものである。具体的には、基準地震動S1はAクラスの耐震設計を導くのに用
い、基準地震動S2はAsクラスの耐震設計を導くのに用いるものであって、両者
を区別するのは十分な合理性がある。そして、前記1(二)(1)において述べた
とおり、耐震設計審査指針は、基準地震動S1及びS2の策定に際して、地震を引
き起こす可能性のある活断
層はすべて考慮することとしており、活断層を軽視するような事実はない。原告ら
の右主張は失当である。
(5) 原告らは、「耐震設計審査指針」が耐震設計上想定すべき地震の選定に当
たり考慮すべき活断層を五万年前以降に活動した活断層に限定しているのは、合理
性を欠くと主張する。
 しかし、「耐震設計審査指針」が考慮すべき活断層を五万年前以降に活動したも
のに限定しているのは、①地質時代的にみて最近まで繰り返し活動していた断層は
将来も活動して地震を起こす可能性がある、②このような断層の調査結果から繰り
返しの期間の大半は約一万年以内、これより長いものでも約五万年以内に納まって
いる、③一般に活動度が高ければ高いほど繰り返し期間が短いとされている、とい
う地震学、地質学等の知見に基づき、工学的に判断したものである(乙ハ第二〇号
証二〇三ページ)。したがって、右基準は合理的であり、原告らの右主張は失当で
ある。
(6) 原告らは、断層が引き起こす地震の影響を考慮するに当たり、断層の中心
を震央と考え、震央からの距離を金井式に適用することは不適切であると主張す
る。
 しかしながら、原告らの主張は、以下に述べるとおり失当である。
 すなわち、地震に係る安全審査では、基準地震動の策定に当たり、活断層の全範
囲が一度に活動して最大規模の地震が発生することを想定している。この場合、実
際の断層面は空間的な広がりのあるものではあるが、震源の位置の想定方法とし
て、断層面の一点で代表させるという手法を採用している。断層面が広がりのある
ものであることを考慮すると、断層面(地震の発生を引き起こす、ひずみエネルギ
ーが蓄積していた空間的な広がり)の中心をもって震源(すなわち右エネルギーの
放出点)とし、その真上の地表上の点(断層の中心)を震央とすることは妥当であ
り、一般的な手法である。このように、断層の中心を震央と考えることは、何ら不
合理ではない。
 なお、敷地と断層までの距離が断層の大きさに比べてある程度離れている場合に
は、点震源と仮定しても何ら問題ないが、敷地と断層が接近している場合には、断
層面の広がりが無視できなくなるため、これを考慮した断層モデル(地震の発生源
である断層を面としてとらえ、実際には複雑な形状を持っている断層を種々のパラ
メータを用いてモデル化し、地殻の破壊する現象をシミュレートすることにより、
地震動を推定しようとする手
法)を用いた検討もされることとなっている(なお、本件原子炉施設についてはそ
の検討を要する活断層は存在しない)。
(7) 原告らは、「耐震設計審査指針」が遠方の地震を考慮することとしていな
いのは不備であると主張する。
 しかしながら、「耐震設計審査指針」は、遠距離地震を考慮することを求めてお
り(耐震設計審査指針5・(3)、乙第四号証三八○ページ)、原告らの指摘は誤
りである。
 なお、本件安全審査においては、震央距離が一五〇キロメートル以遠の歴史地震
は、基準地震動の策定に際して考慮していない。これは、これらの地震が本件原子
炉施設の敷地に与える影響が、設計用最強地震及び設計用限界地震の想定に際して
選定した各地震による影響を下回ることから、これら選定した地震で代表させても
支障がないと判断したためである(乙第九号証四九ページ、乙ニ第三号証の一の二
九丁裏、四三丁表)。
(三) 松田式に関する主張について
(1) 原告らは、従来の松田式による耐震設計は過小な評価に基づくものであ
り、誤っていると主張し、その根拠として、松田式の提案者である松田時彦が、平
成七年六月に最近の検討結果として新たに提案した、二本の直線で表される関係式
を示し(甲ハ第五四号証二二ページの図2中の点線bとc)、これによれば、甲楽
城断層のマグニチュードは大きくなることを指摘する(原告ら準備書面(一二)
五、六ページ)。
 しかしながら、従来の松田式は、東京大学地震研究所教授(当時)松田時彦が、
昭和五〇年に、地震の際に実際に地表面に出現した断層の状況から定められた断層
の長さからその断層が引き起こす可能性のある最大のマグニチュードを推定するた
めに提案した式であって(乙ハ第一六号証二七三ページ)、本件原子炉施設を始め
他の原子炉施設の耐震設計においても、有用な経験式として現在でも広く活用され
ている。
 一方、原告らの指摘する新たな経験式は、策定根拠が全く明らかにされていな
い。したがって、これによって、従来の経験式の適用を誤りとすべき理由はなく、
原告らの主張は理由がない。
(2) 原告らは、松田式は活断層による断層線の長さから地震のマグニチュード
を推定する式であるところ、右活断層による断層線がすべて地表に現われるとは限
らず、短く評価されがちであることを指摘し、松田式による評価には大きな誤差が
あるのに、右誤差を考慮しない審査基準は不合理であると
主張する。
 しかし、本件安全審査では、空中写真判読、文献調査、詳細な地表踏査等の結果
に基づき、地表に現れている部分だけではなく、地質学的見地等から、地下の地質
構造も推定した上で活断層の長さの妥当性を評価しており、活断層の評価は適切に
されている。原告らが指摘するような、地表に現れている部分のみをもって断層線
と評価することはしておらず、原告らの右主張は、前提において失当である。
(四) 金井式の適用に関する主張について
(1) 原告らは、甲楽城断層(震央距離一一・五キロメートル)から想定される
地震に金井式を適用することは無理があると主張し、その根拠として、金井式には
適用限界があり、限界距離(マグニチュード七・○の場合に一三・六キロメート
ル)内では適用し得ないことを指摘する(原告ら準備書面(一二)八ないし九ペー
ジ)。
 しかしながら、準備書面(六)の一七、一八ページにおいて述べたとおり、右断
層に対する金井式の適用に当たっては、一般に承認されている金井式の適用方法に
従ったものである。原告らは、右適用方法とは異なる「限界距離」なる概念を用い
て金井式の適用を不当であると非難するにすぎず、原告らの主張は理由がない。
(2) 原告らは、田中貞二の論文等を挙げて、実際の地震による影響は、金井式
によって求められたものを超える場合があることを指摘し、金井式の誤差を考慮し
ない審査基準は不合理であると主張する。
 しかし、原告らの右主張は、以下に述べるとおり失当である。
 金井式は、茨城県の日立鉱山地下三〇〇メートルの坑道内で得られた地震観測記
録等に基づく実験式を、松代群発地震の際の震源近傍の観測値を用いて近距離まで
適用可能なものに改S1したものである(乙ハ第九号証三四ページ)。このよう
に、金井式は、岩盤における最も確からしい地震動を評価する経験式であるから、
実際の岩盤上の地震の影響をすべて包絡するものではなく、田中貞二が指摘する程
度の誤差が生じることもあり得る。しかし、金井式が岩盤における最も確からしい
地震の影響を評価する式として現在でも広く活用されていることに照らせば、原子
炉施設の基準地震動の策定に当たり金井式を用いることは、適正かつ合理的であ
る。
 なお、原告らの指摘する甲ハ第九号証の図九・二六の説明文中には、「この測定
点がどのような場所を選んで設置されているかはっきりしない」との記載があると
ころが
らみて、原告らの指摘する右データは、岩盤上の測定でない可能性がある。そうす
ると、右書証中の岩盤上の地震の影響を評価する金井式の誤差についての論評は、
その基礎となるデータ自体の根拠があいまいであり、信用性、真実性に欠けるとい
わざるを得ない。
 また、基準地震動の策定に当たって金井式を用いることは、基準地震動の策定か
ら個別具体的な耐震設計の全体で保守性を確保する原子炉施設の耐震設計の構造か
らみても、何ら不合理ではない。すなわち、原子炉施設においては、想定されるい
かなる地震力に対しても、これが安全上重要な施設の機能を失わせ、大きな事故の
誘因とならないよう耐震設計を講じるものである。具体的には、まず、詳細な各種
調査に基づき、過去の地震歴、活断層及び地震地体構造等から想定される影響をす
べて包絡するように基準地震動を定める。そして、右基準地震動が自然現象という
不確定さを含まざるを得ないものの考察によって策定されるものであることを考慮
して、基準地震動に対して工学的に十分な余裕をもつて個別具体的な耐震設計がさ
れるのである。
(五) 「大崎の方法」に関する主張について
 原告らは、現行の「大崎の方法」は完全に破綻していると主張し、その根拠とし
て、原子力安全委員会の「平成七年兵庫県南部地震を踏まえた原子力施設耐震安全
検討会」が平成七年九月に公表した「平成七年兵庫県南部地震を踏まえた原子力施
設耐震安全検討会報告書」の中で、兵庫県南部地震の際に神戸大学のトンネル内で
実際に観測された地震動の応答スペクトルが、「耐震設計審査指針」に基づき想定
される地震によって同地点の解放基盤表面上にもたらされる地震動の応答スペクト
ル(大崎スペクトル)を長周期側で上回っていることが示されていることを挙げる
(原告ら準備書面(一二)一九ないし二二ページ)。
 しかしながら、準備書面(六)の二二、二三ページにおいて述べたとおり、大崎
スペクトルは、表層地盤による地震動の増幅による影響が排除されている解放基盤
(岩盤表面上)での標準スペクトルであるのに対し、原告らの指摘する地震動は、
埋戻土又は表層土の上に設置された地震計によるものである(甲ハ第六〇号証一九
ページ)。したがって、このような右地震動による応答スペクトルが、大崎スペク
トルを長周期側で上回っていたとしても、右事実は、大崎スペクトルの破綻を示す
ものではなく、原告らの右主張は
理由がない。
 なお、前記二1(一)で述べたとおり、原子炉施設の建物及び構築物は原則とし
て剛構造とすることから、これらの固有周期は短周期側に集中している。したがっ
て、万一、実際に観測された地震動の応答スペクトルが、長周期側において、想定
される地震によってもたらされる地震動の応答スペクトルを上回ることがあるとし
ても、そのことによって原子炉施設の耐震安全性が損なわれることはない。
第三 本件原子炉施設の事故防止対策に係る安全性
 原子炉施設の事故防止対策に係る審査事項
1 原子炉施設の事故防止対策に係る基本的な考え方
 原子炉施設における安全確保の基本は、原子炉施設に内包される放射性物質の有
する危険性をいかに顕在化させないかという点にある。ところで、右放射性物質と
しては、①燃料としての核燃料物質、②燃料の核分裂反応によって生じる核分裂生
成物(FP)及び③炉心燃料集合体等の構造材や冷却材に使用するナトリウム等が
中性子により放射化されることなどによって生じる放射化生成物がある(P6調書
(一)四丁裏)。
 そこで、原子炉施設においては、通常運転時に、右①及び②の放射性物質を燃料
被覆管内に、③の放射性物質を一次系内にそれぞれ閉じ込めるとともに、万一、何
らかの原因で燃料被覆管から放射性物質が放出されることがあったとしても、これ
を一次系内の原子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリ内に閉
じ込めることによって、放射性物質が環境へ異常に放出されることを防止すること
が必要である。
 これを原子炉施設における事故防止対策としてみると、まず、①燃料被覆管や原
子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリの損傷につながるよう
な異常の発生(燃料被覆管や原子炉冷却材バウンダリ及び原子炉カバーガス等のバ
ウンダリの異常な温度上昇等)を未然に防止する対策(異常発生防止対策)を講じ
ることが基本である。そして、②仮に右のような異常が発生した場合においても、
それが燃料被覆管や原子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリ
の損傷に波及すること、すなわち、右の異常が拡大したり、さらに、放射性物質が
環境へ異常に放出するおそれのある事態にまで発展することを未然に確実に防止す
る対策(異常拡大防止対策)を講じることが必要である。さらに、③仮に異常が拡
大した事態を想定した場合においてもなお、放射性物質の環
境への異常な放出という結果が防止され安全が確保されるための対策(放射性物質
異常放出防止対策)を講じることが必要である。
 以上のとおり、原子炉施設は、いわゆる多重防護の考え方に基づいた各種の事故
防止対策に係る安全設計が適切に行われていなければならない(P6調書(一)五
丁裏ないし六丁裏)。
2 原子炉施設の事故防止対策の妥当性
 そこで、安全審査における事故防止対策に係る安全性の審査に当たっては、「評
価の考え方」に基づき、「安全設計審査指針」等を参考として、以下に述べるとお
り、申請に係る原子炉施設がその基本設計ないし基本的設計方針において、右に述
べた多重防護の考え方に従って、各種の事故防止対策が講じられ、安全が確保され
ていることを確認しなければならない。
(一) 第一に、申請に係る原子炉施設において所要の異常発生防止対策が講じら
れているかどうかを確認する。このため、具体的には、①原子炉が安定した運転を
維持し得ること、②燃料被覆管の健全性が確保されること、③原子炉冷却材バウン
ダリ及び原子炉カバーガス等のバウンダリの健全性が確保されることを、次の事項
について確認する(P6調書(一)七丁表)。
(1) 原子炉の運転は安定した状態に維持されること。そのために、①原子炉の
すべての運転範囲で固有の負の反応度フィードバック特性を有する設計であるこ
と、②燃料被覆管や原子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリ
の各々の健全性を確保するために必要な諸変数(炉心の中性子束、一次主冷却系流
量、原子炉容器出口のナトリウム温度等)が、適切な範囲に維持され、かつ、監視
できる設計であること(P6調書(一)七丁裏、安全設計審査指針の指針15ない
し17)。
(2) 燃料被覆管の健全性が確保されること。そのために、①燃料ペレットの過
度の膨張、②熱応力や燃料被覆管内に生成する気体状核分裂生成物による圧力上
昇、③燃料被覆管を冷却する能力の低下、④一次冷却材中の不純物等に起因する化
学的腐食、⑤燃料集合体の変形や損傷に対して、いずれも燃料被覆管が損傷しない
ように配慮されていること(P6調書(一)二二丁裏、二三丁表、二五丁表ないし
二六丁表、二七丁表、同裏、安全設計審査指針の指針14)。
(3) 原子炉冷却材バウンダリの健全性が確保されること。そのために、①熱的
過渡変化等、②中性子の照射(ただし、原子炉容器に限る。)、③一次冷却材中の
不純物等に起因する化学的腐食に対して、いずれも原子炉冷却材バウンダリが損傷
しないように配慮されていること。
 また、原子炉カバーガス等のバウンダリの健全性が確保されること。そのため
に、④それらが、十分な強度を有するように設計されること、⑤カバーガス中の不
純物に起因する化学的腐食に対して損傷しないように配慮されていること(P6調
書(一)二九丁表、三〇丁裏)。
(二) 第二に、申請に係る原子炉施設において所要の異常拡大防止対策が講じら
れているかどうかを確認する。このため、次の事項について確認する(P6調書
(一)三二丁表)。
(1) 原子炉施設においては、仮に何らかの異常が発生した場合にも、所要の措
置が採れるように、その異常の発生を確実に検知し得る設計であること。
(2) 何らかの異常が発生した場合に、その異常が拡大したり、さらには、放射
性物質が環境へ異常に放出されるおそれのある事態に発展することを未然に防止す
るために、原子炉を速やかに停止し、原子炉が緊急停止した後も炉心を冷却するこ
とができるように、所要の安全保護設備が設置されること。
(3) 安全保護設備がその機能を確実に発揮できるように、信頼性が確保され得
る設計であること。
(三) 第三に、申請に係る原子炉施設において所要の放射性物質異常放出防止対
策が講じられているかどうかを確認する。このため、(一)及び(二)の対策にも
かかわらず、仮に放射性物質を環境に異常に放出するおそれのある事態に異常が拡
大した場合においてもなお、放射性物質の環境への異常な放出という結果を防止す
ることができることを、次の事項について確認する(P6調書(一)四二丁表)。
(1) 原子炉施設の破損、故障等に起因して、原子炉内の燃料の破損等による多
量の放射性物質の放散の可能性がある場合に、これらを抑制又は防止するための機
能を備えるよう設計された施設、すなわち、工学的安全施設が設置されること。
(2) 右の工学的安全施設がその機能を確実に発揮できるように、信頼性が確保
され得る設計であること。
二 本件原子炉施設の事故防止対策に係る審査
 被告は、本件安全審査において、一に述べた事故防止対策に係る安全設計につい
ての考え方に基づいて審査し、その結果、以下に述べるように、本件原子炉施設の
事故防止対策に係る安全設計は、その基本設計ないし基本的設計方針において妥当
であ
ると判断した(P6調書(一)四六丁表、同裏)。
1 異常発生防止対策の妥当性
 被告は、本件安全審査において、以下に述べるように、本件原子炉施設における
異常発生防止対策は適切であると判断した(P6調書(一)三一丁裏)。
(一) 原子炉の安定した運転の維持被告は、本件安全審査において、以下の
(1)及び(2)の事項を確認し、その結果、本件原子炉の運転を安定した状態に
維持するための適切な対策が本件原子炉施設において講じられると判断した(乙第
九号証八一、八三、八四ページ)。
(1) 本件原子炉では、ドップラ係数、冷却材温度係数等を総合した出力係数が
すべての運転範囲で常に負に保たれ、したがって、すべての運転範囲において、核
分裂反応が増加して燃料の温度が上がればそれに伴って核分裂反応が抑制されると
いう性質、すなわち、核分裂反応に対して原子炉固有の負の反応度フィードバック
特性を有する設計とされている(乙第九号証八一ページ、乙第一四号証の三の一〇
ページ、乙第一六号証八―一―四三、四四、八1三―二六、五〇ページ、P6調書
(一)一九丁表)。
 また、本件原子炉の通常運転時に原子炉出力を変更する場合や、運転状態を乱す
ような何らかの外乱が入った場合、原子炉出力等を安定に制御し、併せて、炉心の
中性子束、一次主冷却系の流量、原子炉容器出口のナトリウム温度等の重要な諸変
数を適切な範囲に維持するために、原子炉制御設備が設置される(乙第一六号証八
―一―四五、八―九―一七ないし二二ページ)。
 そして、右の重要な諸変数が適切な範囲に維持されていることを確認するため
に、中央制御室において右の重要な諸変数を集中的に監視できるような対策が講じ
られる(乙第一六号証八―一―四九、八―九―一ページ、P6調書(一)一九丁
裏、二〇丁表)。
(2) 右の原子炉制御設備の制御能力について、申請者がした解析評価の結果に
よれば、原子炉出力を変更する場合や運転状態を乱すような何らかの外乱が入った
場合に、これらの影響として、原子炉容器、一次主冷却系、二次主冷却系等の各設
備に過渡的変化(主に温度変化)が生じるものの、これは、本件原子炉の固有の負
の反応度フィードバック特性とあいまって、右原子炉制御設備の制御によって小さ
くなるように抑制され、本件原子炉は自動的に安定した運転状態に落ち着く。した
がって、右原子炉制御設備は適切な制御能力を有している(乙
第九号証八三、八四ページ、乙第一四号証の三の一一ページ、乙第一六号証八―三
―三六ないし四〇、八―九i二二ページ)。
(二) 燃料被覆管の健全性の確保
 被告は、本件安全審査において、以下の(1)ないし(5)の事項を確認し、そ
の結果、本件原子炉施設において使用する燃料被覆管の健全性は確保されると判断
した(乙第九号証八五ページ)。
(1) 燃料ペレットの過度の膨張に関しては、通常運転時の燃料ペレットの最高
温度は燃料ペレットの融点よりも十分低いから、燃料ペレットが溶融して燃料被覆
管を内側から押し広げて損傷させることはない(燃料ペレット等を第四図に示す。
乙第九号証八二、八三ページ、乙第一四号証の三の一一ページ、乙第一六号証八―
一―四一、八―三―七、八、三三ないし三五、四三ページ)。
(2) 熱応力や燃料被覆管内に生成する気体状核分裂生成物(FPガス)による
圧力上昇に関しては、燃料ペレットの熱膨張やスエリングによって、燃料被覆管が
過大な力を受けないように、燃料ペレットと燃料被覆管との間には適切な間隙が設
けられる(乙第一六号証八―三―四ページ、P6調書(一)二六丁表)。また、燃
料の核分裂反応が進み、燃料ペレットが膨らんで燃料被覆管との間隙がなくなった
時点では、燃料被覆管自体がスェリング及びクリープによってその内径が増加する
ため、燃料被覆管が燃料。ヘレットから過大な力を受けることはない(乙第九号証
八四、八五ページ、乙第一四号証の三の一一ページ、乙第一六号証八―三―八、九
ページ)。なお、右燃料被覆管のスエリングは、直接右燃料被覆管の健全性を損な
うものではないことが照射実績により示されている(乙第一六号証八―三―八ペー
ジ)。さらに燃料被覆管内の圧力が過度に上昇しないように、燃料被覆管の内部に
ガスプレナムと呼ばれる空間が設けられる(乙第一六号証八―三―八ページ)。ま
た、燃料被覆管にかかる応力としては、熱応力、湾曲拘束による応力等があるが、
これらの応力にも燃料被覆管は十分な強度を有する(乙第一六号証八―三―九ペー
ジ)。そして、右の応力や圧力、さらに通常運転時及び異常な過渡変化時における
温度変化に十分耐え得る強度を有するステンレス鋼製の燃料被覆管が使用される
(乙第一六号証八―三―七、二八、二九ページ)。
(3) 燃料被覆管を冷却する能力の低下に関しては、そもそも冷却材であるナト
リウムの冷却能力が優れ
ている上、各燃料集合体の発熱量に見合うように、燃料集合体ごとに冷却材の流量
が適切に配分される(乙第一六号証八―三―二八ページ)。また、燃料集合体内へ
の冷却材の流入孔のすべてが同時に閉塞しないように、右流入孔が多数設けられ
る。そして、燃料被覆管を冷却する冷却材の流路が確保されるように、各燃料被覆
管にはそれぞれワイヤスペーサが巻かれ(乙第一六号証八―三―五ページ)、右ワ
イヤスペーサの存在により、たとえ燃料被覆管が湾曲しても、燃料集合体のラッパ
管に接触したり、冷却材の流路が閉塞することはない(乙第一六号証八―三―一〇
ページ)。
(4) 一次冷却材中の不純物等に起因する化学的腐食に関しては、燃料被覆管の
材料として、耐食性(腐食しにくい性質)に優れたステンレス鋼が使用される上、
腐食の原因となる冷却材中の不純物を除去できるように、コールドトラップが設置
される(乙第一六号証八―一―二五、八―三―七、八―八―三ページ、P6調書
(一)二七丁表)。
(5) 燃料集合体の変形や損傷に関しては、燃料集合体のラッパ管の材料とし
て、スエリングの小さいステンレス鋼が使用される上、燃料集合体の変形が過大に
ならないように、炉心を外側から拘束する炉心槽が設置されるなどの対策が講じら
れる(乙第一六号証八―一―一〇九、八―三―五、一一、一二ページ、P6調書
(一)二八丁表)。
(三) 原子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリの健全性の
確保
 被告は、本件安全審査において、以下の(1)ないし(5)の事項を確認し、そ
の結果、原子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリ(第八図参
照)の健全性は確保されると判断した(乙第九号証一〇〇ページ)。
(1) 熱的過渡変化等に関しては、原子炉冷却材バウンダリに及ぶ熱的過渡変化
が抑制されるように、本件原子炉の通常運転時には、冷却材の温度をほぼ一定に維
持できるように原子炉制御設備が設置されるとともに、本件原子炉の起動時又は停
止時には、冷却材であるナトリウムの昇温速度又は降温速度を制限する対策が講じ
られる。また、原子炉冷却材バウンダリを構成する機器及び配管の材料としては、
高温での強度に優れたステンレス鋼が使用される(乙第一六号証八―一―六七、八
―四―三、四ページ)。
(2) 原子炉容器に対する中性子照射の影響に関しては、原子炉容器の材料とし
て、延性の高いステンレス
鋼が使用される上、中性子照射に対して原子炉容器の健全性が損なわれないよう
に、原子炉容器に対する中性子の過度の照射を防止する対策(中性子しゃへい)が
講じられる。また、原子炉容器内に原子炉容器と同じ材料の試験片を挿入してお
き、この試験片を適宜取り出して、その材質変化を監視することができるように考
慮されている(乙第一六号証八―一―七〇、八―四―二ページ)。
(3) 一次冷却材中の不純物等に起因する化学的腐食に関しては、原子炉冷却材
バウンダリを構成する機器及び配管の材料として、耐食性に優れたステンレス鋼が
使用される上、腐食の原因となる冷却材中の不純物を除去できるように、コールド
トラップが設置される(乙第一六号証八―一―二五、八―三―七、八―八―三ペー
ジ)。
(4) 原子炉カバーガス等のバウンダリについては、原子炉容器等のカバーガス
の圧力がほぼ一定(約一・五気圧)に保たれる上、右の圧力よりも十分高い圧力に
耐え得る強度を持つように設計される。また、カバーガスとして使用するアルゴン
ガスは、化学的に不活性で腐食のおそれがなく、かつ、高い純度のものが用いられ
る。さらに、原子炉カバーガス等のバウンダリについては、適切な材料が使用され
る(乙第一六号証八―四―四、八―八―七、八、三八ページ、P6調書(一)三〇
丁裏、三一丁表)。
(5) 万一、蒸気発生器内の伝熱管から水・蒸気が漏えいした場合でも、その影
響(右のナトリウム側へ漏えいした水・蒸気とナトリウムとのナトリウム・水反応
によってもたらされるナトリウム側の圧力の上昇等)を限定し、原子炉冷却材バウ
ンダリにまで波及することを防止できるように、中間冷却系として二次主冷却系が
設置される(第二図参照。乙第一六号証八―一―七四ページ、P6調書(一)三八
丁表)。二次主冷却系には、ナトリウム・水反応生成物収納設備が設置されてお
り、二次主冷却系の圧力が顕著に上昇するような大規模な漏えいが発生した場合に
は、蒸発器及び過熱器に設置されている圧力開放板が開放されて、二次主冷却系内
圧力の過度な上昇を防止するとともに、右圧力をナトリウム・水反応生成物収納設
備側へ逃がすことができる(乙第一六号証八―一―七五、八―五―六ページ)。そ
の際、右圧力開放板の開放を検出した信号によって、自動的に、蒸気発生器への給
水停止、蒸気発生器内の伝熱管内に残留する水・蒸気の急速ブロー、二次主冷却
系循環ポンプの停止等の一連のプラント停止操作が行われる(乙第一六号証八―五
―三ページ)。その結果、ナトリウム水反応は終止し、また、二次主冷却系流量の
減少が二次主冷却系循環ポンプの回転数によって検知され自動的に安全保護系から
「二次主冷却系循環ポンプ回転数低」信号が原子炉トリップ(自動停止)信号とし
て発せられて、本件原子炉は自動停止し、補助冷却設備が作動して炉心は冷却され
る(乙第一六号証八―九―二三、二四、二七、二八ページ、P6調書(一)三八丁
裏ないし四〇丁裏)。
2 異常拡大防止対策の妥当性
 被告は、本件安全審査において、以下に述べるとおり、本件原子炉施設における
異常拡大防止対策は適切であると判断した。
(一) 異常の検知
 被告は、本件安全審査において、以下の(1)ないし(3)の事項を確認し、そ
の結果、本件原子炉施設には、異常の検知に係る適切な対策が講じられるものと判
断した(P6調書(一)三二丁裏)。
(1) 本件原子炉の運転に当たっては、炉心及び原子炉冷却材バウンダリ等の健
全性を確保するために、原子炉出力に比例した炉心の中性子束、一次主冷却系の流
量、原子炉容器出口のナトリウム温度等の重要な諸変数を中央制御室において集中
的に監視できるような対策が講じられる(乙第一六号証八―一―四五、四九、八―
九―一ページ)。
(2) また、万一、①燃料被覆管が破損した場合に備えて、これを検知できるよ
うに破損燃料検出装置が設置され(乙第一六号証八―九―二ページ)、②原子炉冷
却材バウンダリから一次冷却材であるナトリウムが漏えいした場合に備えて、これ
を検知できるようにナトリウム漏えい検出器が設置され(乙第一六号証八―一―六
九、八―四―三ページ)、さらに、③蒸気発生器内の伝熱管から水・蒸気が漏えい
した場合に備えて、これを検知できるように水漏えい検出設備が設置される(乙第
一六号証八―一―七四、八―九―一五ページ)など、異常を検知するための対策が
講じられる。
(3) そして、このような一連の対策によって異常を検知した場合には、本件原
子炉を停止するなどの所要の措置が採り得るように、直ちに警報を発するなどの対
策が講じられる(乙第一六号証八―九―三七ページ)。
(二) 安全保護設備の設置
 被告は、本件安全審査において、以下の(1)ないし(3)の事項を確認し、そ
の結果、本件原子炉施設には適切な安全保護設備(第五図参
照)が設置されると判断した(P6調書(一)三二丁裏ないし三三丁裏、三四丁
裏)。
(1) 本件原子炉施設において設置される安全保護設備には、①本件原子炉の緊
急停止を行う安全保護系(乙第一六号証八―一―五八、六〇、八―九―一二ペー
ジ)と原子炉停止系(乙第一六号証八―一―五二ないし五六、八―九―二三ペー
ジ)及び②停止後の炉心を冷却する補助冷却設備(乙第一六号証八―一―七六、七
七、八―六―一ページ)がある(P6調書(一)三四丁裏)。
(2) (一)(1)で述べたとおり、本件原子炉の運転に当たっては、炉心の中
性子束等の重要な諸変数は中央制御室において集中的に監視され、仮に、通常の運
転状態から外れた場合には、警報を発するなどの対策が講じられる。しかし、さら
に、通常の運転状態から大きく外れたような場合や異常が発生した場合に、その異
常が拡大したり、さらには、放射性物質が環境へ異常に放出するおそれのある事態
に発展することを未然に防止できるように、右の重要な諸変数の値が一定の値に達
した時点で、直ちに本件原子炉を自動的に停止させる信号(この信号を原子炉トリ
ップ信号と呼ぶ。)を発する安全保護系が設置される。そして、安全保護系から発
せられた原子炉トリップ信号によって、制御棒を自動的に、かつ、速やかに炉心に
挿入して、本件原子炉を自動的に緊急停止できるように、原子炉停止系が設置され
る(乙第一六号証八―一―六〇、八―九―三、六、八、一二、二三ないし二九ペー
ジ、P6調書(一)三二丁裏)。
(3) また、本件原子炉が緊急停止した後も炉心を冷却することができるよう
に、補助冷却設備が三系統設置される。なお、原子炉トリップ信号が発せられた場
合には、補助冷却設備は三系統とも起動するが、このうち一系統だけによっても、
原子炉停止時の炉心を冷却するために必要な除熱量は確保できる(乙第一六号証八
―六―一、二、五、八―七―一二、一三ページ)。
 本件原子炉が緊急停止し、右補助冷却設備によって炉心を冷却する際には、一次
主冷却系循環ポンプ及び二次主冷却系循環ポンプは、いずれも、主モータによって
駆動される状態からポニーモータ(小型のモータ)によって駆動される状態へ切り
換わって、低速運転に移行する。ただし、右切換時に炉心の流量が急激に減少しな
いように、右の一次主冷却系循環ポンプ等には適切な回転慣性を持たせることとし
ている(乙第1一六号
証八―一―六七、七四、八―七―一二、一三ページ)。
(三) 安全保護設備の信頼性の確保
 被告は、本件安全審査において、以下の(1)ないし(5)の事項を確認し、そ
の結果、本件原子炉施設における安全保護設備は信頼性が確保され得ると判断した
(P6調書(一)三五丁表)。
(1) 安全保護設備は、各々の設備の使用条件に応じて十分な強度を有するよう
に設計される。そして、安全保護系については、それを構成する回路等に、同じ機
能を有するものを二つ以上設け(多重性)、かつ、右の回路等が同時に故障するこ
とがないように独立性が確保されるように考慮した対策が講じられる。したがっ
て、安全保護系を構成する右の回路等の一つが故障した場合にも、その安全機能は
確実に維持され、原子炉停止系に原子炉トリップ信号を発することができる(乙第
一六号証八―一―六一、六二、八―九―二三、三〇、三一ページ、P6調書(一)
三四丁裏、三五丁表)。
(2) また、原子炉停止系は、互いに独立した主炉停止系と後備炉停止系とから
構成されており、いずれも本件原子炉の緊急停止時に作動して炉心へ制御棒が挿入
されるが、このうちいずれか一方の原子炉停止系が作動しさえずれば本件原子炉を
確実に停止することができる(乙第一六号証八―一―五三、八―三―一五、一八ペ
ージ、P6調書(一)三五丁裏ないし三七丁表)。
 さらに、右の主炉停止系については、本件原子炉の緊急停止時に、全制御棒のう
ち最大反応度価値を有する制御棒が完全に引き抜かれ、しかも炉心へ挿入すること
ができない状態であっても、その他の制御棒が挿入されるだけで本件原子炉を停止
できる能力を有する(乙第一六号証八―一―五五、八―三―二四ページ、P6調書
(一)三七丁表、同裏)。
(3) そして、安全保護系及び原子炉停止系は、いずれも外部電源が喪失した場
合にも制御棒を自動的に炉心へ挿入して原子炉を停止できるように、いわゆるフェ
イルセーフ機能を持たせる(乙第九号証九六ページ、乙第一六号証八―一―六三、
八―三―一五ページ)。
(4) 補助冷却設備については、相互に独立した三系統で構成され、このうち一
系統のみが作動しただけで、原子炉停止時の炉心を冷却するために必要な除熱量が
確保される(乙第一六号証八―一―七六、八―七―一三ページ、乙第一四号証の三
の一三ページ)。
 また、補助冷却設備の動的機器及び一次主冷却系、二次主冷却
系の各循環ポンプのポニーモータについては、外部電源が喪失した場合にも、その
安全機能が確保されるように、系統ごとに独立した非常用電源設備に接続する(乙
第一六号証八―一―七六、八―七―一三ページ、乙第九号証一〇三ページ)。
(5) 右に述べた安全保護系及び補助冷却設備については、その機能を適宜試験
できる構造にする(乙第一六号証八―一―三六、八―六―七、八―九―二三、三一
ページ)。
3 放射性物質異常放出防止対策の妥当性
 被告は、本件安全審査において、以下に述べるとおり、本件原子炉施設における
放射性物質異常放出防止対策は適切であると判断した(P6調書(一)四六丁
表)。
(一) 工学的安全施設の設置
 本件安全審査において、被告は、以下の(1)ないし(6)の事項を確認し、そ
の結果、本件原子炉施設には、適切な工学的安全施設(第五図参照)が設置される
と判断した(P6調書(一)四二丁表、同裏、四六丁表)。
(1) 2(二)のとおり、原子炉が緊急停止した後も炉心が冷却されるように、
補助冷却設備が設置される。
(2) 万一、原子炉冷却材バウンダリから一次冷却材であるナトリウムが漏えい
した場合にも、原子炉容器内のナトリウム液位が余裕をもって確保され、炉心が冷
却されるように、本件原子炉施設においては次のような一連の対策が講じられる
(乙第一六号証八―一―七一、八―七―一〇ページ、P6調書(一)四四丁表ない
し四五丁表)。
ア 原子炉容器出口ノズルの上端より上方に適切な余裕をもって最低限保持されな
ければならない液位(エマージェンシ・レベル)を定め、一次主冷却系の機器及び
配管は、原則として、右エマージェンシ・レベルより上方に定めた基準高さ(これ
をシステム・レベルと呼ぶ。)以上に配置する。
イ システム・レベル以下に配置する機器又は配管については、ガードベッセルの
中に配置される。また、ガードベッセルの上端の縁の高さはシステム・レベル以上
になるようにし、かつ、原子炉容器内ナトリウム液位をエマージェンシ・レベル以
上に保持できるようにガードベッセルの空間容積を定める。
(3) また、万一、原子炉冷却材バウンダリから一次冷却材であるナトリウムが
漏えいした場合に、右漏えいナトリウムの燃焼が抑制されるように、通常運転時に
は、原子炉格納容器の運転床(第三図参照)の下に配置される一次冷却材を内包す
る機器及び配管が置かれる各部屋は窒
素雰囲気に維持される(乙第一六号証八―一―二八、八―七―二ページ、P6調書
(一)四三丁裏)。
 そして、右の各部屋には漏えいナトリウムを保持するために鋼製のライナと呼ぶ
内張を設置する。また、原子炉容器が置かれる部屋には、ガードベッセルからナト
リウムが溢流した場合にも、その溢流分の漏えいナトリウムを収納することができ
るように、貯留槽が設置される(乙第一六号証八―一―二七、八―七―二、六ペー
ジ、P6調書(一)四三丁裏、四四丁表)。
(4) 万一、本件原子炉から放射性物質が漏えいした場合にも、放射性物質が環
境へ異常に放出されることを防止するため、原子炉格納容器等から構成される原子
炉格納施設が設置される(乙第一六号証八―一―七九、八〇、八―七―二ページ、
P6調書(一)四三丁表)。
 なお、右原子炉格納容器等から構成され、放射性物質の異常な放出に対する障壁
となる範囲を格納容器バウンダリと呼ぶ(乙第一六号証八―一―一二、八―七―
三、二〇ページ)。
(5) さらに、放射性物質が原子炉格納容器から漏えいすることまでをも考えた
場合にもその放射性物質が直接外気へ放出されないように、原子炉格納容器の外側
にアニュラス部が形成され、これを負圧に保つ。そのために、アニュラス循環排気
装置が設置される(乙第一六号証八―一―八〇、八―七―二、四、八ページ)。
 そして、原子炉格納容器内から漏えいした気体中に含まれる放射性よう素を除去
して、環境へ放出される放射性物質の濃度を減少させることができるように、原子
炉格納容器から漏えいした放射性物質を負圧に保たれるアニュラス部に集め、アニ
ュラス循環排気装置を構成する微粒子フィルタ及びよう素除去フィルタを通して、
排気筒へ導くこととしている(乙第一六号証八―一―八〇、八―七―八、九ペー
ジ、P6調書(一)四三丁表、同裏)。
(6) また、一次アルゴンガス系設備の常温活性炭吸着塔から、万一、放射性物
質が漏えいした場合、環境へ異常に放出されることを防止するために、右の常温活
性炭吸着塔を収納する常温活性炭吸着塔収納設備と隔離弁から構成される一次アル
ゴンガス系収納施設が設置される(乙第一六号証八―七―一五ページ、P6調書
(一)四五丁表ないし四六丁表)。
(二) 工学的安全施設の信頼性の確保
 被告は、本件安全審査において、以下の事項を確認し、その結果、本件原子炉施
設には、工学的安全施設の信
頼性が確保されるよう適切な対策が講じられると判断した(乙第九号証一〇七ない
し一一一ページ、P6調書(一)四六丁表)。
 工学的安全施設は、各々の設備の使用条件に応じて十分な強度を有するように設
計される。そして、工学的安全施設のうち動的機器については、多重性を持たせる
とともに、運転員の操作を待たずに自動的に作動するように設計され、かつ、外部
電源が喪失した場合にも、その安全機能が確保されるように、非常用電源設備に接
続される。さらに、工学的安全施設のうち重要な部分については、その信頼性を常
に保持していることを確認できるように、その機能を適宜試験できる構造にする
(乙第一六号証八―一―七九、八〇、八二、八三、八―七―一ページ)。
三 原告らの主張に対する反論
1 異常発生防止対策に関する主張について
 原告らは、本件原子炉施設の異常発生防止対策に係る審査には種々の重大かつ明
白な瑕疵があると主張する。
 しかしながら、本件安全審査においては、本件原子炉施設には、燃料被覆管や原
子炉冷却材バウンダリ及び原子炉カバーガス等のバウンダリの損傷につながるよう
な異常の発生を未然に防止するために、所要の異常発生防止対策が講じられること
を確認しており、原告らの右主張はいずれも失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(一) 原子炉の安定した運転の維持に関する主張について
(1) 原告らは、ボイド係数が正のチェルノブイル原子力発電所において反応度
事故が発生したことを指摘して、ボイド反応度が正となる本件原子炉施設を適切に
制御することは不可能であると主張する(訴状五三、二八三ないし二八五ページ、
原告ら準備書面(三)一三、四一ないし五五ページ)。
 しかしながら、チェルノブイル事故の原因は、①チェルノブイル四号炉が低出力
運転状態では出力係数が正の値となり、何らかの原因で出力が上昇すると、更に出
力が上昇するという設計であったこと、②このような炉特性に対応した原子炉を緊
急停止するための制御棒の設計が不十分であったこと、③運転員が設計者の予想し
なかったような危険な状態に原子炉を導いたことにある(乙イ第二四号証)。これ
に対し、本件原子炉は、準備書面(四)の一九ないし二四ページで述べたとおり、
チェルノブイル原子炉とは全く異なり、すべての運転範囲で出力係数は常に負であ
って、反応度事故は生じ得な
い。
 したがって、チェルノブイル事故の原因は、いずれも、本件原子炉施設に直接関
わりがなく、右事故の発生は、原告らの右主張の根拠とはなり得ない。
(2) 原告らは、本件原子炉に異常な反応度が投入された場合には容易に即発臨
界に至り、炉心溶融事故が発生すると主張し、その根拠として、軽水炉と比べる
と、本件原子炉では即発中性子の寿命が短く、かつ、遅発中性子の割合が少ないこ
とを指摘する(訴状五一ないし五四、二八六、二八七ページ、原告ら準備書面
(三)三七ないし四一、七二ないし七六ページ)。
 しかしながら、以下に述べるとおり、原告らの右主張は理由がない。
ア 原子炉において核分裂反応に伴って発生する中性子には、核分裂反応に際し即
時に発生する即発中性子と、ある程度遅れて発生する遅発中性子とがある。本件原
子炉の制御は、遅発中性子を利用して行っており、即発中性子は利用していない。
したがって、即発中性子の寿命が短いこと自体は、本件原子炉の制御上は考慮する
必要がない(P6調書(一)二〇丁裏)。そして、本件原子炉における遅発中性子
の放出遅れ時間は、軽水炉におけるそれと同じく一〇秒程度であるから、軽水炉と
同様に時間的に余裕をもった制御を行うことができる。
イ ところで、軽水炉、本件原子炉とも、炉心に投入される反応度がすべての中性
子に占める遅発中性子の割合と同じか又はこれを超える値になった場合には、即発
臨界という状態になって、遅発中性子を利用した通常の制御が不可能になること
(P6調書(一)二〇丁裏、二一丁表)、また、本件原子炉のすべての中性子に占
める遅発中性子の割合は、軽水炉のそれの半分程度であることは、原告らの指摘す
るとおりである。
 しかし、本件原子炉において制御棒操作により一秒当たりに炉心に投入される反
応度は、最大でも、すべての中性子に占める遅発中性子の割合の値に比べて約一〇
〇分の二以下と十分に小さくなっている。したがって、本件原子炉は、制御棒の操
作により十分な時間的余裕をもって反応度を制御できる基本設計となっている(P
6調書(一)二一丁裏、二二丁表)。
ウ さらに、本件原子炉に何らかの原因により通常運転を逸脱するような異常な正
の反応度が投入された場合でも、原子炉の出力の上昇は、原子炉固有の負の反応度
フィードバック効果によって抑制される上、右反応度によって異常に上昇した中性
子束を中性子束検出器が検出し
、原子炉が自動停止して、補助冷却設備によって炉心が冷却される。
エ したがって、本件安全審査において確認したとおり、本件原子炉施設は、その
基本設計ないし基本的設計方針において、即発臨界に至ることは考えられない。な
お、詳細は準備書面(四)の一五ないし一八ページで述べたとおりである。
(3) 原告らは、本件原子炉がすべての運転範囲で原子炉固有の負のフィードバ
ック効果を有するとはいえないと主張し、その根拠として出力係数が計算値にすぎ
ないことを指摘する(原告ら準備書面(三)四七ページ)。
 しかしながら、準備書面(四)の一八ページにおいて述べたとおり、本件安全審
査においては、本件原子炉の出力係数に係る核設計の手法が、実験結果と照合され
た十分信頼できるものであることを確認している(乙第九号証八〇ページ、乙第一
六号証八―三―二二、二三ページ)。したがって、この点に関する原告らの主張も
理由がない。
(二) 燃料被覆管の健全性に関する主張について
(1) 原告らは、本件原子炉施設の燃料被覆管の健全性は維持し得ないと主張
し、その根拠として、①燃料ペレットのスエリングに伴う燃料被覆管の膨張、②燃
料被覆管のスエリング、③核分裂生成物(FP)ガスによる燃料被覆管内の圧力の
上昇、④燃料被覆管の温度変化による熱応力、⑤燃料集合体内部の温度差や冷却材
の流動圧による炉心燃料要素の湾曲、⑥右湾曲によるラッパ管への接触によって発
生する燃料被覆管の損傷、⑦右湾曲によって発生する冷却材の流路の閉塞に伴う温
度上昇、⑧燃料の融点の低下、焼きしまり及びクラックによる溶融等を指摘する
(訴状五一、二六二ないし二六五ページ、原告ら準備書面(三)五七ないし六二ペ
ージ)。
 しかしながら、原告らの指摘する①ないし⑦の事項については、前記二1(二)
において述べたとおり(①ないし④については二1(二)、⑤については同(3)
及び(5)、⑥⑦については同(3))、本件安全審査において検討を行った上、
本件原子炉施設の燃料被覆管の健全性が確保され得ることを確認している。また、
⑧の事項については、準備書面(四)の二五ないし二九ページにおいて述べたとお
り、そもそも燃料の溶融自体が起こり得ないことを本件安全審査において確認して
いる(乙第九号証八二ページ、乙第一四号証の三の一一ページ、乙第一六号証八―
三―二、七、八ページ)。したがって、原告らの右主張は
理由がない。
(2) 原告らは、本件原子炉において、何らかの原因で一次冷却材の流量が減少
した場合、燃料が溶融して再臨界を起こす危険性があると主張し、その根拠とし
て、本件原子炉施設の燃料の最高温度が燃料の融点に近い上、燃焼開始後に右融点
が低下することを指摘する(訴状二六三、二八六、二八七ページ)。
 しかしながら、原告らの右主張は理由がない。
 すなわち、本件安全審査においては、準備書面(四)の二五ないし二七ページに
おいて述べたとおり、本件原子炉ではすべての運転範囲において燃料ペレットの溶
融を防ぐことができることを確認している(乙第九号証八二ページ、乙第一六号証
八―三―三五ページ)。
 そして、本件安全審査において妥当性を確認した事故防止対策に係る安全評価の
結果によると、「運転時の異常な過渡変化」として、一次主冷却系循環ポンプの電
源喪失等により一次冷却材流量が減少する事象を想定した場合には、燃料温度は初
期温度よりわずかに上昇するだけであり、融点を十分下回る(乙第九号証一三八ペ
ージ、乙第一六号証一〇―二―一二ないし一四ページ)。また、「事故」として、
一次主冷却系循環ポンプの回転軸が軸固着し一次冷却材流量が急減するという事象
を想定した場合にも、燃料温度は初期温度よりわずかに上昇するが、融点を十分下
回る(乙第九号証一六一、一六二ページ、乙第一六号証一〇―三―一五ないし一七
ページ)。
 したがって、本件原子炉施設は、その基本設計ないし基本的設計方針において、
一次冷却材の流量減少によって燃料が溶融することは考えられない。
(三) 原子炉冷却材バウンダリの健全性に関する主張について
(1) 原告らは、本件原子炉施設の原子炉冷却材バウンダリを構成する配管の健
全性は確保されておらず、瞬時両端完全破断の可能性があると主張し、その根拠と
して、①配管が繰り返し受ける熱応力、②ナトリウム中の不純物による腐食や浸
炭、脱炭等を指摘する(原告ら準備書面(三)一六七ないし一七六ページ)。
 しかしながら、以下に述べるとおり、原告らの右主張は理由がない。
ア 本件安全審査においては、前記二1(三)及び準備書面(四)の二九ないし三
四ページにおいて詳述したとおり、構造材の材料特性を踏まえて検討した上、原告
らの指摘する事項についても本件原子炉施設の原子炉冷却材バウンダリを構成する
配管の健全性が確保され得るものであることを確認
している(乙第九号証六七ないし七〇ページ、乙第一六号証八―一―二五、六六、
六七、七〇、八―四一二ないし四、八―五―二ページ)。したがって、本件原子炉
施設においては、その基本設計ないし基本的設計方針において、右配管が破損する
ことは考えられない。
イ 万一、設計条件を超える熱応力の繰返しなどによって配管の肉厚を貫通するよ
うな破損が起こったことを仮定しても、配管内の圧力が低いことから、その亀裂が
急速に進展して大きな破損をもたらすということは考えにくい(乙第一六号証八―
四―一八、八―五―一三ページ)。また、漏えいしたナトリウムは、早期にナトリ
ウム漏えい検出器によって検出して、原子炉及び循環ポンプの停止等必要な措置を
講じることができるから、大きな配管の破断に至ることは考えられない(P8調書
(一)四一丁裏、乙第一六号証八―一―六九、七〇、一〇―三―二五、三四、一〇
―四―一〇ページ)。
ウ なお、原告らは、①本件原子炉施設においても原子炉冷却材バウンダリを構成
する配管で大口径破断が起こると主張し、その根拠として、一九八六年一二月にア
メリカのサリー原子力発電所二号炉(加圧水型原子炉)で発生した二次系給水ポン
プ入口配管の大口径破断事故を挙げ(原告ら準備書面(三)一八七ページ)、ま
た、②本件原子炉施設の二次主冷却系設備の配管において瞬時両端完全破断が起こ
るとも主張して、その根拠として、一九九一年六月に本件原子炉施設の二次主冷却
系配管が設計とは逆方向に変位したトラブルや、一九九〇年四月にスーパーフェニ
ックスで発生した二次系ナトリウム漏えい事故等海外の高速増殖炉において発生し
た事故例を挙げる(原告ら準備書面(三)一九四ないし一九九ページ)。
 しかしながら、これらの事故は原告らの主張の根拠とはなり得ず、本件安全審査
と直接関係するものでないことは、準備書面(四)の三六ないし三九ページにおい
て述べたとおりである。したがって、原告らの右主張は失当である(乙イ第七七号
証、乙イ第四七号証三・四・四―四ページ、乙第一六号証八―一―七〇、八―四―
三ページ)。
(2) 原告らは、本件原子炉施設の蒸気発生器の伝熱管が、応力腐食割れ、腐
食、脱炭、浸炭などにより損傷した場合には、ナトリウム・水反応により原子炉冷
却材バウンダリの健全性に影響が及ぶと主張する(原告ら準備書面(三)一四九な
いし一五一、一五三、一五四ページ)。
 しかしながら、準備書面(四)の四五ないし四八ページにおいて述べたとおり、
本件安全審査においては、腐食の原因となるナトリウム中の不純物を取り除くコー
ルドトラップや水中の不純物を取り除く復水脱塩装置など、本件原子炉施設の蒸気
発生器の伝熱管の損傷を防止し得る適切な対策が講じられること(乙第一六号証八
―一―二五、八―五―二、八―八―六、八―一一―八、九ページ)を確認してい
る。また、前記二1(三)(5)及び準備書面(四)の五一ページにおいて述べた
とおり、本件原子炉施設には、その基本設計ないし基本的設計方針において、万
一、蒸気発生器内の伝熱管から水・蒸気が漏えいした場合でも、その影響を限定
し、原子炉冷却材バウンダリまで波及することを防止する対策が講じられているこ
とを確認しており(乙第九号証一〇二ページ)、蒸気発生器の伝熱管の破損による
ナトリウム・水反応により原子炉冷却材バウンダリの健全性に影響が及ぶとは考え
られない(乙第一六号証八―一―七四、八―五―三ページ)。したがって、原告ら
の右主張は理由がない。
 また、原告らは、本件原子炉施設における蒸気発生器は、その使用条件が軽水炉
と比べて過酷であり、構造的にも脆弱であるにもかかわらず、安全確保対策が不十
分であるから、伝熱管が破損した場合には、ナトリウム水反応によって二次主冷却
系設備や中間熱交換器が損傷するおそれがあり、中間熱交換器が損傷した場合に
は、ナトリウム・水反応により生成した水素が炉心内に入り気泡通過事故(炉心暴
走事故)に至るおそれがあるとも主張する。
 しかしながら、前述したとおり、本件安全審査では、本件原子炉施設の蒸気発生
器の伝熱管の損傷を防止し得る適切な対策が講じられることを確認し、また、万
一、伝熱管が破損して水・蒸気が漏えいした場合でも、その影響を限定し、原子炉
冷却材バウンダリまで波及することを防止する対策が講じられていることを確認し
ている。したがって、蒸気発生器伝熱管破損事故によって二次主冷却設備や中間熱
交換器が損傷するおそれはない。原告らの右主張は、失当である。
(3) なお、原告らは、本件原子炉施設の蒸気発生器伝熱管からの水・蒸気漏え
いを検出する「ナトリウム中水素計」は、その検出特性上、漏えい率が毎秒〇・一
グラムから毎秒一キログラムまでの範囲は、漏えいを検出するまでに数十秒を要す
ることを指摘して、蒸気発生器の緊急停止
が遅れることになると主張する。
 しかしながら、原告らの右主張も、以下に述べるとおり理由がない。
 すなわち、前記二1(三)(5)で述べたとおり、本件安全審査において、万
一、蒸気発生器の伝熱管から水・蒸気が漏えいした場合でも、①その影響を限定
し、原子炉冷却材バウンダリにまで波及することが防止できるように、中間冷却系
として二次主冷却系が設置される、②蒸気発生器伝熱管から、二次主冷却系の圧力
が顕著に上昇するような大規模な水・蒸気の漏えいが発生した場合には、右圧力の
過度な上昇を防止するとともに、原子炉を自動停止し、炉心が安全に冷却されるよ
う適切な対策が講じられていることを確認している。したがって、仮に、原告らの
指摘するような水素計による漏えい検出が遅れたとしても、それによって本件原子
炉施設の緊急停止が遅れる事態が発生することはない。
 また、被告が安全審査において確認した右対策には、原告らの指摘する水素計か
らの信号は一切考慮していない(水素計の存在を無視している。)。そもそも、水
素計の検出特性自体は、詳細設計にかかわる事項であり、安全審査の対象とならな
い。
2 異常拡大防止対策に関する主張について
 原告らは、本件原子炉の異常拡大防止対策に係る審査には種々の重大かつ明白な
瑕疵があると主張する。
 しかしながら、本件安全審査においては、本件原子炉施設には所要の異常拡大防
止対策が講じられ、これにより、万一燃料被覆管や原子炉冷却材バウンダリ及び原
子炉カバーガス等のバウンダリの損傷につながるような異常が発生した場合にも、
右異常が拡大したり、放射性物質が環境へ異常に放出されるおそれのある事態にま
で発展することが未然に防止され得ることを確認しており、原告らの右主張はいず
れも失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(一) 安全保護設備の設置に関する主張について
 原告らは、緊急炉心冷却装置(ECCS)が存在しない本件原子炉施設は、安全
を確保し得ないと主張する(訴状二九〇ないし二九二、三四五、三四六ページ)。
 しかしながら、原告らの右主張は理由がない。
 すなわち、軽水炉では、冷却材(軽水)が高温、高圧で使用されているため、冷
却材が漏えいした場合、炉心において冷却材が沸騰し、ついには炉心から冷却材が
喪失する事態となる可能性がある。このため、軽水炉では、これに備えて非常
用炉心冷却系(ECCS)が設けられている(安全設計審査指針の指針40)。
 これに対し、LMFBRでは、大気圧中でもナトリウムの沸点が八八〇度と十分
に高いので、仮に、原子炉冷却材バウンダリに破損が生じても、炉心の冷却材は沸
騰することはなく、配管の高所引回し及びガードベッセルの設置とあいまって冷却
材は炉心に確実に保持されるため、炉心冷却能力が喪失する可能性はない(乙イ第
四号証二〇ページ)。また、低圧であるため、冷却材の流出時に、配管のむち打ち
や流出流体のジェットカによってガードベッセル等の構造が損傷を受けるおそれは
ない(P8調書(一)八八丁裏、八九丁表、乙第一六号証八―一―二九ページ)。
このように、LMFBRでは、冷却材の沸点をはるかに下回る温度下で、かつ、低
圧で使用するという基本的特性があり、しかも、一次冷却材の漏えいを想定した場
合でも炉心の冷却に必要な冷却材はガードベッセルの設置等によって十分確保され
るから、本件原子炉においては軽水炉にあるようなECCSは不要である(乙二第
二号証の一の三六丁裏ないし三九丁裏)。
(二) 安全保護設備の信頼性に関する主張について
 原告らは、本件原子炉施設において、コモンモード・フェイリア(共通原因故
障)が発生した場合、原子炉が停止不能の状態に陥る可能性があると主張し、その
根拠として、本件原子炉施設には、原子炉停止系として作動原理を同じくする調整
棒及び後備炉停止棒の二系統のスクラム機構しかないことを指摘する(訴状二八八
ないし二九〇ページ、原告ら準備書面(三)一二〇ページ)。
 しかしながら、第四章第三の二2及び準備書面(四)の四三ないし四五ページに
おいて述べたとおり、本件安全審査においては、本件原子炉施設に設置される原子
炉停止系を含む安全保護設備が十分な信頼性を有することを確認している(乙第九
号証九三、九六、九七ページ、P6調書(一)三四丁裏ないし三七丁表、乙第一六
号証八―一―五二、六一、六二ページ)。したがって、本件原子炉施設は、その基
本設計ないし基本的設計方針において、原告らの主張するような右「原子炉停止系
の共通原因故障による停止不能の状態」に陥ることは考えられない。
3 本件事故に関する主張について
 原告らは、平成七年一二月に発生した本件事故について種々の事項を指摘して、
本件許可処分には重大かつ明白な瑕疵があると主張する。
 しかしながら
、準備書面(七)の七ないし一〇ページにおいて述べたとおり、承件事故の原因に
係る技術的事項は本件安全審査の対象ではなく、本件事故の発生は本件許可処分の
合理性を何ら左右するものではない(乙イ第四五号証一ページ、乙イ第一二号証二
四ページ)。したがって、原告らの右主張は失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(一) 原告らは、ナトリウム漏えい事故を拡大させた原因は、異常時運転手順書
の記載に誤りがあったことによるものであると主張する(原告ら準備書面(六)二
三ないし二五ページ、準備書面(一三)二、三ページ)。
 しかしながら、本件安全審査の対象となるのは、本件原子炉施設の基本設計ない
し基本的設計方針である。原告らの指摘する異常時運転手順書の記載内容は、具体
的な運転管理に属する事項であるから、本件安全審査の対象ではない。
(二) 原告らは、事故の直接の原因となった温度計さやの設計上の欠陥が看過さ
れたことは、安全審査に誤りがあったことを示すものであると主張する(原告ら準
備書面(六)二七ないし三五ページ、準備書面(七)第一の二、第二の一2、二2
(一)、準備書面(一三)三ページ)。
 しかしながら、準備書面(七)の七ないし八ページにおいて述べたとおり、本件
事故の直接の原因となった温度計の設計に係る事項は、必要に応じて詳細設計以降
の問題として適宜対応すれば足りる事項であるから、本件安全審査の対象ではない
(乙イ第四五号証一ページ、乙イ第一二号証二四ページ)。
(三) 原告らは、本件事故によって、安全審査において確認したLBBの思想、
ナトリウムの消火方法はいい加減なものであることが判明したと主張する(原告ら
準備書面(六)三六ないし四〇ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 本件原子炉施設の一次主冷却系及び二次主冷却系の配管において、万一、破損が
生じたとしても、右配管の材料が高温に強く、延性の高いステンレス鋼であるとと
もに、右配管内の圧力が低いことから、急速な破断に進展するおそれはなく、冷却
材の漏えいは、配管の表面部に生じた微小な開口部からの漏えいという形態をと
る。これをナトリウム漏えい検出器により早期に検出し、原子炉を停止する等所要
の措置を採ることにより、配管の大規模な破断を防止することができる。これがL
BBの考え方である(P8
調書(一)八四丁裏、八五丁表、乙第一六号証一〇―四―一〇ページ)。しかし、
右考え方は、直径一インチ(二五・四ミリメートル)以下の配管には適用されない
(P8調書(三)四三丁表)。このような小口径の円管が完全に破断したとして
も、その影響は、事故防止対策に係る安全評価において評価した開口面積の範囲内
に十分収まるからである。
 本件事故において折損した温度計のさや細管部は、外径一〇ミリメートルの円管
にすぎず、したがって、LBBの考え方が適用されるものではない(P8調書
(三)四三丁裏)。
 また、原告らの指摘する火災の具体的な消火方法は、詳細設計以降に属する事項
であるから、本件安全審査の対象ではない(P8調書(三)二五丁裏ないし二六丁
裏)。
4 その他の事故に関する主張について
 原告らは、本件原子炉施設の事故防止対策には不備があると主張し、その根拠と
して、①スーパーフェニックスにおいて一九八七年三月に発生した燃料貯蔵タンク
(炉外燃料貯蔵槽)からのナトリウム漏えい事故、②同原子炉において一九九〇年
六月に発生した原子炉容器内のナトリウム液面を覆っているアルゴン・カバーガス
中に空気が混入した事故、③美浜発電所二号炉において一九九一年二月九日に発生
した蒸気発生器伝熱管破損事故、④英国のPFRにおいて一九八七年二月に発生し
た蒸気発生器伝熱管破損事故を指摘する(原告ら準備書面(三)一五七、一五八、
一七六ないし一八〇ページ)。
 しかしながら、準備書面(四)の四一、四二、四八、四九ページにおいて述べた
とおり、原告らの指摘する右事項は、いずれも本件原子炉施設の基本設計ないし基
本的設計方針に係る事項ではなく、本件安全審査とは関係がない(乙ニ第二号証の
七の三八丁表ないし三九丁表、乙イ第七六号証一三三、一三四ページ、甲イ第一一
八号証三二ページ、甲イ第二一二号証六ページ、P8調書(一)五一丁表ないし五
三丁裏)。したがって、原告らの右主張は、その前提において失当である。
第四 本件原子炉施設の事故防止対策に係る安全評価
一 原子炉施設の事故防止対策に係る安全評価についての審査
1 安全評価についての審査
 原子炉施設における安全確保の基本が、放射性物質の有する潜在的危険性をいか
に顕在化させないかという点にあることは、繰り返し述べたところである。そし
て、第一ないし第三において述べたように、原子炉設置許可に際しての安全審
査に当たっては、申請に係る原子炉施設が、その基本設計ないし基本的設計方針に
おいて、①平常運転時の被ばく低減対策が適切に講じられていることと、②自然的
立地条件との関係をも含めた事故防止対策が適切に講じられていることの二点を審
査している。これらの審査においては、平常運転時のみならず、異常状態発生時に
おいても、十分に安全確保の機能を果たし得る設計であることを確認する。
 したがって、安全審査において、右の二点が確認されれば、当該原子炉施設は、
その基本設計ないし基本的設計方針において、災害の防止上支障がないものであ
り、設置許可段階での安全性は十分確保されているといってよい。
 しかし、安全審査においては、これらの審査に加えて、念には念を入れて安全性
を確認するという観点から、申請者がした安全評価についても審査することとして
いる。安全評価とは、右②の事故防止対策に係る安全設計について、通常運転時を
超える異常状態を具体的に想定し、それらの事象に対して本件原子炉施設における
事故防止対策に係る安全機能が適切に確保され得ることを確認するものである。す
なわち、この安全評価は、事故防止対策について審査した安全設計基本方針の妥当
性を確認する一つの方法であり、「評価の考え方」、「立地審査指針」等に基づ
き、「安全評価指針」を参考にして、申請者が各種の代表的事象を選定の上行った
評価の妥当性を確認するものである(P6調書(一)四七丁裏ないし四八丁裏)。
 具体的には、LMFBRの安全審査においては、次の各種の安全評価の妥当性を
確認する。
① 「運転時の異常な過渡変化」に係る安全評価
 原子炉の通常運転時において、原子炉施設の寿命期間中に予想される何らかの外
乱が加わった時点で、あえて制御されずに放置されるものと仮定した場合に、燃料
被覆管又は原子炉冷却材バウンダリに過度の損傷をもたらす可能性のある事象を
「運転時の異常な過渡変化」として想定する。右の事象が仮に発生した場合にも、
右の事象が安定して終止するとともに、燃料被覆管及び原子炉冷却材バウンダリの
各健全性が確保されること、すなわち、安全保護設備等の設計の妥当性を総合的に
確認することを目的として安全評価が行われる(乙第四号証二六四、二六五、四九
四ページ、P6調書(一)四九丁裏)。
② 「事故」に係る安全評価
 「運転時の異常な過渡変化」を超える異常な状態であって、発生
頻度は小さいが、万一、発生した場合には原子炉施設から環境へ放射性物質が異常
に放出されるおそれがある事象を「事故」として想定する。右の「事故」が仮に発
生した場合にも、その拡大を防止し放射性物質が環境へ異常に放出されることを抑
止し得ること、すなわち、そのために設けられる工学約安全施設等の設計の妥当性
を総合的に確認することを目的として安全評価が行われるハ乙第四号証二六四、二
六五、四九四ページ、P6調書(一)四九丁裏)。
③ 「技術的には起こるとは考えられない事象」に係る安全評価
 LMFBRについては、その運転実績が僅少であることから、発生頻度は無視し
得るほど極めて低いが、その結果が重大であると想定される事象について、その起
因となる事象とこれに続く事象経過に対する防止対策との関連において、放射性物
質の放散が適切に抑制されること、すなわち、原子炉施設の安全裕度を確認するこ
とを目的として安全評価が行われる(乙第四号証四九五ページ、乙二第四号証の一
の七ないし九ページ)。
④ 原子炉施設の立地条件の適否に係る安全評価
 安全防護施設(工学的安全施設を含む安全上の対策となる施設)との関連におい
て、原子炉施設の立地条件の適否を評価することを目的として安全評価が行われる
(乙第四号証三、二六四、四九五ページ)。
2 原告らの主張に対する反論
 原告らは、設計基準事故の想定とその事故解析は、原子炉施設の基本設計ないし
基本的設計方針の妥当性を確認するための唯一の手続であるとの前提に立って、
「設計基準事故の想定」あるいは「この事故が発生したとしても原子炉施設の安全
性が余裕を持って確保されることを判断するための基準」のいずれか一つでも不合
理であることが判明すれば、これに基づく原子炉設置許可処分は少なくとも違法に
なると主張する。
 原告らの右主張の趣旨は必ずしも明らかではないが、原告らの指摘する「設計基
準事故の想定」とは、その内容からみて、「運転時の異常な過渡変化」や「事故」
等に係る安全評価についての審査に関するものと解し得る。そうすると、原告らの
右主張は、要するに、安全評価についての審査にいささかでも瑕疵があれば、安全
審査自体が違法になるというものであろう。しかしながら、原告らの右主張は、以
下に述べるとおり、安全審査における安全評価の位置づけを正解しないものであ
り、失当である。
 まず、安全評価の位置づけについ
てみるに、安全評価は、本来、原子炉等規制法二四条一項四号の要件自体ではない
が、念には念を入れて要件適合性を確認するという考え方から、安全審査の対象と
するものである。
 すなわち、第三章第二の一及び第四章第四の一において述べたとおり、原子炉施
設の安全確保の基本は、放射性物質の有する潜在的危険性をいかに顕在化させない
かという点にあるから、原子炉設置許可に際しての安全審査で審査する事項は、申
請に係る原子炉施設が、その基本設計ないし基本的設計方針において、①平常運転
時の被ばく低減対策が適切に講じられていることと、②自然的立地条件との関係を
含めた事故防止対策が適切に講じられていることの二点に尽きるのである。したが
って、安全審査において、右の二点が確認されれば、当該原子炉施設の位置、構造
及び設備が、その基本設計ないし基本的設計方針において、原子炉等による災害の
防止上支障がないものであり、申請に係る原子炉施設が原子炉等規制法二四条一項
四号の要件に適合することが確認されていると言ってよい(P6調書(一)四八丁
表)。
 しかし、安全審査においては、これらの審査に加えて、申請者がした安全評価に
ついても審査することとしている。安全評価とは、右②の事故防止対策に係る安全
設計について、申請者が、通常運転時を超える異常状態を具体的に想定し、それら
の事象に対して当該原子炉施設における事故防止対策に係る安全機能が適切に確保
され得ることを確認するものである。このような安全評価についても審査するの
は、念には念を入れて安全性を確認するという目的に出たものである(P6調書
(一)四八丁裏)。安全評価の審査は、事故防止対策について審査した安全設計の
妥当性を確認する一つの方法であるが、原告らが指摘するような、原子炉施設の基
本設計ないし基本的設計方針の妥当性を確認するための唯一の手続ではない。
 また、安全評価は、念には念を入れて安全性を確認するために具体的な数値を想
定して解析を実施してみるにとどまるから、仮に、解析に際して設定した具体的数
値等に多少の誤差があったとしても、そのことから直ちに安全評価の審査が違法と
なるものではない(もとより、後述するように、本件安全評価の審査はすべて妥当
であって、何らの瑕疵もない。)。
二 本件原子炉施設の事故防止対策に係る安全評価の妥当性
 被告は、本件安全審査において、以下に述べるとおり
、申請者が行った本件原子炉施設における事故防止対策に係る右の四種の安全評価
がいずれも妥当であることを確認し、その結果、本件原子炉施設の基本設計ないし
基本的設計方針における事故防止対策の妥当性は、安全評価の結果からも裏付けら
れると判断した(乙第九号証一四八ページ、乙第一四号証の三の一六ページ)。
1 「運転時の異常な過渡変化」に係る安全評価の妥当性
 被告は、本件安全審査において、申請者の行った「運転時の異常な過渡変化」に
係る安全評価は、事象選定、解析評価の方法及び結果のいずれの点も妥当と判断し
た。
(一) 事象選定の妥当性
 申請者が「運転時の異常な過渡変化」として選定した事象は、以下のとおりであ
る(乙第九号証一三二、一三三ページ、乙第一六号証一〇―二―一ページ)。
① 「炉心内の反応度又は出力分布の異常な変化」に係る事象として、「未臨界状
態からの制御棒の異常な引抜き」、「出力運転中の制御棒の異常な引抜き」及び
「制御棒落下」
② 「炉心内の熱発生又は熱除去の異常な変化」に係る事象として、「一次冷却材
流量減少」、「一次冷却材流量増大」、「外部電源喪失」、「二次冷却材流量減
少」、「二次冷却材流量増大」、「給水流量喪失」、「給水流量増大」及び「負荷
の喪失」
③ 「ナトリウムの化学反応」に係る事象として、「蒸気発生器伝熱管小漏えい」
 被告は、本件安全審査において、これらの事象は、本件原子炉施設の内外で予想
される種々の異常の要因を分析し、異常が発生した後の事象の推移をも分析・整理
した上で選定されており、しかも、そのそれぞれについて、運転中の異常な過渡変
化の結果が厳しくなる事象が選定されていることを確認し、その結果、申請者がし
た「運転時の異常な過渡変化」に係る事象の選定は妥当と判断した(乙第九号証一
四八ページ、乙第一四号証の三の一六ページ)。
(二) 想定された事象に係る解析評価の妥当性
 被告は、本件安全審査において、以下の事項を確認し、その結果、想定された事
象について申請者がした解析評価の方法及び結果はともに妥当と判断した(乙第九
号証一四八ページ、乙第一四号証の三の一六ページ)。
(1) 「運転時の異常な過渡変化」として想定された事象を解析するに当たって
は、それぞれの事象に応じて、評価の結果が厳しくなるような前提条件が置かれて
いる。事象の影響を緩和するのに必要な運転員の手動操作のための時間的余
裕も適切に見込まれている(乙第九号証一四八ページ、乙第一四号証の三の一六ペ
ージ)。
(2) 「運転時の異常な過渡変化」として想定された各事象の解析評価の結果に
よれば、右いずれの事象に対しても、本件原子炉は固有の負の反応度フィードバッ
ク特性と安全保護設備等の安全機能の作動とがあいまって、運転中に起こる異常な
過渡変化が安定して終止し、燃料被覆管及び原子炉冷却材バウンダリの各健全性も
確保される(乙第九号証一四八ページ、乙第一四号証の三の一六ページ)。
2 「事故」に係る安全評価の妥当性
 被告は、本件安全審査において、申請者の行った「事故」に係る安全評価は、事
象選定、解析評価の方法及び結果のいずれの点も妥当であると判断した(乙第九号
証二〇六、二〇七ページ、乙第一四号証の三の一六、一七ページ)。
(一)事象選定の妥当性
 申請者が「事故」として選定した事象は、以下のとおりである(乙第九号証一四
九、一五〇ページ、乙第一六号証一〇―三―一ページ)。
① 「炉心内の反応度の増大」に至る事故として、「制御棒急速引抜事故」、「燃
料スランピング事故」及び「気泡通過事故」
② 「炉心冷却能力の低下」に至る事故として、「冷却材流路閉塞事故」、「一次
主冷却系循環ポンプ軸固着事故」、「二次主冷却系循環ポンプ軸固着事故」、「主
給水ポンプ軸固着事故」、「一次冷却材漏えい事故」、「一次冷却材漏えい事
故」、「主蒸気管破断事故」及び「主給水管破断事故」
③ 「燃料取扱いに伴う事故」として、「燃料取替取扱事故」
④ 「廃棄物処理設備に関する事故」として、「気体廃棄物処理設備破損事故」
⑤ 「ナトリウムの化学反応」による影響を考慮すべき事故として、二次ナトリウ
ム補助設備漏えい事故(「ダンプタンクからのナトリウム漏えい事故」、「オーバ
フロー系からのナトリウム漏えい事故」及び「コールドトラップからのナトリウム
漏えい事故」)及び「蒸気発生器伝熱管破損事故」
⑥ 「原子炉カバーガス系に関する事故」として、「一次アルゴンガス漏えい事
故」
 被告は、本件安全審査において、これらの事象は本件原子炉施設の内外で予想さ
れる種々の異常の要因を分析し、異常が発生した後の事象の推移をも分析・整理し
た上で選定されており、しかも、そのそれぞれについて、結果が厳しくなる事象が
選定されていることを確認し、その結果、申請者がした「事故」に係る事象の選定
は妥当と判断
した(乙第九号証二〇六ページ、乙第一四号証の三の一六ページ)。
(二)想定された事象に係る解析評価の妥当性
 被告は、本件安全審査において、以下の事項を確認し、その結果、想定された事
象に係る解析評価の方法及び結果はともに妥当と判断した(乙第九号証二〇六、二
〇七ページ、乙第一四号証の三の一六、一七ページ)。
① 「事故」として想定された事象を解析するに当たっては、それぞれの事象に応
じて、評価の結果が厳しくなるような前提条件が置かれている。事象の影響を緩和
するのに必要な運転員の手動操作のための時間的余裕も適切に見込まれている。ま
た、工学的安全施設の作動が要求される場合には、外部電源の喪失が考慮され、更
に条件を厳しく設定している(乙第九号証二〇六ページ、乙第一四号証の三の一
六、一七ページ)。
② 「事故」として想定された各事象の解析評価の結果によれば、いずれも、炉心
が大きな損傷に至ることはなく、炉心の冷却能力が失われることもない。放射性物
質の環境への放出も、敷地周辺への影響が大きくならないように抑止される(乙第
九号証二〇六、二〇七ページ、乙第一四号証の三の一七ページ)。
 以下、右「事故」として想定された事象のうち、原告らが取り上げている次の
(1)ないし(4)の事象について、その解析評価の方法及び結果がともに妥当で
あることを詳細に述べる。
(1) 二次冷却材漏えい事故
 「二次冷却材漏えい事故」とは、本件原子炉の出力運転中に、何らかの原因で二
次主冷却系配管が破損して、二次冷却材であるナトリウムが漏えいし、中間熱交換
器での除熱能力が低下して一次冷却材ナトリウムの十分な除熱ができない結果、原
子炉容器入口ナトリウム温度が上昇し、これによって炉心の安全な冷却ができなく
なるおそれのある事象である(乙第一六号証一〇―三―三三ページ)。
ア 被告は、本件安全審査において、以下の(ア)、(イ)の事項を確認し、その
結果、「二次冷却材漏えい事故」を想定した場合にも、炉心の冷却能力が失われる
ことはないとした評価は妥当と判断した(乙第九号証一七六、一七七、二〇六、二
〇七ページ、乙第一四号証の三の一六、一七ページ)。
(ア) 解析条件については、①配管の破損箇所として、一次主冷却系の除熱に対
し、最も厳しい条件を与える二次主冷却系の循環ポンプ出口と中間熱交換器入口と
の間を考えるものとし、また、②一次主冷却系コールドレ
グ温度の上昇を保守的に評価するため、二次冷却材漏えいを想定した系統(事故ル
ープ)の中間熱交換器での二次側の除熱能力の完全喪失を仮定し、さらに、③事故
ループを除く残り二ループのうちの一ループにおいてポニーモータによる一次及び
二次主冷却系循環ポンプの低速運転引継ぎに失敗する等の、除熱能力を低下させる
厳しい前提条件が置かれている(乙第一六号証一〇―三―三四、三五ページ、P8
調書(一)三三丁裏ないし三六丁裏)。
(イ) 解析評価の結果、中間熱交換器での二次側の冷却材流量の喪失によって、
事故ループの中間熱交換器一次側出口ナトリウム温度が上昇するが、安全保護系か
ら原子炉トリップ信号として「中間熱交換器一次側出口ナトリウム温度高」信号が
自動的に発せられて原子炉停止系が作動し、炉心へ制御棒が挿入されて原子炉は自
動停止するとともに、冷却材の循環に支障を来たすことなく補助冷却設備によって
炉心が冷却される。また、その間、燃料ペレットの温度、燃料被覆管の肉厚中心温
度、炉心のナトリウム温度及び原子炉冷却材バウンダリの温度は、いずれも過度に
上昇することはなく、「事故」時の判断基準(乙第一六号証一〇―一―三ページ、
乙第四号証四九四ページ)はもとより、「運転時の異常な過渡変化」の判断基準
(乙第一六号証一〇―一―一、二ページ、乙第四号証四九四ページ)をも下回る
(乙第一六号証一〇―三―三五ないし三七ページ、P8調書(一)三七丁表)。
イ なお、被告は、本件安全審査において、右の二一次冷却材漏えい事故」の炉心
冷却能力の評価の際、これに加えて、申請者がした漏えいナトリウムによる熱的影
響の評価の妥当性を審査した(乙第一六号証一〇―三―三六、三七ページ、乙第九
号証一七七、一七八ページ)。これは、本件原子炉施設における炉心冷却能力の解
析評価は、崩壊熱・残留熱除去系が三系統に分離していることを前提としているこ
とから、漏えいしたナトリウムの熱的影響によって右の系統分離が損なわれないか
否かを念のため確認するために申請者が行ったものである(乙イ第四五号証三ペー
ジ)。このように、右評価の妥当性の審査の目的は、前記アの炉心冷却能力の評価
の前提条件を念のため確認することにあり、一で述べた「事故」に係る解析評価の
審査の目的とはその目的を異にする。
 右の観点から、被告は、本件安全審査において、以下の(ア)、(イ)の事項を
確認し、その
結果、漏えいナトリウムの熱的影響によっても「一次主冷却系の系統分離機能は確
保されるとした漏えいナトリウムによる熱的影響の評価は妥当であると判断した
(乙第九号証一七七、一七八ページ、P8調書(一)四二丁表、同裏)。
(ア) 系統分離のための障壁を形成する建物、構築物の健全性に最も大きな影響
を及ぼすのは、事故ループにおける雰囲気温度の上昇に伴う内圧の上昇である。そ
こで、解析条件については、右の内圧上昇が実際より十分に厳しい結果となるよう
に、①原子炉出力運転中のナトリウム漏えい場所として、室内空間容積が最大の二
次主冷却系配管室及び最小の過熱器室を想定し、②破損口の大きさは、割れ状の漏
えい口として十分大きな一五平方センチメートルとし、さらに、③漏えいしたナト
リウムがスプレイ燃焼する等の前提条件を設定している(P8調書(一)三七丁裏
ないし四二丁表、乙第一六号証一〇―一―九、三六ページ、乙イ第四五号証三ペー
ジ)。
(イ) 解析評価の結果、二次冷却材漏えい事故が発生することを想定したとして
も、二次主冷却系配管室及び過熱器室の内圧上昇は、いずれも右各室が属する原子
炉補助建物の設計耐圧を下回り、事故ループの建物、構築物の健全性は損なわれな
い。また、室内雰囲気温度の上昇により建物コンクリート温度が上昇するが、右温
度上昇によりコンクリートの健全性は損なわれない。同様に、床ライナの温度も上
昇するが、右の温度上昇も床ライナの設計温度以下であり、ナトリウムとコンクリ
ートとの直接接触防止機能は損なわれない(乙第一六号証一〇―三―三六、三七ペ
ージ)。
(2) 蒸気発生器伝熱管破損事故
 「蒸気発生器伝熱管破損事故」とは、本件原子炉の出力運転中に、何らかの原因
で蒸気発生器の伝熱管が破損し、大規模なナトリウム・水反応が生じることによっ
て、右の蒸気発生器を有する二次主冷却系ループ内の圧力が過度に上昇し、当該蒸
気発生器をはじめ、当該蒸気発生器を有する二次主冷却系ループの機器・配管及び
一次主冷却系ループとの境界をなす中間熱交換器の伝熱管が損傷し、ひいては炉心
に影響を及ぼすおそれのある事象である(乙第一六号証一〇―三―六二ページ)。
 被告は、本件安全審査において、以下のアないしウの事項を確認し、その結果、
「事故」として「蒸気発生器伝熱管破損事故」を想定した場合にも、炉心の冷却能
力が失われず、原子炉冷却材バウンダリの健
全性も損なわれないとした評価は妥当であると判断した(乙第九号証二〇二、二〇
六、二〇七ページ、乙第一四号証の三の一六、一七ページ)。
ア 解析条件については、①破損位置として、水漏えい率が最も大きくなる蒸発器
の管束部の下部を仮定し、②初期スパイク圧の評価に当たっては、伝熱管一本が瞬
時に両端完全破断を起こすと仮定し、また、③準定常圧の評価に当たっては、破損
した伝熱管に隣接する健全な伝熱管にナトリウム・水反応によってもたらされる破
損伝播の影響を考慮して、伝熱管四本が同時に両端で完全破断した場合に相当する
水漏えい率を仮定する等の厳しい前提条件が置かれている(乙第一六号証一〇―三
―六三、六四ページ、P8調書(一)四五丁表ないし五〇丁裏)。
イ 解析評価の結果、本件原子炉の出力運転中に伝熱管が破断することを想定して
も、蒸発器の圧力開放板の開放を検出した信号によって、蒸気発生器への給水が停
止され、蒸気発生器内の伝熱管内に残留する水・蒸気の急速ブローが行われ、二次
主冷却系循環ポンプの駆動用の主モータが停止されるなどの一連の自動停止操作が
行われる。その結果、ナトリウム・水反応が終止する。その一方で、二次主冷却系
の流量の減少を、二次主冷却系循環ポンプの回転数によって検知し、安全保護系か
ら原子炉トリップ信号として「二次主冷却系循環ポンプ回転脚数低」信号が自動的
に発せられて原子炉停止系が作動し、炉心へ制御棒が挿入されて原子炉は自動停止
するとともに、補助冷却設備によって炉心が冷却されるため、炉心冷却能力が失わ
れることはなく、また、原子炉冷却材バウンダリの健全性が損なわれることもない
(乙第一六号証一〇―三―六四、六五ページ)。
ウ また、伝熱管の破損初期に、蒸発器の胴部に初期スパイク圧が作用するが、蒸
発器の胴部の歪みは少なく、塑性歪みが生じることはなく、さらに、初期スパイク
が伝播した中間熱交換器や二次主冷却系の機器及び配管にも塑性歪みが生じること
はなく、いずれも健全性が保たれる。また、準定常圧(初期スパイク圧の減衰した
後から右事象が終止するまで持続する。)に対しても、蒸気発生器、中間熱交換
器、二次主冷却系の機器及び配管の歪みが塑性歪みに至ることはなく、いずれも健
全性が損なわれることはない(乙第一六号証一〇―三―六四ページ、P8調書
(一)五八丁裏、五九丁表)。
(3) 燃料スランピング事故
 「燃料スラン
ピング事故」とは、原子炉の出力運転中に、何らかの熱的あるいは機械的原因で燃
料ペレットが燃料被覆管内の下方に密に詰まることにより、異常な反応度が投入さ
れ、出力及び炉心各部の温度が上昇し、燃料が損傷するおそれのある事象である
(乙第一六号証一〇―三―七ページ)。
 右事象の発生は工学的には考えられないため、本来は「事故」として取り上げる
必要はないが、異常な正の反応度の投入に対する本件原子炉の炉心の応答特性を把
握するために、あえて想定する事象である。正の反応度の投入のされ方としては、
ランプ状、ステップ状及びパルス状の三つの形態が考え得るが、右事象はそのうち
でステップ状の正の反応度を投入する物理モデルとして解析したものである。な
お、パルス状の正の反応度の投入については、後記(4)の「気泡通過事故」によ
って、また、ランプ状の正の反応度の投入については、「制御棒急速引抜事故」に
よって、それぞれ炉心の応答特性を確認している(P8調書(一)一一丁表ないし
一三丁表、二七丁表)。
 被告は、本件安全審査において、以下のア及びイの事項を確認し、その結果、
「燃料スランピング事故」を想定した場合にも、燃料ペレットの温度、燃料被覆管
の肉厚中心温度、炉心のナトリウム温度及び原子炉冷却材バウンダリの温度はいず
れも過度に上昇することはなく、炉心の冷却能力は失われず、原子炉冷却材バウン
ダリの健全性も損なわれないとした評価は妥当であると判断した(乙第九号証一五
六、二〇六、二〇七ページ、乙第一四号証の三の一七ページ)。
ア 解析条件については、炉心に投入される反応度が最大となるように、①最大の
反応度価値を持つ一体の燃料集合体内のすべての燃料要素で同時にスランピング現
象が起こることとし、②右現象により燃料は理論密度の一〇〇パーセントとなっ
て、重力により炉心下部に落下するが、炉心に投入される反応度を大きくするた
め、上部軸方向ブランケットペレットは、最初の位置にそのまま残ることとする等
の厳しい前提条件を置いている(乙第一六号証一〇―三―八ページ、P8調書
(一)一九丁裏ないし二三丁表)。
イ 解析評価の結果、スランピングにより反応度が投入されると、原子炉出力の上
昇により原子炉容器出口ナトリウム温度が上昇し、原子炉トリップ信号として「原
子炉容器出口ナトリウム温度高」信号が自動的に発せられて原子炉停止系が作動
し、炉心へ制御棒が
挿入され原子炉は自動停止するとともに、補助冷却設備によって炉心が冷却され
る。その間、燃料ペレットの温度、燃料被覆管の肉厚中心温度、炉心のナトリウム
温度及び原子炉冷却材バウンダリの温度は、いずれも過度に上昇することはなく、
「事故」時の判断基準はもとより、「運転時の異常な過渡変化」の判断基準をも下
回る(乙第一六号証一〇―三―九ページ、P8調書(一)二三丁表ないし二六丁
表)。
(4) 気泡通過事故「気泡通過事故」とは、何らかの原因により原子炉容器内の
一次冷却材中に気泡が混入し、燃料集合体下部のエントランスノズルを通して気泡
が冷却材とともに炉心内を通過することにより、異常な正の反応度が投入されて原
子炉出力を上昇させるとともに、燃料から冷却材への伝熱を阻害し、これにより燃
料と燃料被覆管の温度が上昇し、燃料が損傷するおそれのある事象である(乙第一
六号証一〇―三―一〇ページ)。
 右事象の発生は工学的には考えられないため、本来は「事故」として取り上げる
必要はないが、異常な正の反応度の投入に対する本件原子炉の炉心の応答特性を把
握するため、パルス状の正の反応度を投入する物理モデルとして、右事象の解析を
したものである(P8調書(一)一一丁表ないし一三丁表)。
 被告は、本件安全審査において、以下のア及びイの事項を確認し、その結果、
「気泡通過事故」を想定した場合にも、燃料ペレットの温度、燃料被覆管の肉厚中
心温度、炉心のナトリウム温度及び原子炉冷却材バウンダリの温度はいずれも過度
に上昇することはなく、炉心の冷却能力は失われず、原子炉冷却材バウンダリの健
全性も損なわれないとした評価は妥当であると判断した(乙第九号証一五八、二〇
六、二〇七ページ、乙第一四号証の三の一七ページ)。
ア 解析条件については、①気泡の排出経路であるガス抜き孔の効果を無視した場
合に、気泡の大きさとして、物理的に想定することができる最大量二〇リットルの
気泡が一斉に全炉心を通過するものとし、また、②燃料要素の温度上昇を高めに見
積もるために右気泡に覆われた燃料要素と気泡との熱伝達はないという断熱条件を
仮定するという厳しい前提条件を置いている(乙第一六号証一〇―三―一一ペー
ジ、P8調書(一)二七丁裏ないし三〇丁表)。
イ 解析評価の結果、気泡通過により反応度が投入されると、原子炉出力の上昇に
より、原子炉トリップ信号として「出力領域中性子
束高(高設定)」信号が自動的に発せられて原子炉停止系が作動し、炉心へ制御棒
が挿入されて原子炉は自動停止するとともに、補助冷却設備によって炉心が冷却さ
れる。その間、燃料ペレットの温度、燃料被覆管の肉厚中心温度、炉心のナトリウ
ム温度及び原子炉冷却材バウンダリの温度は、いずれも過度に上昇することはな
く、「事故」時の判断基準はもとより、「運転時の異常な過渡変化」の判断基準を
も下回る(乙第一六号証一〇―三―一二ページ、P8調書(一)三〇丁表ないし三
二丁表)。
(三) 原告らの主張に対する反論
 原告らは、「運転時の異常な過渡変化」及び「事故」に係る安全評価についての
安全審査には種々の重大かつ明白な瑕疵があると主張する。
 しかしながら、本件安全審査においては、前述のとおり、本件原子炉施設の「運
転時の異常な過渡変化」及び「事故」に係る安全評価に際しての事象の選定並びに
解析、評価の方法及び結果がいずれも妥当であることを確認しており、原告らの右
主張は失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(1) 単一故障の仮定に関する主張について
 原告らは、異常事態の発生には機器の多重故障やいくつかの誤操作が関与するに
もかかわらず、本件原子炉施設の「運転時の異常な過渡変化」及び「事故」に係る
安全評価において、解析条件として機器の単一故障のみを仮定しているのは不合理
であると主張する(原告ら準備書面舗(三)二二ないし二四ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり、「単一故障」の意義、
内容を正解しないものであって、失当である(詳細は準備書面(四)の三ないし七
ページで述べたとおりである。)。
 事故防止対策に係る設備である安全保護設備及び工学的安全施設は、いずれも十
分な信頼性を有することが確認されているものである(P6調書(一)三四丁裏、
四六丁表)が、安全評価では、念には念を入れて安全性を確認するとの立場から、
右安全保護設備及び工学的安全施設の総合的な妥当性を確認するために、安全上の
観点から厳しい事象を仮定した上で、右起因事象の発生に伴い作動が要求される安
全系(安全保護設備及び工学的安全施設)について、要求される原子炉停止、炉心
冷却及び放射性物質の閉込めの各基本的安全機能ごとに、結果が最も厳しくなるよ
うな故障の発生を仮定するものであり、これを単一故障と呼んで
いる(乙第四号証二六七、二七二、二七三ページ)。すなわち、それは、異常の発
生原因としての故障とは異なり、発生した異常状態に対処するために必要な基本的
安全機能を達成する系統について、機器の一つが所定の安全機能を失うことをいう
のであって、従属要因に基づく多重故障を含むのである。例えば、前記の二次冷却
材漏えい事故の解析条件として、事故ループ以外のループに故障が生じたと仮定す
るのは、炉心冷却という基本的安全機能について、より解析条件を厳しくするため
の単一故障の仮定である。このように、安全評価における「単一故障」の仮定は、
評価目的との関係において設定されるものであって、原告らが右主張するように、
単に、単一の機器の故障を仮定するというものではない。
(2) 「二次冷却材漏えい事故」に関する主張について
ア 原告らは、「二次冷却材漏えい事故」に係る解析評価(漏えいナトリウムによ
る熱的影響評価)の解析条件として、二次主冷却系配管の破損口の大きさを一五平
方センチメートルの割れ状の破損口としていることについて、右解析条件は、ナト
リウム火災によって原子炉補助建物の健全性が損なわれないとの結論を導くための
恣意的なものであり、瞬時両端完全破断を解析条件として仮定すべきであると主張
する(原告ら準備書面(三)一九二ないし一九四ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 「二次冷却材漏えい事故」とは、本件原子炉の出力運転中に二次主冷却系配管が
破損して、二次冷却材であるナトリウムが漏えいする事象である。ところで、二次
主冷却系配管に万一破損が生じるとしても、配管の内圧が八気圧程度と低いために
右破損は、肉厚を貫通した疲労き裂という形態をとり、急速な破断に進展するおそ
れはない。また、肉厚を貫通した疲労き裂の大きさは、設計上想定される応力の繰
返し回数を超えて配管の肉厚を貫通するまで応力が繰り返し加えられたと仮定して
も、長さが管の直径の二分の一、幅が管の厚さの二分の一のスリット状の大きさを
超えることはない。以上の事実から、本件安全審査においては、漏えいナトリウム
による熱的影響を解析するに当たり、申請者が設定した解析条件(破損口の大きさ
は、右スリット状の漏えい口の大きさに相当する一五平方センチメートルとす
る。)は合理的であると判断したのである(P8調書(一)四一丁表ないし四二丁
表、八
八丁裏)。
イ また、原告らは、「二次冷却材漏えい事故」に係る解析評価(漏えいナトリウ
ムによる熱的影響評価)においては、中小規模漏えい時の局所的なナトリウムの燃
焼による床ライナの温度上昇や界面反応による腐食が解析条件として設定されてお
らず、不当であると主張する(原告ら準備書面(六)三六ないし五四ページ、第七
及び準備書面(七)第二、三)。
 しかしながら、原告らの右主張は、以下に述べるとおり、二次冷却材漏えい事故
における漏えいナトリウムの熱的影響の評価の目的を正解しないものであり、失当
である。
 すなわち、右評価の目的は、炉心冷却能力の解析評価において前提とする崩壊
熱・残留熱除去系の系統分離が、漏えいナトリウムの熱的影響によって損なわれな
いか否かを念のため確認することにあり、床ライナ自体の定量的な機械的健全性の
確認を目的としたものではない。このような評価の目的からすると、右系統分離の
ための障壁を形成する建物、構築物の健全性に最も大きな影響を及ぼすのは、事故
ループにおける雰囲気温度の上昇に伴う内圧の上昇であるから、右の内圧の上昇が
実際よりも十分に厳しい結果となるように、考えられる最大規模の漏えいを想定し
た上で、漏えいしたナトリウムの燃焼形態についても、右の内圧の上昇が実際より
も厳しい結果になるようにスプレイ燃焼するとの条件が設定されたのであり(乙イ
第四五号証三、四ページ)、原告ら主張の解析条件の設定は右評価においては何ら
必要ではない。
 なお、右評価の際に、床ライナの温度上昇も併せて評価されているが、これは、
内圧の上昇に着目した右条件下において、機械強度的に余裕のある床ライナが設置
され得ることを念のため確認するために行われたにとどまり、床ライナ自体の定量
的な機械的健全性を確認するために、床ライナの健全性に最も厳しい条件を設定し
て評価したものではない(乙イ第四五号証二ないし四ページ、本件安全審査におけ
る床ライナの審査については後に第五章において述べる。)。
 したがって、内圧の上昇について、大規模漏えいが中小規模漏えいを包絡する以
上、中小規模漏えい時の局所的なナトリウムの燃焼による床ライナの温度上昇が、
右評価における床ライナの温度上昇を上回るとしても、このことは、右評価の合理
性を何ら左右するものではない。
 また、右評価において想定されている大規模漏えい時には、ナトリウムが床ライ
ナ上
でプール燃焼するため、ナトリウム、酸素及び鉄の界面がほとんど存在しない。し
たがって、界面反応による床ライナの腐食を考慮する必要はない。
ウ 原告らは、二次冷却材漏えい事故評価において高温腐食(界面反応による腐
食)に起因する各種の影響についての事故想定が欠落していることを指摘し、この
ような審査基準は不合理であると主張する。
 しかしながら、原告らの右主張は、「一次冷却材漏えい事故」評価の位置づけを
正解しないものであり、失当である。
 すなわち、前記(二)(1)アで述べたとおり、「二次冷却材漏えい事故」の安
全評価の目的は、炉心冷却能力(具体的には、原子炉の出力運転中に、何らかの原
因で二次主冷却系配管が破損して、二次冷却材であるナトリウムが漏えいし、中間
熱交換器での除熱能力が低下して一次冷却材ナトリウムの十分な除熱ができない結
果、原子炉容器入口ナトリウム温度が上昇し、これによって炉心の安全な冷却がで
きなくなるおそれのないこと)を確認することにある。このような右事故の評価の
目的に照らせば、原告らの主張するような床ライナの具体的健全性の問題は、炉心
冷却能力とはかかわりがなく、「二次冷却材漏えい事故」評価の目的外であるか
ら、これを評価することを要しない。
 そもそも、床ライナの具体的設計は、詳細設計に属する事項であるから(乙イ第
四五号証六ページ、P1調書一六六、一六七ページ)、床ライナの具体的健全性の
問題は、基本設計ないし基本的設計方針について審査する安全審査の対象外である
ことは明らかである。
 なお、本件安全審査では、「二次冷却材漏えい事故」の炉心冷却能力の評価の際
に、右事故の熱的影響も評価している。しかし、これは、右炉心冷却能力の評価の
前提である系統分離が損なわれないことを念のために確認したものであり、「評価
の考え方」において要求されている事項ではない(前記(二)(1)イ参照)。そ
して、右評価においても、原告らの指摘する高温腐食を考慮する必要がないこと
は、前記イで述べたとおりである。
(3) 「蒸気発生器伝熱管破損事故」に関する主張について
 原告らは、「蒸気発生器伝熱管破損事故」に係る解析評価の解析条件のうち、①
初期スパイク圧の評価のため、伝熱管一本が瞬時に両端完全破断を起こすことを仮
定するとの解析条件と、②準定常圧の評価のため、伝熱管四本が同時に両端完全破
断した場合に相当する水漏えい
率を仮定するとの解析条件は、いずれも恋意的であると主張し、その根拠として、
③英国のPFRの事故において四〇本の伝熱管が破損したことや、④海外の加圧水
型原子炉の「蒸気発生器伝熱管破損事故」の解析に当たって置かれている前提条件
を挙げる(原告ら準備書面(三)一五七、一五八ページ)。
 しかしながら、以下に述べるとおり、原告らの右主張は理由がない。
 すなわち、「蒸気発生器伝熱管破損事故」とは、前記(二)(2)で述べたとお
り、本件原子炉の出力運転中に、何らかの原因で蒸気発生器の伝熱管が破損し、大
規模なナトリウム・水反応によって、当該蒸気発生器を有する二次主冷却系ループ
内の圧力が過度に上昇した場合に、右の蒸気発生器をはじめ、当該蒸気発生器を有
する二次主冷却系ループの機器・配管及び一次主冷却系ループの中間熱交換器等が
損傷するおそれのある事象である。
 被告は、本件安全審査において、申請者が設定した右①及び②の解析条件は、次
のア、イに述べるとおり妥当であると判断したものであって、③及び④は、次の
ウ、エに述べるとおり解析条件の不当性を根拠づけるものではない。
ア ①の初期スパイク圧の評価として伝熱管一本が瞬時に両端完全破断を起こすも
のとする仮定について
 右解析評価において最も重視すべきことは、ナトリウム・水反応の規模である。
右反応によって発生する圧力の大きさは、ナトリウムと反応する水の量と右反応の
速さに支配される(P8調書(一)四六丁裏)から、右事象の解析評価において
は、より多くの水を一瞬に漏えいさせた方が保守的な条件設定ということができ
る。一方、本件原子炉施設の基本設計ないし基本的設計方針においては、伝熱管の
破損に対して十分な発生防止対策が採られているから、この破損が生じることは極
めて考えにくい(P8調書(一)四八丁裏)。このような観点から、本件安全審査
においては、右解析評価の前提条件として、一本の伝熱管が完全に瞬時破断すると
仮定して右一本の伝熱管の最大の水漏えい率(単位時間当たりの水漏えい量)を想
定することには、保守性があり、妥当な解析条件の設定であると判断した(P8調
書(一)四八丁裏)。また、漏えい位置についても、水漏えい率が最大となる蒸発
器の管束部の下部を破損位置として想定していることから妥当であると判断した
(P8調書(一)四五丁裏、四六丁表)。
イ ②の準定常圧の評価として伝熱管四
本が同時に完全破断した場合に相当する水漏えい率を仮定することについて
 伝熱管一本が瞬時完全破断するという想定をした場合、初期スパイク圧による短
時間の急激な圧力上昇、その後の圧力下降の後、さらに、二次主冷却系の圧力が上
昇し、圧力開放板が開放されて、右圧力がナトリウム・水反応生成物収納設備側に
逃げるとともに、蒸気発生器への給水が停止され、伝熱管内に残留している水・蒸
気が急速に排出され(急速ブロー)、これにより早期にナトリウム・水反応が終止
するから、その場合には破損伝播は起きない(P8調書(一)四九丁表、同裏)。
また、申請者等が行った実験結果によると、一本の伝熱管の最初の破損規模が伝熱
管一本の最大水漏えい率未満では右の破損伝播が生ずるが、その場合に初期に破損
した伝熱管及びその周囲で破損した伝熱管の水漏えい率の合計は、最大でも二本の
伝熱管が完全破断して漏えいする水漏えい率を若干上回る程度である。したがっ
て、準定常圧の評価の前提として、伝熱管四本が同時に完全破断した場合に相当す
る水漏えい率を仮定することは、十分に保守的な解析条件であると判断した(P8
調書(一)四九丁裏ないし五〇丁裏、甲イ第三八三号証五六五ページ、乙イ第四三
号証七ページ)。
ウ ③の英国PFRの事故について
 準備書面(四)の七一ないし七三ページにおいて述べたとおり、右PFRの事故
における四〇本の伝熱管の破損の原因は、①内筒の構造に設計上の問題があり、こ
のため内筒の隙間からナトリウムが漏れたことによって伝熱管の減肉を来したこ
と、また、②伝熱管からの水漏えいを初期の段階で検知できなかったという特異な
状況が重なったこと、③急速に水及び蒸気を排出する急速ブロー系が備えられてい
なかったことにある(P8調書(一)五―丁裏ないし五五丁表、甲イ第二一二号証
四、六、八ページ、甲イ第六一号証、甲イ第一二五号証の一の一ページ、乙イ第四
四号証一九、八六ページ)。
 これに対し、本件原子炉施設の蒸気発生器は、これと異なる構造と設備等を有し
ているものであり、このような事故は生じ得ない。したがって、右PFRにおける
事故の発生をもって、「蒸気発生器伝熱管破損事故」の解析評価の前提条件が不当
であるとすることはできない(P8調書(一)五六丁裏、乙第一六号証八―五―
三、八―九―一五、一〇―二―三七、一〇―三―六二ページ)。
エ ④の海外の加圧水型原子炉の
「蒸気発生器伝熱管破損事故」の解析に当たって置かれている前提条件について
 加圧水型原子炉の蒸気発生器と本件原子炉施設のそれとは、そもそも、構造材の
使用条件や冷却材等が全く異なっている。したがって、本件安全審査において設定
された前提条件が海外での加圧水型原子炉の「蒸気発生器伝熱管破損事故」の解析
に当たって置かれている前提条件と異なることをもって、直ちに本件解析評価の前
提条件が不当であることの根拠とすることはできない。
 また、原告らは、申請者が一九八一年(昭和五六年)に実施したSWAT―3 
RUN―16において高温ラプチャによる伝熱管の破断を確認したにもかかわら
ず、これを隠したため、本件安全審査には右知見が反映されず、蒸気発生器伝熱管
破損事故評価において高温ラプチャが考慮されていないのは不合理であると主張す
る。
 しかしながら、原告らの右主張は、以下に述べるとおり失当である。
 すなわち、安全評価の目的は、原子炉施設の安全設計の妥当性を念のため確認す
ることにある。安全評価に際しては、当該原子炉施設に施される安全設計を前提と
して、これらの設備の作動を考慮に入れた上で、想定された事象の評価を行い、当
該原子炉施設の安全設計の総合的な妥当性を確認するのである。したがって、蒸気
発生器伝熱管破損事故評価においても、原子炉施設に施される安全設計との関連に
おいて高温ラプチャを考慮する必要性の有無を判断すれば足りる。
 被告は、本件安全審査において、本件原子炉施設には、伝熱管に損傷が生じた場
合、急速ブロー及び給水の停止によりナトリウム・水反応を抑制し、伝熱管内の圧
力を低下させる対策が施されていることを確認している(乙第一六号証一〇―三―
六二、六三ページ)。したがって、仮に、本件原子炉施設の蒸気発生器伝熱管が破
損するとしても、高温ラプチャは生じ得ず、本件安全審査における蒸気発生器伝熱
管破損事故評価で高温ラプチャを考慮する必要はない(前記(二)(2)イ参照、
P8調書(一)五八丁表)。
 なお、原告らの指摘するSWAT―3 RUN―16では、確かに、伝熱管が高
温ラプチャ現象により破損した。しかし、これは、本件原子炉施設の蒸気発生器の
使用条件とは大きく異なる条件で実験したためである。すなわち、右実験では、こ
れらの伝熱管は内部に静止した蒸気又はガスを密閉しており、水・蒸気による冷却
効果が全く期待できない条
件下にあったのに対し、本件原子炉施設の蒸気発生器では、水・蒸気による冷却効
果が期待できるのであり、両者の使用条件は大きく異なる(甲イ第四四三号証三四
八ページ)。したがって、本件原子炉施設の蒸気発生器に右実験結果と同様の現象
が起こるとは考えられない。その後、RUN―19で、実験条件を本件原子炉施設
の蒸気発生器の使用条件に近づけて実施したところ、実機条件を模擬した伝熱管
(流水管)には高温ラプチャ型破損は発生しないことが確認された。これによっ
て、安全審査当時の知見の正しさが裏付けられている(乙イ第四三号証七ページ、
甲イ第四四三号証三五二ページ)。
(4) 「燃料スランピング事故」に関する主張について
 原告らは、①スランピング現象が最大の反応度価値を持つ一体の燃料集合体内の
全燃料要素で同時に発生するとの解析条件は、恣意的に反応度の範囲を限定したも
のであること、②燃焼の進展に伴う融点の低下を考慮していないこと、③スランピ
ングした燃料が燃料被覆管に接触することを評価していないこと、④高速中性子の
照射による燃料被覆管の脆化を考慮していないことを指摘し、「燃料スランピング
事故」に係る解析評価は不当であると主張する(原告ら準備書面(三)六二ないし
六六ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
ア ①の解析条件について
 「燃料スランピング事故」は、本件原子炉の炉心の応答特性を把握するために、
ステップ状の正の反応度が投入される物理モデルとして想定された事象であり、燃
料スランピングそれ自体が本件原子炉において起こることは、工学的には考えられ
ないものである。
 被告は、本件安全審査において、①本件原子炉施設には燃料スランピングの発生
防止対策が十分に講じられている上、我が国の高速実験炉「常陽」や海外の高速炉
において、このような現象が起きていないにもかかわらず、右事象をあえて想定し
ていること、②燃料スランピングの発生を仮定する燃料集合体として、燃料集合体
のうち最大の反応度価値を有するものを想定した上で、その一六九本の燃料要素す
べてで同時にスランピングが生じるという、スランピングによってもたらされる異
常な正の反応度の大きさを最大限に見積もる想定をしていることを確認し、その結
果、右①の解析条件は十分に保守的であると判断したのである(P8調書(一)二
一丁表ないし二二丁表、二三
丁表、乙第九号証一五六、二〇六ページ、乙第一六号証一〇―三―七、八ペー
ジ)。したがって、原告らの右①の指摘は当を得たものではない。
イ ②の燃料の融点の低下について
 燃焼の進展に伴う燃料融点の低下については、確かに、一般的には燃焼が進んだ
段階では融点が漸減するとはいえるものの、他方、線出力密度が減少することによ
る燃料温度の低下の方が大きくなるため、結局、燃料温度が最高となるのは燃焼開
始直後であることを確認している(乙第九号証八二ページ、乙第一六号証八―三―
三三ないし三五ページ)。したがって、燃焼の進展に伴う燃料融点の低下は、右事
象獅の評価結果に影響を及ぼすものではない。
ウ ③のスランピングした燃料の燃料被覆管への接触について
 「燃料スランピング事故」は、既に繰り返し述べたとおり、ステップ状の正の反
応度が炉心に投入された場合の炉心の応答特性を把握するための物理モデルとして
想定されたものであり、スランピングを起こした燃料ペレットが燃料被覆管に接触
するか等、その挙動それ自体を解析するものではない。スランピング現象について
は、それにより炉心に投入される異常な正の反応度の大きさが求められた時点でそ
の役割を終了する。なお、解析に際しては、右により求められた正の反応度の大き
さを前提とした上で、健全な形状の燃料要素を有する炉心を解析対象として燃料温
度等が計算されることになる(乙二第二号証の二の五四丁表ないし五八丁表)。
エ ④の中性子照射による燃料被覆管の脆化について
 右解析評価において判断基準の一つとしている燃料被覆管の肉厚中心温度に関す
る制限値は、実際に中性子を照射した燃料被覆管に対する急速加熱試験の結果等を
基に安全余裕を持たせて設定された値であることを確認している(乙第九号証一三
三、一三四ページ、乙第一六号証一〇―一―二ページ)。したがって、中性子照射
による燃料被覆管の脆化によって、燃料被覆管の健全性が影響を受けることはな
い。
(5) 「気泡通過事故」に関する主張について
 原告らは、ナトリウム沸騰のように気泡が炉心近くで連続して発生するという前
提条件を置いた場合には、投入される反応度が更に大きく、しかも持続することを
指摘し、「気泡通過事故」に係る解析評価の解析条件について、二〇リットルの気
泡が一斉に炉心を通過するとの前提条件は恣意的であると主張する(原告ら準備書
面(三)四一ないし四
六ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 「気泡通過事故」とは、何らかの原因により原子炉容器内の一次冷却材中に気泡
が混入し、燃料集合体下部のエントランスノズルを通して、一次冷却材とともに右
気泡が炉心内を通過するという事象である。気泡の排出経路であるガス抜き孔の効
果を無視した場合に、本件原子炉施設で何らかの原因により一次系冷却材中に気泡
が混入し滞留するとしたとしても、気泡の最大量は、原子炉容器下部プレナム中の
高圧プレナムの連結管間隙空間容積のうちスリット上端より上の部分の体積に相当
する量(二〇リットル)である。そこで、右気泡の量は二〇リットルと設定されて
いるのである(P8調書(一)二七丁裏ないし二九丁表、同調書末尾添付の⑤
(b)、(c))。
 そして、本件原子炉施設は、ナトリウムの沸点に対して十分余裕のある温度で使
用されるから、ナトリウムが沸騰することはない(P8調書(一)二九丁裏、乙第
一六号証八―一―三九、八―三一二八、三二、三三、五三ページ)。したがって、
ナトリウムが沸騰するという前提条件を置く必要はない。
3 「技術的には起こるとは考えられない事象」に係る安全評価の妥当性
(一) 「技術的には起こるとは考えられない事象」に係る安全評価の意義本件原
子炉施設は、LMFBRで、かつ、現在、研究開発段階にある炉型であり、安全性
評価の実績も少ない。そこで、その安全審査においては、安全確保に万全を期し、
特に念には念を入れた安全性の評価を行うことが要請されている(P6調書(一)
五一丁裏、五二丁表)。
 このような観点から、安全審査においては、LMFBRの運転実績が僅少である
ことにかんがみ、2において述べた「事故」より更に発生頻度は低いが結果が重大
であると想定される事象、すなわち「技術的には起こるとは考えられない事象」に
ついても、その起因となる事象とこれに続く事象経過に対する防止対策との関連に
おいて、放射性物質の放散が適切に抑制されること、換言すれば、本件原子炉施設
の安全裕度を確認することとしている(乙第四号証四九五ページ、乙イ第三二号証
二ないし四、二九ページ、乙ニ第四号証の一の七、八ページ)。
 右の事象についての解析評価は、まず、①その発生頻度は無視し得るほど極めて
低く、かつ、第三で述べた事故防止対策が施されているにもかかわらず、炉心の大
きな損傷に
至るおそれのある事象をあえて想定し、その上で、②その起因となる事象とこれに
続く事象経過に対する防止対策との関連において、放射性物質放散に対する障壁の
抑制機能を確認するという方法により行われる(乙第四号証四九五ページ、乙第九
号証二〇八ページ)。
 そして、右②の確認は、具体的には、一部の機器等に設計条件を超える結果が生
じても、放射性物質の放散に対する障壁となる原子炉冷却材バウダリのナトリウム
保持機能等が適切に保たれること、又は第四章第三の―3(一)(4)で述べた格
納容器バウンダリによる最終的な放射性物質の放散に対する抑制機能が適切に保た
れることを評価するのである(乙第九号証二〇八ページ、乙第一六号証一〇―四―
一、二ページ)。
「技術的には起こるとは考えられない事象」に係る安全評価についての審査事項
 LMFBRの安全審査においては、当該原子炉施設の安全裕度を確認するため
に、申請者の実施した「技術的には起こるとは考えられない事象」に係る事象の選
定及び解析評価の妥当性を、「評価の考え方」に基づき、「立地審査指針」及び
「プルトニウムに関するめやす線量について」等を参考にして、審査しなければな
らない。
(1) 事象選定の妥当性
 「評価の考え方」は、「事故」より更に発生頻度は低いが結果が重大であると想
定される事象の選定を求めている(乙第四号証四九五ページ)。
 右評価の趣旨・目的からは、「技術的には起こるとは考えられない事象」として
想定する事象は、大きな炉心損傷に至るおそれのある事象であることを要する。そ
のため、申請に係る原子炉施設に施されている事故防止対策について、「事故」評
価には仮定する必要のない多重故障等をあえて仮定する必要がある。一方、右評価
は、LMFBRの運転実績が僅少であることにかんがみ、「事故より更に発生頻度
は低いが結果が重大であると想定される事象について、その起因となる事象とこれ
に続く事象経過に対する防止対策との関連において、放射性物質の放散が適切に抑
制されること、すなわち、本件原子炉施設の安全裕度を確認するためのものである
から、当該原子炉に講じられている事故防止対策や基本的物理現象を無視するよう
な想定をする必要はない(P8調書(一)五九丁表ないし六一丁表)。
(2) 想定された事象に係る解析評価の妥当性
 右評価は、想定された事象について、その起因となる事象とこれに続く事象
経過に対する防止対策との関連において、放射性物質の放散が適切に抑制されるこ
とを確認するためのものであるから、右事象経過の中で作動が期待されることに十
分な根拠のある設備については、右設備の作動を考慮して評価して差し支えない。
したがって、解析評価に当たっては、事象の忠実な解析(すなわち、実験データや
理論的根拠に基づく物理現象の解析)をすることを要するが、特段の保守的な解析
条件を設定する必要はない(P8調書(一)六〇丁表ないし六一丁表、乙第九号証
二〇八ページ)。
 また、判断基準については、右事象が、発生頻度が無視できるほど極めて低く、
技術的見地からみて起こるとは考えられないことから、「立地審査指針」及び「プ
ルトニウムに関するめやす線量について」に示されているめやす線量を参考にする
(乙第九号証二〇八、二〇九ページ)。
(三) 本件原子炉施設の「技術的には起こるとは考えられない事象」に係る安全
評価についての審査
 被告は、本件安全審査において、申請者の実施した「技術的には起こるとは考え
られない事象」に係る安全評価は、事象の選定及び解析評価のいずれの点も妥当で
あると判断した(乙第九号証二二六ページ、乙第一四号証の三の一七ページ)。
(1) 事象選定の妥当性
 申請者が、「技術的に起こるとは考えられない事象」として選定した事象は、次
のとおりである(乙第九号証二〇八ページ、乙第一六号証一〇―四―一ページ)。
① 「局所的燃料破損事象」(燃料要素の局所的過熱事象、集合体内流路閉塞事
象)
② 「一次主冷却系配管大口径破損事象」
③ 「反応度抑制機能喪失事象」(一次冷却材流量減少時反応度抑制機能喪失事
象、制御棒異常引抜時反応度抑制機能喪失事象)
 被告は、本件安全審査において、「評価の考え方」に基づき、海外におけるLM
FBRの評価例等をも参考として、「技術的には起こるとは考えられない事象」と
して右の三つの事象が選定されていることは、妥当であると判断した(乙第九号証
二二六ページ、乙第一四号証の三の一七ページ)。
(2) 想定された事象に係る解析評価の妥当性
 被告は、本件安全審査において、「技術的には起こるとは考えられない事象」に
ついて、炉心が冷却され、防止対策との関連において放射性物質の放散が適切に抑
制されることを確認し、その結果、想定された事象に係る解析評価は妥当であると
判断した(乙第九号証二二六ページ、乙第一四号証の三の一七、一八ページ)。
 以下、技術的には起こるとは考えられない事象のうち、①一次主冷却系配管大口
径破損事象と、②一次冷却材流量減少時反応度抑制機能喪失事象の二つの事象につ
いて、解析評価が妥当であることを詳細に述べる。
ア 一次主冷却系配管大口径破損事象
 一次主冷却系配管大口径破損事象とは、原子炉出力運転中に一次主冷却系配管に
ついて大規模な破断が生じ、一次冷却材が流出するという仮定上の事象である(乙
第一六号証一〇―四―一〇ページ)。
 そもそも、本件原子炉施設には、一次主冷却系配管の破損を防止するため、前述
のとおり防止対策が講じられており、大規模な配管破断が生じることは考えられな
い。万一、配管の肉厚を貫通した破損が生じたと仮定しても、配管の内圧が低いた
めに急速な破断に進展するおそれはなく、また、ナトリウムの漏えい検出器により
冷却材の漏えいを早期に検出して原子炉を停止し、炉心の冷却を維持することによ
り、炉心の損傷を招くことなく事象が安全に終止することが確認されている。した
がって、一次主冷却系配管の大規模な破断が発生する頻度は無視し得るほど極めて
低いが、それにもかかわらず、右の一次主冷却系配管大口径破損事象では、その破
断口の大きさとして、両端の完全破断等を想定するものであって、技術的には起こ
るとは考えられない事象として想定されているのである(乙第一六号証一〇―四―
一〇、一一ページ、P8調書(一)八四丁表ないし八五丁裏)。
 右事象が発生すると、原子炉容器内の冷却材の流量と液位が減少し、炉心冷却能
力に悪影響を与えるおそれがある。一方、流出したナトリウムの熱的影響によっ
て、漏えい箇所の部屋の圧力と温度が上昇し、これとともにライナと称される内張
の温度が上昇して、ライナに悪影響を与えるおそれがある。また、原子炉格納容器
内の圧力と温度が上昇して、漏えいしたナトリウムとともに原子炉格納容器内に放
出された放射性物質の一部が、原子炉格納容器外へ漏えいするおそれがある(P8
調書(一)八五丁裏ないし八六丁裏)。被告は、本件安全審査において、以下の
(ア)ないし(ウ)の事項を確認し、その結果、万一、一次主冷却系配管大口径破
損事象が発生したとしても、放射性物質の放散は適切に抑制されると判断した(乙
第九号証二二六ページ、乙第一四号証の三の一八ページ)。
(ア) 炉心冷却能力の健全性
 右事象の
解析評価の結果によれば、炉心において最も厳しい結果を示す中心部の燃料最高温
度、燃料被覆管の肉厚中心温度及びナトリウムの最高温度は、前者は摂氏約二三九
〇度、後二者はそれぞれ摂氏約九九〇度となり、燃料及び燃料被覆管の溶融は生じ
ない。また、燃料の破損割合は約三パーセントと小さく、炉心は大きな損傷に至る
ことはない。一方、原子炉容器のナトリウム液位は、ガードベッセル等により必要
レベル以上に維持されるから、冷却材の循環に支障を来すことはない。以上によ
り、一次主冷却系、二次主冷却系及び補助冷却設備の作動により除熱機能は確保さ
れる(乙第九号証二一五ページ、乙第一六号証一〇―四―一四、一七ページ)。
(イ) 流出ナトリウムによる熱的影響
 右事象の解析評価の結果によれば、ナトリウムが流出した部屋の床等に設置され
るライナの温度は、最高摂氏約四八〇度に上昇するにとどまり、設計温度摂氏五三
〇度を下回る。また、原子炉格納容器の内圧は、最高約〇・〇二二キログラム毎平
方センチメートルにとどまり、原子炉格納容器の最高使用圧力の〇・五キログラム
毎平方センチメートルを下回り、原子炉格納容器の健全性は損なわれない。したが
って、流出したナトリウムによる熱的影響が問題になることはない(乙第九号証二
一六ページ、乙第一六号証一〇―四―一五ページ)。
(ウ)  被ばく評価
 右事象の解析評価の結果によれば、本件原子炉施設の敷地境界外における被ばく
線量の最大値は、甲状腺被ばくについて、(小児)約〇・〇一五レム、(成人)約
〇・〇〇三七レム、全身被ばくについて約〇・〇二レムとなる。これらの被ばく線
量はいずれも「立地審査指針」に示されているめやす線量を下回る(乙第九号証二
一八ページ、乙第一六号証一〇―四―一七ページ)。
イ 一次冷却材流量減少時反応度抑制機能喪失事象
 一次冷却材流量減少時反応度抑制機能喪失事象とは、原子炉出力運転中に外部電
源喪失により炉心の冷却材流量が減少し、安全保護系の作動により原子炉の自動停
止が必要となる時点で、反応度抑制機能の喪失が重なるという仮定上の事象である
(乙第九号証二一九ページ、乙第一六号証一〇―四―一八ページ)。
 そもそも、本件原子炉施設の送電系統又は所内電源設備の故障等により外部電源
が喪失し、運転状態が乱されることを想定する運転時の異常な過渡変化について
は、その発生の防止対策が適切に講じられている
。万一、外部電源喪失により炉心流量が減少する事象が発生した場合には、各種の
原子炉トリップ信号により原子炉は確実に自動停止することが確認されている(乙
第九号証一四〇、一四八ページ、乙第一四号証の三の一六ページ、乙第一六号証一
〇―二―一八ないし二〇ページ)。しかし、それにもかかわらず、右事象は、外部
電源喪失に伴う一次冷却材流量減少事象に対し、安全保護系の作動による原子炉の
自動停止が要求される時点で、あえて反応度抑制機能の喪失を重ね合わせるという
ものであって、その発生頻度は無視できるほど極めて低く、「技術的には起こると
は考えられない事象」として想定されているのである(P8調書(一)六七丁表な
いし六八丁表)。
 右事象が発生すると、炉心に大きな損傷が生じ、冷却能力に悪影響を与えるおそ
れがある。また、原子炉冷却材バウンダリを構成する原子炉容器等に作用する圧力
によっては、一次冷却材であるナトリウムが原子炉格納容器内の運転床の上へ噴出
し、その熱的影響により、原子炉格納容器内の圧力と温度が上昇し、これとともに
原子炉格納容器内に放出された放射性物質の一部が、原子炉格納容器外へ漏えいす
るおそれがある(P8調書(一)六五丁裏ないし六七丁表)。
 被告は、本件安全審査において、以下の(ア)ないし(ウ)の事項を確認し、そ
の結果、一次冷却材流量減少時反応度抑制機能喪失事象を想定しても、放射性物質
の放散は適切に抑制されるものと判断した(乙第九号証二二六ページ、乙第一四号
証の三の一八ページ)。
(ア) 炉心冷却能力の健全性
 右事象の解析評価の結果によれば、外部電源喪失に伴う一次冷却材流量減少と反
応度抑制機能喪失との重ね合わせ事象において、最も厳しい結果を示す平衡炉心の
燃焼末期では、ナトリウムの沸騰、燃料被覆管の溶融移動及び燃料のスランピング
が生じた時点でごく短時間即発臨界に達するが、炉心は膨張により速やかに未臨界
となる。また、炉心で発生する圧力荷重によってしゃへいプラグ等に隙間が短時間
生じ、この隙間を通って、原子炉格納容器内の運転床上ヘナトリウムが噴出する
が、原子炉容器及び一次主冷却系の機器、配管には、一部に歪みが生じるものの、
ナトリウムが漏えいするような破損は生じない。
 さらに、炉心部から放出された溶融燃料は、周辺のナトリウム及び構造材に熱を
伝達するとともに、原子炉容器内構造物の水平部等に保持され、崩
壊熱の除去のために必要な一次冷却材の循環流路が確保されている。以上により、
一次主冷却系、二次主冷却系及び補助冷却設備の自然循環により、除熱機能は確保
される(乙第九号証二二一、二二二ページ、乙第一六号証一〇―四―二〇、二一、
二四ページ)。
(イ) 噴出ナトリウムによる熱的影響
 右事象の解析評価の結果によれば、ナトリウムの噴出に伴い、原子炉格納容器内
の雰囲気は、初期に温度が摂氏約一四〇度、内圧は最高約〇・三三キログラム毎平
方センチメートルまで上昇するものの、その後は減少し続けるから、原子炉格納容
器の最高使用温度摂氏一五〇度、最高使用圧力〇・五キログラム毎平方センチメー
トルを下回り、原子炉格納容器の健全性は損なわれない。したがって、噴出したナ
トリウムによる熱的影響が問題になることはない(乙第一九号証二二二ページ、乙
第一六号証人―七―一七、一〇―四―二一、二四ページ)。
(ウ) 被ばく評価
 右事象の解析評価の結果によれば、①本件原子炉敷地境界外における被ばく線量
の最大値は、甲状腺被ばくについて、(小児)約一・一レム、(成人)約〇・二七
レム、全身について約〇・〇六九レム、また、②プルトニウムの大気放出に伴う被
ばく線量は、敷地境界外で最大となる場所において、骨表面、肺及び肝のそれぞれ
に対し、約〇・〇七一ラド、約〇・〇一四ラド及び約〇・〇一五ラドとなる。これ
らの被ばく線量は、いずれも「立地審査指針」及び「プルトニウムに関するめやす
線量について」に示されているめやす線量を下回る(乙第九号証二二四ページ、乙
第一六号証一〇―四―二三、二四ページ)。
ウ その他の事象
 右二事象以外の技術的には起こるとは考えられない事象についても、右二事象と
同様に、炉心は冷却され、防止対策との関連において放射性物質の放散が適切に抑
制されると判断した(乙第九号証二二六ページ、乙第一六号証一〇―四―七ないし
九、二四ページ)。
(四) 原告らの主張に対する反論
 原告らは、技術的には起こるとは考えられない事象に係る安全評価についての審
査には種々の重大かつ明白な瑕疵があると主張する。
 しかしながら、本件安全審査においては、(三)で述べたとおり、本件原子炉施
設において「技術的には起こるとは考えられない事象」に係る安全評価に際して、
想定されている事象、その評価方法及び評価結果がいずれも妥当であることを確認
しており、原告らの右主
張はいずれも失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(1) 事象選定に関する主張について
 原告らは、「炉心溶融」から「出力暴走」等に至る事故現象は現時点では十分解
明されていないとし、また、事象選定基準が不明確であることを指摘し、「技術的
には起こるとは考えられない事象」に係る安全評価は、最悪の事態を想定して行う
べきものであると主張する(訴状三三二ないし三三四、三三九ないし三四三ペー
ジ)。
 しかしながら、「技術的には起こるとは考えられない事象」に係る安全評価は、
「運転時の異常な過渡変化」及び「事故」に係る安全評価によって、事故防止対策
の妥当性が確認された上で、LMFBRの運転実績が僅少であることにかんがみ、
「事故」より更に発生頻度は低いが結果が重大であると想定される事象について、
その起因となる事象とこれに続く事象経過に対する防止対策との関連において、放
射性物質の放散が適切に抑制されること、すなわち、本件原子炉施設の安全裕度を
確認することを目的とするものである(乙ニ第四号証の一の七ないし九ページ)。
したがって、「技術的には起こるとは考えられない事象」に係る安全評価における
事象の選定は、右評価の目的に照らし適切に行う必要があり、本件原子炉施設に講
じられている事故防止対策をすべて無視した事象を選定することは妥当ではない
(P8調書(一)六〇丁表ないし六一丁表)。
 原告らの右指摘は、「技術的には起こるとは考えられない事象」に係る安全評価
の意義を理解しないものであって、失当である。
 また、第三において述べたとおり、本件安全審査においては、本件原子炉施設に
所要の事故防止対策が講じられていることを確認しており、これらの所要の事故防
止対策の存在を前提とする限り、本件原子炉施設において「炉心溶融」や「出力暴
走」が起こることは、そもそも考えられず、原告らの主張は前提を誤るものであ
る。
 なお、原告らは、右評価は既にその誤りが明らかとなったWASH―一四〇〇
(ラスムッセン報告)等確率論的安全評価に基づいてされたものであり不当である
と主張する(訴状三五〇ないし三五七ページ、原告ら準備書面(三)二五ないし二
八ページ)が、「技術的には起こるとは考えられない事象」に係る安全評価は右の
考え方を参考にはしているものの、その評価値等に依拠するものではないから、右
確率論的安全
評価に基づいてされたとする批判は当たらない(被告準備書面(四)一一ペー
ジ)。
 また、原告らは、炉心崩壊事故を「技術的には起こるとは考えられない事象」と
して扱い、設計基準事故としないのは、不合理であると主張し、その根拠として、
①西ドイツではこれを設計基準事故としている、②アメリカとフランスでは設計基
準事故とはしていないものの、事実上それと同程度の厳しい要求がされていること
を指摘する。
 原告らの右主張の趣旨は、炉心崩壊事故を安全評価における「事故」として想定
し、その事故解析を行うべきであるというものであろう。しかしながら、前述した
とおり、本件安全審査では、本件原子炉施設に所要の事故防止対策が講じられてい
ることを確認しており^これらの所要の事故防止対策が存在する以上、原告らの指
摘するような炉心崩壊事故の発生は考えられない。したがって、炉心崩壊事故を
「技術的には起こるとは考えられない事象」と位置づけるのは何ら不合理ではな
く、原告らの右主張は失当である。
 なお、「評価の考え方」で、炉心崩壊事故すなわち一次冷却材流量減少時反応度
抑制機能喪失事象を、本件原子炉施設の安全審査における安全評価上、「事故」と
して想定する必要はなく、「技術的に起こるとは考えられない事象」として想定す
るので足りると位置づけたのは、諸外国における高速増殖炉の安全性評価の考え方
も参考にした上で、当面、安全性評価の対象として考えられる本件原子炉施設を念
頭において検討を行った結果である(乙第四号証四八八ページ)。
(2) 解析条件に関する主張について
 原告らは、「技術的には起こるとは考えられない事象」に係る安全評価における
解析条件について「運転時の異常な過渡変化」及び「事故」と同様の保守的な評価
条件を置いていないのは不合理であると主張する(原告ら準備書面(三)三〇ない
し三四ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 「技術的には起こるとは考えられない事象」に係る安全評価は、念のために、そ
もそも発生する蓋然性が無視できるほど低い事象について行うものであり、起因事
象の選定自体を更に保守的に考慮しようとするものである。すなわち、起因事象の
選定に際して、多重性を有する安全系の不作動等の起因事象を想定すること自体、
既に極めて保守的な仮定を設定しているものである。したがって、事象経過の中で
作動が
期待できると判断するに足りるに十分な根拠のある設備については、右設備の作動
を考慮すべきであり、また、右仮定の上更に解析条件に保守性を取り込むとする
と、事象の推移が実際と掛け離れたものになりかねず、かえって右評価の信懸性が
疑わしくなるおそれがある(P8調書(一)五九丁裏ないし六一丁表)。
 そもそも、右事象の評価の目的は、「事故」より更に発生頻度は低いが結果が重
大であると想定される事象について、右事象の経過をたどって行くことにより、最
終的に放射性物質の放散が適切に抑制されること、すなわち、本件原子炉施設の安
全裕度を確認することにある。そうすると、右評価においては、事象を忠実に解析
することで、十分その目的を達することができる。したがって、右事象の解析に際
して、保守的な解析条件を設定する必要はない(P8調書(一)六〇丁裏、六一丁
表)。
 なお、原告らは、特に炉心崩壊事故を取り上げ、この事故解析に保守的で安全側
の仮定を置いていないのは不合理であると主張する。しかしながら、原告らの右主
張は、前述したとおり、「技術的には起こるとは考えられない事象」に係る安全評
価の目的を正解しないものであり、失当である。
 すなわち、前記(一)で述べたとおり、本件原子炉施設は、現在、研究開発段階
にあるLMFBRであり、安全評価の実績も少ないことにかんがみ、安全審査にお
いては、「事故」より更に発生頻度は低いが結果が重大であると想定される事象、
すなわち「技術的には起こるとは考えられない事象」についても念のため安全評価
を行うこととし、本件原子炉施設の安全裕度を確認することとしているのである。
 右の事象についての解析評価は、まず、①その発生頻度は無視し得るほど極めて
低く、かつ、事故防止対策が施されているにもかかわらず、炉心の大きな損傷に至
るおそれのある事象をあえて想定し、その上で、②その起因となる事象とこれに続
く事象経過に対する防止対策との関連において、放射性物質放散に対する障壁の抑
制機能を確認するという方法により行われる。
 このように、「技術的には起こるとは考えられない事象」に係る安全評価は、念
のため、発生する蓋然性が無視できるほど低い事象を想定して行うものであり、具
体的には、起因事象の選定に際して、多重性を有する安全系の不作動等の事象を重
ね合わせて想定するところ、このような想定をすること自体、既に極めて保
守的な仮定を設定することに他ならない。これに対し、その後の事象経過の中で十
分な根拠をもって作動が期待できる設備については、右設備が作動することを考慮
するのは当然である。原告らの主張するように、右仮定の上に更に解析条件に保守
性を取り込むとすると、事象の推移が実際と掛け離れたものになり、かえって右評
価の信愚性が疑わしいものとなってしまうおそれがあり、妥当でない。
 以上のとおり、右事象の評価の目的に照らせば、右事象の解析に際して、事象を
忠実に解析することには合理性があり、更に保守的な解析条件を設定する必要は全
くない。
(3) 「一次主冷却系配管大口径破損事象」に関する主張について
ア 配管の破損位置に関する主張について
 原告らは、配管の破断位置は予測できないのであるから、ガードベッセルに覆わ
れていない部分における破断を仮定すべきであると主張する(原告ら準備書面
(三)一八八ないし一九〇ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 「一次主冷却系配管大口径破損事象」とは、前述のとおり、原子炉郷出力運転中
に一次主冷却系配管に大規模な破断が生じ、一次冷却材が流出するという仮定上の
事象である。右事象は、炉心冷却能力に悪影響を与えるおそれがあるものであるか
ら、右評価に当たっては、右事象仮定時の炉心冷却能力を評価する観点から、破断
によって炉心内のナトリウムの温度が最も高くなるような破断位置を仮定すべきで
ある。本件安全審査においては、原子炉容器入口ノズル部に破断が生じた場合に炉
心内のナトリウム温度が最も高くなることから、右部分が破断位置として設定され
ていることを妥当と判断したのである(P8調書(一)八七丁表ないし八八丁表、
乙第九号証二一五、二二六ページ、乙第一四号証の三の一七ページ、乙第一六号証
一〇―四―一三ページ)。
 なお、原告らは、破断位置を原子炉容器入口ノズル部分と設定するにしても、ホ
イッピング(配管のむち打ち)により配管の位置が移動するから、漏えいしたナト
リウムはガードベッセルの外に飛び出すとも主張する(原告ら準備書面(三)一九
〇ページ)。
 しかしながら、一次主冷却系の配管内の圧力は八気圧程度であって、加圧水型原
子炉と比べて十分の一にも及ばないため、ホイツピングは問題とならず、破断口か
ら漏えいしたナトリウムがガードベッセルの外に飛び出すことはない(P8調
書(一)八八丁表ないし八九丁表、乙第一六号証人―四―一一ページ)。したがっ
て、原告らの右主張は理由がない。
イ ナトリウムの漏えい量及び燃焼量に関する主張について
 また、原告らは、二次冷却材漏えい事故」と比べると、破損口から漏えいするナ
トリウムの量及びナトリウムの燃焼量が過小であると主張する(原告ら準備書面
(三)一九〇ないし一九二ページ)。しかしながら、原告らの右主張は、以下に述
べるとおり理由がない。
 すなわち、「一次冷却材漏えい事故」の解析評価の場合、ナトリウムの漏えい量
は、二一〇立方メートルとされている。これは、ナトリウム液位が整定するまでの
漏えい量が最大となる位置に配管の破損を想定し^これに、オーバフロー系による
ナトリウムの汲上げの影響も考慮した結果である(乙第九号証一七一ページ、乙第
一六号証一〇―三―二九ページ)。そして、この場合、ナトリウムの燃焼量は、約
二・七トンとなることを確認している。これは、燃焼に寄与する酸素量として、一
次主冷却系内の窒素雰囲気中にわずかに残存する酸素は実際には二体積パーセント
以下の濃度であるにもかかわらず、本件安全審査においては、右残存酸素と漏えい
ナトリウムとの反応による燃焼熱を大きく見積もるために、申請者において右残存
酸素の濃度に余裕を持たせて三体積パーセントと仮定するなどの厳しい前提条件の
下で解析し、その結果、漏えいナトリウムの燃焼量を算定したものである(乙第九
号証一七二ページ、乙第一六号証一〇―三―二九ページ)。
 これに対し、二次主冷却系配管大口径破損事象」の解析評価の場合、ナトリウム
の漏えい量は、一八〇立方メートルとされている。これは、原子炉容器内のナトリ
ウム液位が整定するまでの最大漏えい量を考える点では右「一次冷却材漏えい事
故」と同じであるが、右事象の解析評価における配管破損を両端完全破断と仮定し
ているため、破断口から漏えいするナトリウムの流出が速く、原子炉容器内のナト
リウム液位の低下も速くなるので、早期にオーバフロータンクからのナトリウム汲
上げ停止信号が発せられてナトリウムの汲上げが停止される。このため、オーバフ
ロータンクからのナトリウムの汲上げ量を無視できる(P8調書(一)九〇丁裏な
いし九二丁表、乙第一六号証一〇―四―一四ページ)。
 そして、この場合のナトリウムの燃焼量については、右「一次冷却材漏えい事
故」と同一の厳しい
前提条件の下で解析した結果、漏えいナトリウムの燃焼量は、約二・二トンとなる
ことを確認したのである(乙第九号証一七一、一七二、二一六ページ、乙第一六号
証一〇―三―二八、二九、一〇―四―一四、一五ページ)。
(4) 「一次冷却材流量減少時反応度抑制機能喪失事象」に関する主張について
ア 事象の位置づけに関する主張について
 原告らは、「一次冷却材流量減少時反応度抑制機能喪失事象」は現実に起こり得
るものであって、「技術的には起こるとは考えられない事象」として評価すること
は不当であると主張し、その根拠として、停電によるポンプ停止時に制御棒挿入装
置が故障する可能性があることを指摘する(原告ら準備書面(一〇)二八ないし二
九、二二ページ)。
 しかしながら、原告らの指摘する右事象は、以下に述べるとおり、極めて非現実
的な仮定をしない限り発生するとは考えられないものであり、現実には起こり得
ず、「技術的には起こるとは考えられない事象」である。
(ア) 外部電源の喪失に伴う一次冷却材流量の減少について
 外部電源の喪失に対して、本件原子炉施設の非常用所内電源設備は、必要な容量
を持つディーゼル発電機三台、蓄電池三組が各々独立した部屋に収納され、かつ、
独立分離した非常用母線に接続されている(乙第九号証九一ページ、乙第一六号証
八―一―四七ページ)。また、外部電源喪失時に、ディーゼル発電機三台のうち一
台が起動に失敗すると仮定したとしても、燃料の許容設計限界及び原子炉冷却材バ
ウンダリの設計条件を超えることなく原子炉を停止して冷却できる(乙第九号証一
四〇ページ、乙第一四号証の三の一六ページ、乙第一六号証八―一―七、四八、一
〇―二―一九、二〇ページ)。さらに、一次主冷却系循環ポンプは、それ自体の構
造として、万一、主モータの駆動電源が喪失した場合であっても、冷却材流量が急
激に減少することのないようポンプの回転慣性が設定されている上、非常用電源で
駆動されるポニーモータがこれを引き継ぎ、一定の炉心部流量を確保する設計とな
っている(乙第一六号証八―一―三九、八―四―六、七、一〇―二―一二ペー
ジ)。
 本件安全審査においては、以上の諸事項を確認している。したがって、本件原子
炉施設は、外部電源が万一喪失した場合においても、一次冷却材流量の減少によ
り、燃料の許容設計限界及び原子炉冷却材バウンダリの設計条件を超えるような事
態に陥る
ことは考えられない。
(イ) 緊急停止の失敗について
 本件原子炉施設において、仮に外部電源喪失その他の理由により一次冷却材の流
量が減少した場合、安全保護系は中性子束及び一次冷却材流量、原子炉容器ナトリ
ウム液位等の異常状態から多様な原子炉緊急停止信号が発せられる(乙第九号証九
六ページ、乙第一六号証八―九―二五、二六、四二ページ)。また、本件原子炉の
緊急停止を行う安全保護系及び原子炉停止系は、十分な強度を有するように設計さ
れる。安全保護系については、それを構成する回路等に、同じ機能を有するものを
二つ以上設け(多重性)、かつ、右の回路等が、同時に故障することがないように
独立性が確保されるように考慮した対策が講じられるから、安全保護系を構成する
右の回路等の一つが故障した場合にも、その安全機能は確実に維持され、原子炉停
止系に原子炉トリップ信号を発することができる(乙第九号証九五ないし九七ペー
ジ、乙第一六号証八―一―二五、六一ページ)。また、原子炉停止系は、互いに独
立した主炉停止系と後備炉停止系とから構成されており、いずれも本件原子炉の緊
急停止時に作動して炉心へ制御棒が挿入されるが、このうちいずれか一方の原子炉
停止系が作動しさえずれば本件原子炉を確実に停止することができる構造となって
いる(乙第九号証九二、九三ページ、乙第一六号証八―一―五二ないし五四ペー
ジ)。さらに、安全保護系及び原子炉停止系は、いずれも外部電源が喪失した場合
にも制御棒を自動的に炉心へ挿入して原子炉を停止できるように、いわゆるフェイ
ルセーフ機能を持たせる設計となっている(乙第九号証九六ページ、乙第一四号証
の三の一二ページ、乙第一六号証八―一―六三、八―三―一八、八―九―一六ペー
ジ)。そして、本件原子炉施設の安全保護系及び原子炉停止系は、想定されるいか
なる地震力に対してもその機能が保持できるよう耐震設計が講じられる(乙第九号
証七一ないし七九ページ、乙第一六号証八―一―一九ないし二三ページ)。
 本件安全審査においては、以上の諸事項を確認している。したがって、本件原子
炉は、外部電源が万一喪失した場合においても、緊急停止に失敗するような事態に
陥ることは考えられない。
イ 計算コードの接続条件に関する主張について
 原告らは、「SAS―3D」コードによって求められた三四チャンネルの数値を
どのように一本化して「VENUS―PM」
コードに引き継いだのかについて、審査しておらず不当であると主張する(原告ら
準備書面(三)一〇八、一〇九ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 本件安全審査における「一次冷却材流量減少時反応度抑制機能喪失事象」の解析
評価の審査においては、「SAS―3D」コードから「VENUS―PM」コード
ヘの接続について、全反応度が一ドル近傍に到達した時点において、「SAS―3
D」コードで計算された燃料温度、冷却材ボイド率、反応度の時間変化等を可能な
限り忠実に「VENUS―PM」コードへ受け渡していることを確認している(P
8調書(一)七〇丁裏、七一丁表、乙第一六号証一〇―四―二〇ページ)。
 なお、「VENUS―PM」コードは、「SAS―3D」コードのチャンネルと
対応させた計算領域を設定して計算できる。原告らが指摘するように、「SAS―
3D」コードの多数のチャンネルの計算結果を一本化して「VENUS―PM」コ
ードに入力しているのではない(P8調書(一)七一丁表ないし七二丁表)。
ウ 反応度投入率の算定に関する主張について
 原告らは、反応度投入率が一秒当たり三五ドルとされる根拠が不明であると主張
する(原告ら準備書面(三)一〇五ないし一〇六ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 すなわち、一秒当たり約三五ドルとは、一次冷却材流量減少と反応度抑制機能喪
失との重合せ事象において、最も厳しい結果を示す平衡炉心の燃焼末期に、ナトリ
ウムの沸騰、燃料被覆管の溶融移動及び燃料のスランピングが生じた時点で即発臨
界に達し、その時の反応度投入率のことである。右反応度投入率は「SAS―3
D」コードにより算出されている(乙第一六号証一〇―四―二〇ページ)。本件安
全審査においては、右反応度投入率は、その前提となる条件が厳しく設定されてい
ること、燃焼度の異なる三つの状態の炉心(初装荷炉心の燃焼初期、平衡炉心の燃
焼初期及び平衡炉心の燃焼末期)について比較して最も厳しい値を示した平衡炉心
の燃焼末期での炉心状態を用いることとしていること、使用されている計算コード
は実験結果等に照らし妥当なものであることをそれぞれ確認している(P8調書
(一)七五丁表、乙第九号証二二六ページ、乙第一四号証三の一七ページ、乙イ第
三二号証一四、一五ページ)。
エ 炉心損傷後の最大有
効仕事量に関する主張について
 原告らは、炉心損傷後の最大有効仕事量を三八〇メガジュールとする解析結果を
過小評価であると主張し、その根拠として、①一九五六年にH・A・ベーテとJ・
H・テイトが提唱した解析モデル(いわゆる「べーテ・テイトモデル」)や、②同
一事象について炉心損傷後の最大有効仕事量を九九ニメガジュールとする申請者が
行った解析の結果を指摘する(原告ら準備書面(三)一〇二ないし一〇五ページ、
準備書面(一〇)六、七、三三ないし三六ページ)。
 しかしながら、被告は、本件安全審査において、原告らの指摘する「一次冷却材
流量減少時反応度抑制機能喪失事象」に係る解析評価について、解析評価の方法及
び結果が妥当であることを確認している。(乙第九号証二一二、二二二、二二六ペ
ージ、乙第一四号証の三の一七、一八ページ、P8調書(一)六四丁表、同裏、六
九丁裏、七四丁裏ないし七五丁裏、乙ニ第四号証の一の三七ないし三九ページ、乙
第一六号証一〇―四―三、四、二〇、二一ページ、乙イ第三二号証の表五、二一ペ
ージ)。
 したがって、原告らの主張は理由がないが、念のため、右①②が原告らの主張の
根拠にならないことについて述べる。
 原告らが右主張の根拠とする①「べ―テ・テイトモデル」は、LMFBRの開発
初期に、炉心崩壊に伴うエネルギーの放出を簡便に評価するために作成された簡易
モデルである。このため、解析に当たり、単に炉心体積や熱出力の増加率のみによ
って炉心崩壊に伴うエネルギーを算定するものにすぎず、炉心内の出力や温度の分
布を考慮していない上、ドップラ効果による負の反応度フィードバック効果も無視
する等極端に保守的な仮定を置いて評価する素朴なモデルである。
 しかし、炉心崩壊に伴うエネルギーの放出量は、単に炉心体積や熱出力の増加率
のみによって的確に計算できるものではなく、炉心崩壊に伴う燃料被覆管の溶融と
移動、炉内での燃料の態様、燃料とナトリウムとの熱的な相互作用等多くの要因に
基づいて計算されるものである。したがって、右モデルは、現在の科学的知見に照
らし、不合理であるというほかはなく、この点は、右モデルの提唱者であるベーテ
自身が認めているところであり(乙イ第一五号証(和訳)五一ページ、P8調書
(一)七六丁表ないし七七丁裏)、原告ら指摘の解析モデルを採用しないことは当
然である。
 また、原告らの指摘する②申請者が行っ
た別の解析結果は、単にSAS―3Dの特性とパラメータの影響度を把握しておく
ことを目的として、「物理的に合理的な範囲」を超えて大きくパラメータを変更し
て解析したものである(乙ニ第四号証の一の三九ないし四二ページ、乙イ第三二号
証の表五、一七、二〇ページ、乙イ第一六号証の一の三―一九ページ)。したがっ
て、右解析結果は、本件原子炉施設において実際に九九二メガジュールの機械的エ
ネルギーが発生する可能性があることを示したものではない。
オ 再臨界事故に関する主張について
 原告らは、本件原子炉施設は炉容器の破壊を伴い外部環境に壊滅的被害を与える
ような再臨界事故が起こり得る設計であると主張し、その根拠として、①炉心崩壊
後に生ずる塊状の堆積物(デブリ)の再集結による再臨界事故発生の可能性(原告
ら準備書面(三)一〇七ページ)や、②R・E・ウェッブの考え方(原告ら準備書
面(三)一一五ないし一三〇ページ、準備書面(一〇)八ないし九ページ)を指摘
する。
 しかしながら、原告らの右主張は、以下に述べるとおり理由がない。
 すなわち、①について、被告は、本件安全審査において、「一次冷却材流量減少
時反応度抑制機能喪失事象」時における本件原子炉施設の挙動の推移を評価した結
果、溶融物質は原子炉容器内で分散し、最終的には各種の構造物の上に堆積層(デ
ブリベッド)となって再配置されるが、右デブリベッドは広範囲にかつ薄く堆積す
るので、未臨界状態を保つ形状が維持されることを確認している。したがって、本
件原子炉施設において、再臨界事故が発生する可能性はない(P8調書(一)七七
丁裏ないし七九丁表、乙第一六号証一〇―四―二一ページ)。
 また、②のウェッブの考え方についても、ドイツのカールスルーエ原子力研究セ
ンターが、「Webbの仮説には計算上重大な誤りと非現実的な事故条件が含まれ
ており、しかも彼のシナリオは物理条件を逸脱している(乙イ第一五号証(和訳)
五〇ページ)」と述べていることから明らかなように、その合理性には疑義がある
と言わざるを得ない。
カ ポニーモータによる崩壊熱の除去に関する主張について
 原告らは、わずか八パーセントの流量しか持たないポニーモータによる冷却では
崩壊熱が除去し得ないと主張する(原告ら準備書面(三)一一〇ないし一一三ペー
ジ)。
 しかしながら、原告らの右主張は理由がない。すなわち、本件安全審査において

、ポニーモータによる炉心の冷却を考慮せず、一次主冷却系、二次主冷却系及び補
助冷却設備における各自然循環のみによって崩壊熱を除去するとの厳しい前提条件
の下で解析評価し、その結果、右崩壊熱を除去するに十分な除熱能力が確保される
ことを確認している(P8調書(一)七二丁表ないし七四丁裏、七九丁裏ないし八
〇丁裏、乙第九号証二二一ページ、乙第一六号証一〇―四―二〇、二一ページ)。
したがって、二次主冷却系のポニーモータによる二ループの強制循環を仮定した場
合には、除熱能力が更に大きくなり、右崩壊熱は十分な余裕を持って除去できるこ
とは明らかである。
4 立地条件の適否に係る安全評価の妥当性
(一) 立地条件の適否に係る安全評価の意義
 原子炉施設は、どこに設置されるかにかかわりなく、事故を起こさないように設
計、建設、運転されなければならないものである。しかし、なお万一の事故に備
え、公衆の安全を確保することとし、そのため、原子炉施設がその安全防護施設と
の関連において、十分公衆から離れていること等の立地条件を備えていることを確
認する必要がある(乙第四号証三ページ)。
 右立地条件の適否を判断する方法としては、①単に原子炉から公衆までの距離に
よって判断する方法と、②あえて環境へ放射性物質が放出されるような事故を想定
した上、その事故による公衆の被ばく線量を計算、評価し、これを基礎に判断する
方法とが考えられる。原子炉設置許可における安全審査では、右②の方法を採用し
ている(乙第四号証四、五ページ、P6調書(一)五一丁表)。
(二) 立地条件の適否に係る安全評価についての審査事項
 安全審査においては、原子炉施設が、その安全防護施設との関連において十分に
公衆から離れているとの立地条件を具備しているかどうか、すなわち公衆との離隔
に係る安全性を確保し得るものであるかどうかを確認するため、「立地審査指針」
及び「プルトニウムに関するめやす線量について」に基づき、以下の方法により、
事象選定、評価の方法及び結果について審査する。
(1) 事象選定の妥当性
 「立地審査指針」は、立地条件の適否を判断するための解析評価において観念的
に想定すべき事故について、①現実には起こる蓋然性はないということができる
が、専ら技術的見地からみた場合には、最悪の場合には起こる可能性が絶無とはい
えないと考えられる事故である、いわゆる「重大事故」(格
納容器内放出に係わる事故及び格納容器外放出に係わる事故をそれぞれ想定す
る。)と、②右「重大事故」を超え、したがって、専ら技術的見地からみた場合に
でさえも起こるとは考えられない事故である、いわゆる「仮想事故」の二つを段階
的に想定することを求めている(乙第四号証四ページ、P6調書(一)五〇丁表、
同裏)。
 ところで、1及び2で述べた「運転時の異常な過渡変化」及び「事故」に係る各
安全評価において、想定した各事象が公衆に放射線被ばくのリスクを与えるもので
ないことを既に確認していることから、「重大事故」及び「仮想事故」として想定
する事故は、右各事象を超えるものであれば、ここで想定すべき事故の趣旨に合致
することになる。一方、立地条件の適否を判断するための安全評価は、申請に係る
原子炉施設の位置、構造及び設備がその基本設計ないし基本的設計方針において災
害防止上支障がないものであるかどうかを判断する一環として行われるものである
から、その基本設計ないし基本的設計方針で採られている安全上の対策をすべて無
効とするような想定をする必要はない(乙第四号証二七三ページ)。
(2) 評価方法の妥当性
 「重大事故」及び「仮想事故」を想定した場合の公衆の被ばく線量の評価方法が
妥当といえるためには、まず、①放射性物質の放出量や②放出形態が、原子炉施設
の基本設計ないし基本的設計方針を踏まえて、適切に設定されていることが必要で
ある。次に、③環境へ放出された放射性物質の大気中における拡散、希釈の状況
が、原子炉施設周辺における地形や気象条件等を踏まえ、適切に想定されているこ
とが必要である。そして、これらの前提として、④原子炉施設の設置される位置、
その周辺の人口等も確認しておく必要がある。
(3) 評価結果の妥当性
 立地条件の適否に係る安全評価の目的は、当該原子炉施設が、その安全防護施設
との関連において十分に公衆から離れているとの立地条件を具備しているかどうか
を念のため確認することにある。そのため、右評価結果が、以下の①ないし③の観
点から「立地審査指針」に、④の観点から「プルトニウムに関するめやす線量につ
いて」にそれぞれ適合することを確認する必要がある(乙第四号証四、五、八ペー
ジ)。
① 「重大事故」の発生を仮定した場合において、そこに人が居続けるならば、そ
の人に放射線障害を与えるかもしれないと判断される距離までの範囲が
非居住区域(公衆が原則として居住しない区域をいう。)となっているかどうか。
② 「仮想事故」の発生を仮想した場合において、何らの措置も講じなければ、そ
の範囲内にいる公衆に著しい放射線災害を与えるかもしれないと判断される距離ま
での範囲内であって、右非居住区域の外側の地帯が低人口地帯(著しい放射線災害
を与えないために、適切な措置を講じ得る環境にある地帯をいう。)となっている
かどうか。
③ 「仮想事故」の発生を仮想した場合に、全身被ばく線量の積算値(集団中の一
人一人の被ばく線量の総和)が国民遺伝線量の見地から十分受け入れられる程度に
小さな値になるような距離だけその敷地が人口密集地帯から離れているかどうか。
④ プルトニウムを燃料としている原子炉については、プルトニウムの大気放出に
よる公衆の安全を確保するため、原子炉と公衆が居住する区域との間に適当な距離
を保っているかどうか。
 そして、右各距離を判断するためのめやすの線量として、「重大事故」の場合に
関しては、甲状腺被ばくについて(小児)一五〇レム及び全身被ばくについて二五
レムを用いる(乙第四号証五ページ)。
 また、「仮想事故」の場合に関しては、①甲状腺被ばくについて(成人)三〇〇
レム及び全身被ばくについて二五レムを、②全身被ばく線量の積算値として二〇〇
万人レムをそれぞれ用いる。
 さらに、プルトニウムに関するめやす線量としては、「重大事故」、「仮想事
故」ともに骨表面に対して一二ラド、肺に対して一五ラド、肝に対して二五ラドを
それぞれ用いるものとしている(乙第四号証五、一二、一三ページ)。
(三) 本件原子炉施設の立地条件の適否に係る安全評価についての審査
 被告は、本件安全審査において、以下に述べるとおり、申請者が行った、「重大
事故」及び「仮想事故」の事象の選定、右各事象に係る評価の方法及び結果は、い
ずれも「立地審査指針」及び「プルトニウムに関するめやす線量について」に適合
することを確認し、その結果、本件原子炉施設の立地条件の適否に係る安全評価は
妥当であると判断した(乙第九号証二二七ないし二三五ページ、乙第一四号証の三
の一八ページ、乙第一六号証一〇―五―一ないし四〇ページ)。
(1) 事象選定の妥当性
 申請者が「重大事故」及び「仮想事故」として選定した事象は、以下のとおりで
ある(乙第一六号証一〇―五―二、一五ページ)。
① 「重大事故」として
、原子炉格納容器内に放射性物質が放出される事故である一次冷却材漏えい事故、
原子炉格納容器外に放射性物質が放出される事故である一次アルゴンガス漏えい事

② 「仮想事故」として、「重大事故」として想定した事象等を踏まえて、より多
くの放射性物質の放出を仮定するため、右の「重大事故」である一次冷却材漏えい
事故と同様の条件の下において、炉心内のすべての燃料が溶融、破損したと仮定し
た場合に放出される放射性物質の量に相当する量の放射性物質が原子炉格納容器内
に放出されることを仮定した事故
 被告は、本件安全審査において、右各事故が、放射性物質の放出の可能性のある
事故のうち、最大の放射性物質の放出が想定される事故であることを確認し、その
結果、右各事故は、本件原子炉施設の立地条件の適否を判断するための媒介として
観念的に想定される事故として妥当であると判断した(乙第九号証二三四ペー
ジ)。
(2) 評価方法の妥当性被告は、本件安全審査において、以下の事項を確認し、
その結果、「重大事故」及び「仮想事故」に係る評価方法は妥当であると判断した
(乙第九号証二三四ページ)。
ア 公衆の被ばく線量を計算するに当たって設定された放射性物質の放出量は、次
のとおりである。
① 一次冷却材漏えい事故については、希ガス及びよう素の原子炉容器内への放出
量を、すべての燃料被覆管が損傷するとの厳しい前提を置いて求めた値としている
(乙第一六号証一〇―五―三ないし五、三四、三五ページ)。
② 一次アルゴンガス漏えい事故については、事故時に、常温活性炭吸着塔内に貯
留されている希ガス及びよう素は、常温活性炭吸着塔収納設備内の圧力に依存して
徐々に放出され、右常温活性炭吸着塔内の全量が放出されることは考えられない
(乙第一六号証八―七―一五ないし一六ページ)にもかかわらず、貯留されている
すべての希ガス及びよう素が放出されることを仮定している(乙第一六号証一〇―
五―一三ページ)。
③ 「仮想事故」については、炉心に蓄積されている核分裂生成物の原子炉格納容
器内への放出量について、すべての燃料が破損、溶融したと仮定した場合に放出さ
れる放射性物質の量に相当する量としている(乙第一六号証一〇―五―一五ないし
一七、三八ないし四〇ページ)。
イ 公衆の被ばく線量を計算するに当たって設定された放射性物質の放出形態は、
次のとおりである。
① 一次冷却材漏えい事故に
ついては、アニュラス循環排気装置のよう素用フィルタユニットのよう素除去効率
が九九パーセント以上となるように設計される(乙第一六号証八―七―九ページ)
にもかかわらず、これよりも低く見積もる等の厳しい条件を設定して原子炉格納容
器から放出される放射性物質の放出量を多く見積もった上で、大気中への放散を仮
定している(乙第一六号証一〇―五―四、五ページ)。
② 一次アルゴンガス漏えい事故については、常温活性炭吸着塔は一次アルゴンガ
ス系収納施設の気密性の高い常温活性炭吸着塔収納設備内に収納される構造になっ
ているにもかかわらず、十分安全側に漏えい率を仮定して、原子炉補助建物内に放
出された核分裂生成物は、すべて大気中に放散されると仮定している(乙第一六号
証一〇―五―一二ページ)。
③ 「仮想事故」については、一次冷却材漏えい事故と同様の厳しい条件を設定す
るとともに、アニュラス循環排気装置の微粒子用フィルタユニットのプルトニウム
の除去効率が九九パーセント以上となるように設計される(乙第一六号証八―七―
九ページ)にもかかわらず、これよりも低く見積もる等の厳しい条件を設定して、
大気中への放散を仮定している(乙第一六号証一〇―五―一六、一七ページ)。
ウ 環境へ放出された放射性物質の大気中における拡散、希釈の状況の設定は、次
のとおりである。
① 一次冷却材漏えい事故及び「仮想事故」については、大気中に放出された希ガ
スやよう素の拡散、希釈について、風向、風速等が変動することに伴う拡散、希釈
の程度を厳しく見積もるために、三〇日間で放出されると想定されるところを、全
量がわずか一〇時間で放出されると仮定し(乙第一六号証六―二―三七、一〇―五
―七、一七ページ)、その上で、右のすべての事故について、まれにしか生じない
と思われる大気中における放射性物質の濃度を用いて評価する(乙第一六号証六―
二―一三ページ)等厳しい条件設定がされている。
② 一次アルゴンガス漏えい事故については、全量がわずか三時間で放出されると
仮定し(乙第一六号証六一二―三七、一〇―五―一三ページ)、その上で、右のす
べての事故について、まれにしか生じないと思われる大気中における放射性物質の
濃度を用いて評価する(乙第一六号証六―二―一三ページ)等厳しい条件設定がさ
れている。
エ 右想定された「重大事故」及び「仮想事故」による公衆の被ばく線量を評価す
る前
提として、原子炉施設の設置される位置、その周辺の人口等が確認されている(乙
第九号証三、八ページ、乙第一六号証六―六―一、六、七、一四、一五、一〇―五
―一八、一九、三二、三三ページ)。
(3) 評価結果の妥当性
 被告は、本件安全審査において、「重大事故」及び「仮想事故」に係る評価結果
が、以下のとおり「立地審査指針」及び「プルトニウムめやす線量指針」に適合す
ることを確認し、その結果、本件原子炉施設の立地条件の適否に係る安全評価の結
果はいずれも妥当であると判断した(乙第九号証二三四、二三五、乙第一四号証の
三の一八ページ)。
ア 「重大事故」の評価結果
 一次冷却材漏えい事故における本件原子炉敷地境界外の被ばく線量の最大値は、
甲状腺被ばくについては(小児)約一・ハレム、全身被ばくについては約〇・一五
レムとなる。
 一次アルゴンガス漏えい事故における本件原子炉敷地境界外の被ばく線量の最大
値は、甲状腺被ばくについては(小児)約〇・四九レム、全身被ばくについては約
〇・二五レムとなる(乙第九号証二三〇、二三一ページ、乙第一四号証の三の一八
ページ、乙第一六号証一〇―五―一一、一四ページ)。
 したがって、(1)で述べた二つの「重大事故」のいずれの場合においても、本
件原子炉施設の敷地境界外における被ばく線量の最大値は、めやす線量である甲状
腺被ばく(小児)一五〇レム及び全身被ばく二五レムに比べてそれぞれ十分小さ
く、非居住区域であるべき範囲は右敷地内に含まれている。
 なお、「重大事故」として想定した右各事故ではいずれもプルトニウムが環境に
放出されることはない(乙第九号証二二九、二三一ページ)。
イ 「仮想事故」の評価結果
 本件原子炉施設の敷地境界外における被ばく線量の最大値は、①甲状腺被ばくに
ついては(成人)約四・五レム、全身被ばくについては約一・四レム、②全身被ば
く線量の積算値は、昭和五〇年の人口に対しては約一三万人レム、西暦二〇二五年
の推定人口に対しては約一七万人レム、また、③プルトニウムの大気中への放出に
伴う被ばく線量籾は、敷地境界外で最大となる場所において骨表面、肺及び肝のそ
れぞれに対し、約〇・九九ラド、約〇・一九ラド及び約〇・二一ラドとなる(乙第
九号証二三三ページ、乙第一四号証の三の一八ページ、乙第一六号証一〇―五―一
九、二〇ページ))。
 したがって、(1)で述べた「仮想事故」の場合において
も、①本件原子炉施設の敷地境界外における被ばく線量の最大値は、めやす線量で
ある甲状腺被ばく(成人)三〇〇レム及び全身被ばく二五レムに比べてそれぞれ十
分小さく、低人口地帯であるべき範囲は右敷地内に含まれている。さらに、②全身
被ばく線量の積算値も、めやす線量である二〇〇万人レムに比べて十分小さい。③
プルトニウムの大気中への放出に伴う被ばく線量も、これに関するめやす線量であ
る骨表面に対して一二ラド、肺に対して一五ラド、肝に対して二五ラドに比べて十
分小さいものである(乙第九号証二三四ページ、乙第一四号証の三の一八ペー
ジ)。
(四) 原告らの主張に対する反論
 原告らは、立地条件の適否に係る安全評価についての安全審査には種々の重大か
つ明白な瑕疵があると主張する。
 しかしながら、本件安全審査においては、(3)で述べたとおり、本件原子炉施
設の立地条件の適否に係る安全評価に際して想定されている事象、その評価方法及
び評価結果がいずれも妥当であることを確認しており、原告らの右主張はいずれも
失当である。
 以下、念のため、原告らの右主張に理由のないことを個別に述べる。
(1) 「めやす線量」に関する主張について
 原告らは、本件原子炉施設の立地条件の適否に係る安全評価に際しての判断基準
である「めやす線量」は、「許容被ばく線量」より更に極めて大きな線量とされて
おり、不当であると主張する(訴状一四七ないし一五〇ページ)。
 しかしながら、「めやす線量」は、あくまでも原子炉施設と公衆との離隔に係る
立地条件の適否を判断する際のめやすとしての線量であって、公衆にその線量値ま
での被ばくを許容するものとしての許容被ばく線量年間〇・五レムとは本質的にそ
の意義を異にするものである。したがって、原告らの右主張は、「めやす線量」の
意義を正解しないものであって、失当である。
(2) 事象選定に関する主張について
 原告らは、本件原子炉施設の立地条件の適否に係る安全評価に際して想定されて
いる事象の選定が恣意的であると主張し、その根拠として、TMI二号炉事故で
は、仮想事故を上回る放射能放出が現実に起こったことを指摘する(訴状四二六な
いし四二七ページ)。
 しかしながら、立地条件の適否を判断するための安全評価は、安全審査におい
て、申請に係る原子炉施設の位置、構造及び設備が、その基本設計ないし基本的設
計方針において、災害防止上支障がない
ものであるか否かを判断する一環として、念には念を入れて公衆との離隔を確認す
るために行われるものであるから、その基本設計ないし基本的設計方針で採られて
いる安全上の対策をすべて無効とするような想定をする必要はない。原告らの指摘
するTMI事故は、原子炉施設の運転管理に起因して発生したものであるから、右
の趣旨で行う立地条件の評価において、右事故の影響を考慮する必要がないことは
明らかである。したがって、原告らの右主張は理由がない。
 なお、TMI事故による周辺公衆の被ばく線量は、個人平均で約一ミリレム
(〇・〇一ミリシーベルト)であると推定される(甲イ第一五〇号証三〇三ペー
ジ)ことから、右事故により周辺公衆が過大な被ばくを受けた事実はない。
(3) 評価方法に関する主張について
 原告らは、本件原子炉施設の立地条件の適否に係る安全評価について、想定した
事象の評価方法が恣意的であると主張し、その根拠として、放出放射性物質の量、
放出形態、気象条件、人口条件等の根拠が不明確であることを指摘する(訴状四二
七ページ)。
 しかしながら、本件安全審査においては、前述したとおり、①「重大))事故」
及び「仮想事故」について、(a)放出放射性物質の量、(b)放出形態、(c)
拡散、希釈の状況等について厳しい評価方法を設定していることを確認している。
また、②「仮想事故」については、昭和五〇年の国勢調査結果と西暦二〇二五年の
人口の推定値が、人口条件として用いられているソ)と(乙第一六号証一〇―五―
一八、一九ページ)を確認している。したがって、原告らの右主張は理由がない。
第五章 本件許可処分後に得られた知見と本件安全審査
 平成七年一二月に発生した本件事故と本件安全審査との関係については既に準備
書面(七)で述べたとおりである。
 本章においては、本件事故を契機とする事故原因の調査過程において新たに得ら
れた、①界面反応による床ライナの腐食と、②ナトリウムの燃焼による床ライナの
温度上昇という二つの知見を考慮しても、本件安全審査の合理性は何ら左右される
ものでないことについて、改めて詳細に述べる。
第一 本件安全審査における床ライナに係る審査
 本件事故の原因調査の過程で得られた右の二つの知見は、いずれも床ライナの健
全性に影響を与える可能性のある知見である。そこで、まず、本件安全審査におけ
る床ライナの審査事項について明らかにし
ておく。
 被告は、本件安全審査において、床ライナに関する審査として、万一、本件原子
炉施設の冷却材であるナトリウムが漏えいした場合でも、鋼製の床ライナを設置す
ることによって、漏えいナトリウムと床コンクリートとの直接接触の防止を図ると
いう申請者の基本的設計方針を妥当と判断した(乙イ第四五号証二ページ、乙第九
号証六八、七〇ページ、乙第一四号証の三の一〇ページ、乙第一六号証八―一―
六、一〇―三―三四ページ)。
 そして、本件安全審査において床ライナについて具体的に確認した事項は、①鋼
製の床ライナの設置により漏えいナトリウムと床コンクリートとの直接接触を防止
するという本件原子炉施設の設計方針が、「評価の考え方」においても求められる
ナトリウムに対する設計上の考慮(乙第四号証四九〇、四九一ページ)に照らし、
妥当であること、②漏えいナトリウムの燃焼に伴って床ライナの温度が上昇しても
(ナトリウムが床ライナ上で燃焼した場合、床ライナと火炎との間にはナトリウム
が存在するから、床ライナの温度上昇はナトリウムの沸点(摂氏八八〇度)以上と
なることは考え難い。)、床ライナの材質とされている鋼の融点(摂氏約一五〇〇
度)からみて、右温度上昇に対して熱的にも機械強度的にも十分余裕のある床ライ
ナを設置し得ること(換言すれば、鋼製の床ライナの設置により漏えいナトリウム
と床コンクリートとの直接接触を防止するという本件原子炉施設の設計方針に技術
的な困難はなく、実現可能であるソ)との二点である(乙イ第四五号証二ページ、
P1調書一六、二八、二九ページ)。
第二 界面反応による腐食に係る知見と本件安全審査の合理性
一 界面反応による腐食に係る知見の概要
1 本件事故、燃焼実験Ⅰ及び燃焼実験Ⅱにおける床ライナの損傷の程度及びその
状況は、以下のとおりである(乙イ第四一号証四、五ページ、乙イ第四五号証四ペ
ージ)。
① 本件事故
 本件事故においては、三時間四〇分程度継続したナトリウム漏えいに対して、ラ
イナに局所的に〇・五ないし一・五ミリメートル程度の板厚減少が観察され、その
上にはナトリウム化合物が山状に堆積していた。
② 燃焼実験Ⅰ
 燃焼実験Ⅰでは、一時間三〇分程度継続したナトリウム漏えいに対して、ライナ
を模擬した鋼製の受け皿に最大約一ミリメートル程度の減肉が認められ、本件事故
時と同様、その上にはナトリウム化合物が山状に堆積していた。
③ 燃焼実験Ⅱ
 燃焼実験Ⅱでは、三時間四〇分程度継続したナトリウム漏えいに対してライナに
五箇所の貫通孔が生じ、ライナ上には溶融凝固した水酸化ナトリウムが薄い平板状
に広がっていた。
2 以上のとおり、燃焼実験Ⅱでは、本件事故や燃焼実験Ⅰとは異なる非常に速い
腐食が発生した。これは、右実験結果等における堆積物の形状、組成に違いがある
ことからみて、燃焼実験(一)は、本件事故及び燃焼実験Ⅰとは異なる腐食環境に
あったと考えられる。そして、この腐食環境の違いを生んだ原因として、燃焼実験
Ⅱでは、①記録用のカメラの冷却等のために、実験セル内に外部の空気を吸入して
いたこと、②実験セルの容積が本件事故があった二次主冷却系配管室(以下、「配
管室」という。)と比べて一二分の一と小さい上、コンクリート壁がナトリウム燃
焼部に接近していたため、コンクリート壁表面から多量の水分が放出されたことが
挙げられる(乙イ第四五号証四、五ページ、乙イ第四一号証五ページ)。このよう
な腐食環境の違いから、燃焼実験(一)では、界面反応による腐食が生じ、これが
非常に速く進行したものと推定される(乙イ第四五号証五ページ)。
 したがって、燃焼実験Ⅱと環境条件を大きく異にする本件原子炉施設において
は、燃焼実験Ⅱで観察された非常に速い速度で進行する腐食が実際に発生する可能
性は、極めて小さいと考えられ(乙イ第四五号証四、五ページ、P1調書七三、七
四、一六五ページ、乙ニ第五号証の二の三九ないし四四ページ)、このことは、現
に本件事故の結果では、板厚六ミリメートルのライナに前記のとおり最大一・五ミ
リメートルの深さの腐食が生じたにとどまっていることからも明らかである。
3 しかしながら、現時点では、界面反応による腐食に関しては、ナトリウム燃焼
による鉄の腐食機構の動的な過程と、それに及ぼす温度、物質の移動等の因子の影
響について十分解明されているとはいえない状況にあり、本件原子炉施設におい
て、どのような条件下であれば、燃焼実験Ⅱで観察された非常に速い速度の腐食が
発生するのかについて十分明らかではない(乙イ第四一号証一三、二〇ページ、P
1調書一六五ページ)。
 したがって、本件原子炉施設において、万一、右の腐食が発生したと仮定した場
合の床ライナの減肉量を検討しておく必要がある。
 そこで、腐食の観点からは、最も速い腐食速度に基づき、腐食量を予測すれば
、最も厳しい結果が得られることになる。燃焼実験Ⅱの結果は、本件事故、燃焼実
験Ⅰと比較して腐食速度が最も速いばかりでなくこれを超える腐食速度が申請者の
行った腐食試験等では観測されていないことからみても、現段階では、最も速い腐
食速度であるということができる(乙イ第四二号証の一の三ページ)。
 申請者は、右腐食速度に基づき、本件原子炉施設において、二次冷却材漏えい事
故時のナトリウム燃焼解析を行った。その結果によると、漏えい率を一時間当たり
〇・一及び〇・〇一トンとし、ループ内のナトリウムのドレン町が完了するまで八
〇分を要するとの解析条件を設定した場合の床ラィナの減肉量は、中央値で三・二
ないし三・三ミリメートル、上限値は、五・二ないし五・五ミリメートルとされて
いる(乙イ第二六号証三・一・三―七四ページ、乙イ第四五号証五ページ)。
二 界面反応による腐食に係る知見と本件安全審査の合理性
 前述したナトリウム燃焼解析の結果によれば、万一、本件原子炉施設で燃焼実験
Ⅱで観察された腐食が発生したと仮定した場合、床ライナの減肉量は、最大で五・
二ないし五・五ミリメートルになり得る。
 しかしながら、この程度の腐食であれば、鋼製のライナにより、漏えいナトリウ
ムとコンクリートとの直接接触を防止するという本件安全審査において確認した本
件原子炉施設の設計方針の合理性は、何ら左右されるものではない。
 すなわち、燃焼実験Ⅱのような界面反応による腐食が起こるとしても、この腐食
によってライナの肉厚が減少する程度(減肉量)は、ライナの金属が高温に保持さ
れている時間にほぼ比例し、また、その腐食速度は、ライナの温度が上昇するに伴
い指数関数的に増大することが明らかになっている(乙イ第四二号証の一の三、一
七ページ)。そうすると、界面反応による腐食に対しては、減肉量に相応した板厚
等を採用するなどの具体的設計段階における対処によってライナの機械的健全性を
維持することは十分可能である。してみると、界面反応による腐食を考慮に入れて
も、鋼製の床ライナを設置することによりナトリウムとコンクリートとの直接接触
を防止するという本件原子炉施設の基本的設計方針の実現可能性が否定されること
はない(乙イ第四五号証六ページ、P1調書一一四ないし一一七、一六六、一六七
ページ)。
 以上のとおりであるから、本件原子炉施設の基本的設計方針を妥当と判断した本
件安全審査の合理性は、界面反応による腐食に係る知見を考慮しても、何ら左右さ
れない(乙イ第四二号証の二の二ページ、乙イ第四五号証五、六ページ、P1調書
一六六、一六八、一六九ページ)。
第三 床ライナの温度上昇に係る知見と本件安全審査の合理性
一 床ライナの温度上昇に係る知見の概要
1 床ライナの最高温度は、本件事故では摂氏七〇〇ないし七五〇度、燃焼実験Ⅰ
では摂氏七七〇度、燃焼実験Ⅱでは摂氏八五〇度と推定されている。これらは、い
ずれも漏えいナトリウムが床ライナ全面に広がった状況ではなく、床ライナの一部
に局所的に堆積した状態で観測されている(乙イ第四一号証四、五ページ)。
2 また、申請者は、本件事故後に、二次系漏えいナトリウムの影響評価として床
ライナの温度上昇に着目した解析を行っている。この解析は、スプレイ燃焼とプー
ル燃焼とを同時に解析できるコードを用い、本件原子炉施設に実際に設置されてい
る板厚約六ミリメートルの床ライナについて、ライナの温度上昇に対し厳しい評価
となるような解析条件を設定し、漏えい率をパラメータとして解析を行ったもので
ある。その結果によると、床ライナの最高温度は、中小規模の漏えいでは、配管室
で摂氏約八八〇度、過熱器室で摂氏約八五〇度、大規模の漏えいでは、配管室で摂
氏約六二〇度、過熱器室で摂氏約七五〇度となっている(乙イ第四一号証一一、一
二ページ、参―二〇ページ)。
二 床ライナの温度上昇に係る知見と本件安全審査の合理性
1 前述したとおり、床ライナの温度に着目した解析によると、二次系ナトリウム
漏えい時の床ライナの最高温度は、いずれも、本件原子炉設置許可申請書添付書類
に記載された床ライナの設計温度摂氏五〇〇度(乙第一六号証一〇―三―三六ペー
ジ)を上回ることになる。しかし、ここでいう設計温度とは、申請者が、床ライナ
の具体的設計を行うに際して、床ライナが設計温度まで全面一様に過熱されても、
熱膨張によって床ライナが設置されている部屋の壁と干渉しないように設計するた
めに設定したものである(乙イ第四五号証六、七ページ、乙イ第四一号証一六ペー
ジ)。
2 そもそも、本件安全審査においては、鋼製の床ライナの設置によって漏えいナ
トリウムと床コンクリートとの直接接触の防止を図るという本件原子炉施設の基本
的設計方針が審査の対象とされているのであり、床ライナ自体の具体的設計の当否
は審査の対象と
されていない(乙イ第四五号証二、七ページ、P1調書二八、二九ページ)。した
がって、床ライナの設計温度の妥当性についても特段審査されておらず(乙イ第四
五号証七ページ、P1調書二九、三〇、三二ないし三六ページ)、右のような意味
での床ライナの設計温度は、詳細設計以降にゆだねられた問題である。
 なお、本件安全審査においては二次冷却材漏えい事故評価に関して、ナトリウム
漏えい時の床ライナの温度が設計温度を下回ることを確認している。しかし、これ
は、第四章第四の二2(二)(1)イにおいて述べたとおり、崩壊熱・残留熱除去
系の系統分離を確認するために、系統分離維持の観点から最も厳しい条件となるよ
うに、内圧の上昇を最大限に評価する解析モデルを設定した際に、この条件下にお
ける床ライナの温度が設計温度を下回ることを念のため確認したものにとどまり
(乙イ第一二号証二五、二六ページ、乙イ第四五号証七ページ、P1調書一六三、
一六四ページ)、床ライナの設計温度自体の妥当性を審査し確認したものでないこ
とは明らかである。
3 以上のとおり、床ライナの温度上昇に対し厳しい評価となるような解析条件を
設定して申請者が行った解析の結果、二次系ナトリウムの漏えい時の床ライナの最
高温度が、前記の設計温度を上回ることが判明したが、床ライナの設計温度は、そ
もそも基本設計ではなく、詳細設計以降の問題であるから、右の新知見によって
も、本件原子炉施設の基本設計ないし基本的設計方針を審査の対象とする本件安全
審査の合理性は何ら左右されるものではない(乙イ第四五号証七ページ、乙イ第四
一号証一七ページ)。
4 なお、現に本件原子炉施設に設置された床ライナについては、以下のとおり、
申請者がした解析評価によって、その機械的健全性が損なわれないことが確認され
ている(準備書面(七)二八ないし三〇ページ)。
(一) 申請者は、本件事故後、二次冷却材を保有する系統、機器を収納する部屋
の床ライナの機械的健全性について解析と実験を行い、その結果に基づいて評価を
行った。
 右解析の結果によれば、本件原子炉施設に実際に設置されているライナは、ま
ず、漏えいナトリウムが床ライナ全面に広がった場合については、二次主冷却系配
管室(A)北側では摂氏約六三〇度、二次主冷却系配管室(C)北側では摂氏七〇
〇度程度、その他の二次主冷却系配管室及び過熱器室では摂氏約九五〇度ないしは
それ以上になっても、熱膨張により壁と干渉することはなく、機械的に破損するお
それはない。
 また、右解析結果や実験結果等によれば、漏えいナトリウムが床ライナの一部に
局所的に滞留した場合についても、摂氏九〇〇度ないし九五〇度までは、床ライナ
それ自体が損傷することはない。
(二) 原子力安全委員会も、第二次報告書において、申請者の右評価結果を確認
している(乙イ第四一号証一二、一三ページ)。
第四 まとめ
 以上のとおり、本件安全審査において確認した、鋼製の床ライナの設置によって
漏えいナトリウムとコンクリートとの直接接触を防止するという基本設計ないし基
本的設計方針は、本件事故を契機に得られた、①界面反応による腐食、②漏えいナ
トリウムの燃焼に伴うライナの温度上昇という二つの知見を考慮に入れても、いさ
さかもその合理性が損なわれるものではない。
第五 原告らの主張に対する反論
一 界面反応による腐食に関する主張について
 原告らは、燃焼実験Ⅱにおいて床ライナが損傷(貫通)したことを指摘し、本件
原子炉施設においても条件次第によって同様の事態が発生し、その際には、漏えい
ナトリウムによって床コンクリートが破壊されるとともに、水素爆発が柵発生し、
本件原子炉施設の安全性は維持され得なくなるとして、こうした事態を考慮してい
ない本件許可処分は無効であると主張する(原告ら準備書面(六)四八ないし五四
ページ、準備書面(七)一〇丁裏、一一丁表、P16調書(一)一一四ないし一一
六ページ)。
 しかしながら、原告らの右主張は、以下に述べるとおり、失当である。すなわ
ち、前記第二の二で述べたとおり、二次系冷却材の漏えいにより、仮に燃焼実験Ⅱ
のような界面反応による腐食が床ライナに起こるとしても、この腐食に対しても減
肉量に相応した板厚等の具体的設計が十分可能であり、これにより要求される直接
接触防止機能を果たすことが可能である。そうすると、本件安全審査で確認した、
鋼製のライナによって漏えいナトリウムとコンクリートとの直接接触の防止を図る
という本件原子炉施設の基本設計ないし基本的設計方針の合理性は、界面反応によ
る腐食という知見を考慮しても、何ら左右されるものではない。
 原子力安全委員会も、右知見を考慮に入れても、ライナによってナトリウムとコ
ンクリートとの直接接触を防止するという、設置許可時の安全審査で確認された基
本設計ないし基本的
設計方針そのものの妥当性が失われるものではないとの見解を示している(乙イ第
四二号証の二の二ページ)。
 なお、付言すれば、前記第二の一で述べたとおり、燃焼実験Ⅱの腐食環境と本件
事故の腐食環境には大きな相違があり(P8調書(四)一〇丁裏ないし一一丁
裏)、今後解明すべき点はあるものの、本件原子炉施設において界面反応による腐
食が発生する可能性は低い(P1調書七三、七四、一六五ページ、乙イ第四五号証
四、五ページ、乙ニ第五号証の二の三九ないし四四ページ)。また、万一、本件原
子炉施設において、右腐食が発生したとしても、床ライナが損傷に至ることは考え
られない(乙ニ第五号証の二の四八ないし五一ページ参照)。したがって、原告ら
の指摘するごとき水素爆発なる事態は、本件原子炉施設において、起こり得ない。
二 床ライナの腐食に係る知見と「評価の考え方」に関する主張について
 原告らは、P1証人の「本件事故によって起こったような激しい腐食に対する考
慮を指針に付け加えることを検討している」旨の証言部分(P1調書一三六、一三
七ページ)を指摘して、「評価の考え方」は界面反応による腐食について言及して
おらず、不合理な審査基準であると主張する。
 しかしながら、原告らの右主張は、P1証人の右証言の趣旨を曲解するものであ
って、失当である。
 すなわち、この点に関するP1証人の証言全体を概観するに、原告ら代理人から
の「評価の考え方自体に、本件ナトリウム漏えい事故を受けて、不備があったか」
との質問に対し、P1証人は、「これは、ナトリウムによる鉄の腐食というのは、
一言書いてあるんでございますが、(中略)そこで言っている腐食というのは、通
常こういう工業機器でよく見られる腐食でございまして、寿命期間中にわたって、
例えば零点何といったような程度のものを指しております。したがって、一時間に
何といったような、こういうものすごい激しい腐食までは、とてもそれでは読めな
かろうと。ですから、そういうことに対する考慮も含めていかなければならないだ
ろうと。これは現在検討中でございますが、それも含めまして、見直しをしており
ます。」と証言し、更に「ああいう激しい腐食については何ら言及しておりません
ので、その部分は付け加える必要があるのではないかということで検討しておりま
す。」「私どもの見解では、そこに記載されているのでは、燃焼実験(一)等で観

された、ああいう腐食まで読むのは無理ではないかという見解なんです。」「直さ
なければならないのではないかということで、現在検討中である」(P1調書一三
六ないし一三九ページ)と証書している。
 してみると、原告らの指摘するP1証人の前記証言部分は、床ライナの腐食に係
る知見が重要な知見であることにかんがみ、安全審査の基準として右知見を付け加
えることを原子力安全委員会として検討していることを述べたに止まり、これを考
慮していない現在の「評価の考え方」の審査基準自体が不合理であることを述べた
ものでないことは明らかである。
 かえって、P1証人は、界面反応による腐食と本件安全審査の合理性について、
「ライナによって接触を防止するというその設計方針が否定されないかぎりは、そ
の合理性がある」「それを回避する方法はあり得るということでごさいますから、
そうであれば、今申しました接触防止という設計方針は合理性を失っていない、し
たがって、それをよしとした審査の結論も合理性を失っているとは思いません。」
「板厚を増加するというのも一つの方策でございましょうし、あるいは、そのほか
にもいろいろ方策はあるかもしれません。技術的には十分可能だと思います。」
「そういう方策を採ることは可能であるということは、ワーキンググループの第三
次報告書で言われているところでございます。」「燃焼実験Ⅱ等で観測された最大
の腐食速度で想定しても、ライナの損傷を防止する方策は、少なくとも可能である
ということがもう既に示されてございますので、それを踏まえれば、全体としての
合理性も失われていないというふうに私は考えております。」と証言している(P
1調書一六六ないし一六九ページ)。
 以上のP1証言によれば、界面反応による腐食に対しては、床ライナの減肉量に
相応した板厚等を採用するなどの具体的設計によってライナの健全性を維持するこ
とは十分可能であるから、界面反応による腐食という知見を考慮しても、本件安全
審査において確認した本件原子炉施設の基本設計ないし基本的設計方針の合理性
は、何ら左右されるものではないことは明らかである(乙イ第四二号証の二の二ペ
ージ、乙イ第四五号証五、六ページも同旨である。)。したがって、安全審査にお
ける審査基準である「評価の考え方」に界面反応による腐食という知見が含まれて
いないとしても、何ら合理性を欠くことにはならない。

 床ライナの腐食に係る知見と本件安全審査の合理性に関する主張について
 原告らは、P1証人の「現在の知見に基づいて審査すれば、腐食についての十分
な説明がなければ許可は下りない」旨の証言部分(P1調書一三三ページ)を指摘
して、界面反応による腐食抑制対策を施していない現存の施設に対してした本件許
可処分は、現在の通説的な科学技術知識によれば重大かつ明白な瑕疵が存在すると
主張する。
 しかしながら、原告らの右主張は、P1証言を曲解するものであって、その前提
において失当である。
 すなわち、この点に関するP1証人の証言全体を概観するに、原告ら代理人の
「腐食抑制対策も何も施していないもんじゅの許可申請が上がってきた場合、原子
力安全委員会として現在の科学技術水準、知見で妥当であるという結論が出せるの
か」という質問に対して、P1証人は、「これは、最新の知見に基づいて審査を行
うというのが基本原則でございますから、現在の知見に基づいてやれば、腐食につ
いて少なくとも何らかの説明を求めると、どういう対策を採って、どこまで抑制で
きますかという説明は、当然求めることになろうと思います。」と証言し、次に、
原告ら代理人からの「説明ができなければ、妥当性を欠くことになりますね。」と
いう質問に対し、「これは、十分な説明がなければ、いつまでたっても許可が下り
ないということになります。」と証言し、更に原告ら代理人の「たなざらしです
か。今のような状態が続くんですか。」との質問に対し、「いや、今はまだ何も、
申請も何も出ておりませんから、私どももそういう意味での審査はやっておりませ
んから、そういうものが出てきたときにということでございます。許可が下りない
と、あるいは、認可がされないと、こういうことになります。」(P1調書一三
三、一三四ページ)と証言したものである。
 以上のP1証人の証言全体からみて、P1証人は、本件許可処分後に界面反応に
よる腐食という知見が明らかとなった以上、今後のLMFBRに対する安全規制
(その規制は、設置許可に限定されていない。)では、右知見を取り入れた審査を
行うことになり、その際に、腐食抑制対策を含めた腐食に関する説明が求められる
であろうという一般的な見解を述べたに止まる。P1証人の右証言部分は、本件安
全審査の合理性について述べたものでなく、まして、本件安全審査が現在の科学技
術水準に照らし不合理
であることを述べたものでないことは明らかである。
第六章 結論
 本件許可処分は、第二章で述べたとおり、原子炉等規制法二三条、二四条にのっ
とって行われたものであって、手続的に適法であり、また、第三章及び第四章で述
べたとおり、同法二四条一項の三号(技術的能力に係る要件に限る。)と四号の各
要件に適合するものであって、実体的にも適法である。さらに、第五章で述べたと
おり、本件許可処分後に得られた知見に照らしても、本件安全審査の合理性は損な
われない。
 以上のとおり、本件許可処分は適法であって、何らの瑕疵もないから、その無効
確認を求める本件訴訟に理由がないことは明らかである。よって、本件訴訟は、速
やかに棄却されるべきである。
 〔被告の主張〕
第一章 序論
第一 はじめに
 原告が本件もんじゅ訴訟を提起したのは一九八五年九月二六日であった。第一回
口頭弁論は翌八六年四月二五日に開かれ、原告・P12が「私たちには後世に対す
る責任がある。科学者よ、奢るなかれ」と訴えた。
 それ以来、原告は一貫して、本件もんじゅにおいては、内包するプルトニウムを
はじめとする放射能の危険性を前提として、①化学的活性の強いナトリウムを使用
しているので、配管破断などによるナトリウム漏洩火災事故が起こりやすいこと、
②蒸気発生器の伝熱管破断が起きるとナトリウムと水の爆発的反応が起きて蒸気発
生器が破壊されその影響は一次系に及ぶこと、③出力暴走事故がチェルノブイリ原
発よりも起こりやすく、炉心崩壊事故に至ること、④直下型等の大地震が起こった
場合、ナトリウム配管が破断してナトリウムが漏洩したり、原子炉施設が倒壊して
放射性物質が外部に放出される危険性があることを主張してきた。
 また、本件もんじゅは再処理工場と並んでプルトニウム・リサイクルの要であ
り、発電・再処理・輸送等のあらゆる段階で放射性物質が環境中に放出される危険
性があることも指摘してきた。
第二 もんじゅは研究開発段階の原子炉である
一 もんじゅはプルトニウムの増殖を目的とする
 「もんじゅ」はプルトニウムとウランの混合酸化物を燃料とする液体ナトリウム
冷却の発電設備を備えた高速増殖原型炉で熱出力は七一・四万キロワツト、電気出
力は二八万キロワットである。現在、わが国で実用化されている発電用原子炉は、
三~四パーセントの低濃縮ウランを燃料とし、軽水(普通の水)を減速材及び冷却
材とし、速度の
遅い熱中性子(秒速約二~三キロメートル)を核分裂反応に使用する「軽水炉」で
ある。軽水炉においても核反応によって核分裂性のプルトニウムは生成されるが、
消費した量よりも少なく、いわゆる増殖機能を持っていない。これに対し「高速増
殖炉」は、核分裂の連鎖反応が主として高速中性子(秒速約二万キロメートル)に
より行われるものであって、核分裂性物質のうちプルトニウムニ三九等の一定の物
質について当該連鎖反応に伴い生成する量のその消滅する量に対する比率が一を越
えるものである。「高速」中性子を用いて「増殖」を目的とするから高速増殖炉と
呼ばれている。
 動力炉による発電の実用化に向けての開発段階としては、一般的に、①実験炉、
②原型炉、③実証炉、④実用炉の各段階を踏んで開発する方式が取られている。わ
が国においては、①高速増殖実験炉としては発電設備を持たない原子炉である「常
陽」があり、②高速増殖原型炉としては、発電設備を持つ本件「もんじゅ」があ
る。それ以降は、③経済性を実証することを目的とした高速増殖実証炉を経て、④
高速増殖実用炉に至るものとされていた。
 従って、もんじゅは試験開発段階の高速増殖原型炉である。
二 もんじゅ発電プラント計画の概要
 もんじゅの主要系統図は図1―1―1のとおりである
 原子炉は、炉心及び炉内構造物を円筒状の鋼製容器に納めたものであり、定格出
力時の一次冷却材ナトリウムの温度は、原子炉容器入口で三九七℃、出口で五二九
℃である。炉心に装荷される炉心燃料は核分裂性のプルトニウムが約一六~一二パ
ーセントも富化されたプルトニウム・ウラン混合酸化物である。これらをとりまく
ブランケットは二酸化ウラン(劣化ウラン)で構成され、炉心は全体としてほぼ正
六角形の断面形状をしている。原子炉停止系は制御棒のみであり、軽水炉における
ボロン水注入等原理の異なる停止系を有してはいない。
 炉心で加熱された一次冷却材ナトリウムは配管を通って中間熱交換器に至り、そ
こで細い伝熱管を隔てて二次冷却材ナトリウムに熱を伝達し、炉心に戻る。一次主
冷却系はABCの三系統からなり、各系統はそれぞれ、中間熱交換器、一次主循環
ポンプ、主配管及び弁等で構成されている。
 二次冷却材ナトリウムは、中間熱交換器において細い伝熱管を隔てて一次冷却材
ナトリウムから熱を受け取り、その熱を蒸気発生器において、細い伝熱管を隔てて
水に伝達して水を蒸
気に変え、更に過熱する機能を有する。二次冷却材ナトリウムは中間熱交換器に定
格出力時には三二五℃で流入し、加熱されて五〇五℃で流出する。二次主冷却系は
一次冷却系のABC三系統に対応して三系統に分かれており、各系統はそれぞれ、
二次主循環ポンプ、蒸気発生器、主配管及び弁等で構成されている。ナトリウム漏
洩事故を起こしたのは、このうちのCループの二次主冷却系配管である。
 蒸気発生器は、蒸発器と過熱器によって構成される。加圧された水は、蒸発器に
おいて、細い伝熱管を隔てて二次冷却材ナトリウムから熱を受け取って蒸気にな
り、過熱器において、細い伝熱管を隔てて更に二次冷却材ナトリウムから熱を受け
取って、約一二七気圧、四八三℃の高圧過熱蒸気となってタービン室に至ってター
ビンを回転させて発電し、復水器で冷却されて再び水となって蒸発器に至る構造と
なっている。
第三 もんじゅの危険性の根源―放射能
 原子力発電所の危険性の根源は、原子炉に人体に有害な大量の放射性物質を内包
することにある。平常時でも一定程度環境中に放出し、事故時にはその多くが環境
中に飛び出してくる。事故が一旦発生すれば、放射能汚染は全世界的な規模に広が
り、その被害は未来にも及ぶことはチェルノブイリ事故が如実に示している。放射
線の人体に与える影響には、被曝した個人へ与える急性障害・晩発性障害の他に、
その子孫に与える遺伝的障害も存在するのである。
 もんじゅは、プルトニウムとウランの混合酸化物を燃料として使用する。プルト
ニウムの量は一・四トンであり、そのうち燃えるプルトニウム(プルトニウム二三
九と二四一)は一トンである。これは長崎に投下された原子爆弾の五〇個以上の量
に相当する。
 酸化プルトニウムは直径一ミクロン程度の微粒子となって空気中に漂いやすく、
体内に取り込まれやすい。一旦体内に取り込まれると、肺や骨、肝臓などの組織に
沈着し、破壊力の強いアルファ線を出して周辺組織を被曝する。そのため、肺ガン
や骨腫瘍、肝臓ガン、白血病の原因となり、生殖腺に達して遺伝障害の原因にな
る。
 使用済核燃料に含まれるプルトニウムの僅か一グラムは、公衆一八億人分の年摂
取限度となる程の非常に強い毒性をもっている。一旦事故が起こって炉内にあるプ
ルトニウムの一パーセントが環境中に放出されたと仮定すると近隣市町村は壊滅的
な打撃をうけ二〇万人がガンで死亡するという、取り返し
のつかない甚大な被害が発生する。
第四 ナトリウム漏洩火災の危険性
一 ナトリウムは化学的活性が強い
1 ナトリウムと空気中の酸素は、次のような反応によって激しく燃焼し、熱を出
す。
2Na(ナトリウム)+1/202(酸素) Na2O(酸化ナトリウム)
2Na(ナトリウム)+O2(酸素) Na2O2(過酸化ナトリウム)
 ナトリウムが放射化する一次系ではナトリウム漏洩は直接放射性物質が環境中へ
放出されることを意味するので機器室や配管室は酸素を少なくした窒素雰囲気とさ
れているが、二次系では空気のままであるから漏出した場合にナトリウム火災が発
生することになる。2 ナトリウムは水と触れると次のように爆発的に反応して水
素を出し、その衝撃力によって機器や配管を破壊する。さらに苛性ソーダ(NaO
H、水酸化ナトリウム)などの有害物質を発生させ、かつ熱を出す。
Na(ナトリウム)+H2O(水) NaOH(苛性ソーダ)+1/2H2(水
素)
2Na(ナトリウム)+H2O(水) NaOH(苛性ソーダ)+H2(水素)
更にナトリウムの酸化物も水と反応して苛性ソーダを生成する。
Na2O(酸化ナトリウム)+H2O(水) 2NaOH(苛性ソーダ)
Na2O2(過酸化ナトリウム)+H2O(水) 2NaOH(苛性ソーダ)+1
/2H2(水素)
3 更に、鉄がこれらの反応生成物と反応して腐食し、鋼製床ライナに穴をあけて
ナトリウムとコンクリートが直接接触する恐れがあることも、もんじゅで起こった
ナトリウム漏洩火災事故及びナトリウム燃焼実験Ⅱの結果、「新知見」として得ら
れた。
Fe(鉄)+3Na2O(酸化ナトリウム) Na4FeO3(複合酸化物)+2
Na
二 ナトリウム漏洩火災事故の発生
 もんじゅは、一九九五年一二月八日、使用前検査の一環として電気出力四〇%で
運転中、Cループ二次系主配管に差し込まれていた温度計が設計ミスから高サイク
ル疲労により破損し、配管内を流れていた高温のナトリウムが温度計の隙間から外
部に漏洩した。漏洩したナトリウムは直ちに白煙を上げながら燃焼して落下し、配
管の直下にあった空調ダクト等の機器を損傷し、床ライナを溶融減肉させた。その
後のナトリウム燃焼実験Ⅱにおいては、床ライナに大小五個の穴があき、降り注い
だナトリウムがその穴を貫通してコンクリートと接触てナトリウムコンクリート反
応が起き、発生した水素が鉄と反応して爆発的
に燃焼した。ナトリウム燃焼による高温下では、ナトリウムと酸素と鉄が反応して
鋼製床ライナを腐食し、貫通孔をあける恐れがあることが判明したのである。
 ナトリウムが多量にコンクリート上に注ぐと、コンクリートの中に含まれている
多量の水と激しく反応し、コンクリートの破片を飛び散らせると同時にコンクリー
トを劣化させ、発生した水素が空気と反応して爆発して、コンクリート造りの格納
容器を破壊して中間熱交換器や一次系配管を破壊し、放射化した一次系ナトリウム
を放出させると同時に、原子炉内のナトリウムが減少して暴走事故が起こったり、
放射性物質を放出したりする恐れがあることが明白となった。
 ナトリウム漏洩事故は、ナトリウムを取り扱うことの困難性をまざまざと見せつ
けたと同時に、情報を隠した被告動燃に原子力を取り扱う能力が無いこと、安全審
査に重大な誤りがあったことを白日の下にさらしたのである。
第五 蒸気発生器伝熱管大量破壊の危険性
 わずか三ミリメートルの壁をへだてて高温のナトリウムと高圧の水・水蒸気が接
して熱交換を行う蒸気発生器は、もんじゅのアキレス腱である。
 イギリスの原型炉PFRの蒸気発生器において、一九八七年、一本の破断からわ
ずか一〇秒程度のうちに三九本の伝熱管を破断し、更に七〇本を損傷するという重
大事故が発生した。その原因は、ナトリウム・水反応によって発生した高熱のため
に伝熱管壁の機械的強度が低下して内圧によって伝熱管が破断する「高温ラプチ
ャ」現象であった。
 ところで、被告動燃(「訴外核燃料サイクル開発機構」と改める。以下同じ)は
一九八一年の段階でもんじゅの定格運転時の条件を模擬した実験を行っており、そ
の結果は驚くべきことに「高温ラプチャ」現象による伝熱管二五本の破断であっ
た。しかし、被告動燃はこの実験結果を科学技術庁にも原子力安全委員会にも隠し
通して安全審査を受けたのである。この事実は一九九九年二月末に被告動燃が開示
した資料によってようやく明らかになったものであるが、被告動燃の情報隠し体質
をよく示している。同時に、小規模の腐食やウェステージの実験から推定した、
「当初一本破断+三本の伝播破損」という仮定をおいて事故解析を行った安全審査
が、根底から間違っていたことをも明らかにした。
第六 出力暴走して炉心崩壊が起こる恐れがある
 一九八六年四月二六日にチェルノブイリ原子力発電所四号炉で史上最悪
の原発災害が起こった。運転員が原子炉を停止しようとしたことを契機に炉心の出
力が上がり、コントロール不能となって爆発し、原子炉内にある放射性物質を地上
高く噴き上げて地球規模の放射線汚染を引き起こしたのである。
 高速増殖炉の目的は「発電」と「核燃料の増殖」である。両方の目的を達するた
めに、「高速」中性子を使い、炉心に燃料をぎゅうぎゅうに詰め込み、際どい運転
をする必要がある。もんじゅにおいては、①炉心の出力密度が高く、燃料棒の間隔
が狭くて冷却材が通りにくい、②燃料が溶けて寄り集まったりすれば再び臨界に達
して出力が上昇する恐れがある、③冷却材が沸騰するとますます出力が上昇する、
④原子炉を停止する機構として制御棒しかないので地震などの際に制御棒が挿入さ
れないと出力を抑えられない等、軽水炉にない特徴を持っているために、軽水炉よ
りも出力暴走事故が起きやすい。
 高速増殖炉においては、冷却機能が止まったのに緊急停止ができないと燃料が溶
融して炉心内部で核爆発を引き起こす恐れがあり、炉心崩壊事故として非常に恐れ
られている。旧西ドイツの原型炉SNR三〇〇やアメリカのクリンチリバー原型炉
が中止になった原因の一つが炉心崩壊事故の恐れであった。
第七 地震によって倒壊する恐れがある
 もんじゅの冷却材ナトリウムの配管は上下左右に曲がりくねり、迂回して機器と
機器とを結んでいる。運転時と停止時の温度差が大きく、配管が大きく延び縮みす
るために配管を空中でくねらせているのである。その上に配管の厚みもわずか一セ
ンチメートルである。原子炉を緊急停止したときに急激に下がる温度によって配管
が破壊されないためである。もんじゅではこのような「薄くてベランベラン」の配
管をバネ付のハンガーやレストレイントで天井から釣り下げ、壁からの棒で支え
る。直下型等の大地震が起きた場合に、この配管が落下してナトリウムが漏洩する
恐れがある。
 兵庫県南部地震はマグニチュード七・二の直下型の地震であって未曾有の被害を
もたらしたが、反面、地震学の急速な発展をもたらした。現在の知見に従えば、危
険なのは地震の空白域であり、また地震の再来年数の相当割合が経過した活断層で
ある。この観点でもんじゅ敷地周辺を見れば、甲楽城断層北部の空白域が問題とな
る。また、白木―丹生リニアメントとS1~S17は連続していると考えられる
が、仮に連続していなくても、兵庫県南部
地震の時のように同時に動くことはあり得る。この断層群が活動したときの地震動
の大きさは、安全審査の際に想定したものを大幅に上回る。想定外の大きな地震動
が本件敷地を襲ったとき、多数の建屋と設備が同時に倒壊し、放射性物質が外部に
放出される可能性は極めて高い。
第八 高速増殖炉の歴史と撤退
 高速増殖炉は「発電をしながら、燃やした以上の燃料を作り出す」ものであり、
「夢の原子炉」と宣伝されてきた。その構想はアメリカの原子爆弾開発(マンハッ
タン計画)の中から生み出され、一九四七年には実験炉クレメンタインが稼働し、
一九五一年には世界最初の原子力発電を実験炉EBR―Ⅰが実現した。しかし、一
九五五年のEBR―Ⅰの炉心溶融事故、一九六六年のエンリコ・フェルミ実験炉の
炉心溶融事故、一九八四年から八五年にかけてSNR三〇〇で頻発したナトリウム
漏洩火災事故、一九八七年に起こったPFRの蒸気発生器伝熱管破断事故、一九八
九年から立て続けに起こったフランスの原型炉フェニックスの出力異常振動事故な
ど、高速増殖炉の根幹にかかわる重大事故が相次いだ。
 高速増殖炉は本質的に大きな危険性をはらんでいて技術的にその危険性を閉じこ
めることが出来ず、原子力発電所として経済的になりたたないことが次第に明らか
となり、クリンチリバー原型炉は一九八三年に計画が中止され、SNR三〇〇も九
一年に建設計画は断念され、PFRも九四年に閉鎖されている。世界唯一の実証炉
として一歩先を進んでいたフランスの高速増殖実証炉スーパーフェニックスも、一
九九七年に至って研究炉の道さえ断たれ、廃炉が決定された。
第九 設置許可処分の無効確認と建設・運転の差止の判決を確信する
 世界中で高速増殖炉開発が断念された原因は、その危険性と非経済性にある。
 もんじゅは今、ナトリウム漏洩事故以来運転を停止している。高速増殖炉は既に
過去のものであり、もんじゅはこのまま廃炉になるべき運命にある。
 われわれ原告は、福井地方裁判所の判決によって、本件許可処分の無効が確認さ
れ、運転の差止が認められることを確信するものである。
第二章 原告適格
第一 最高裁平成四年九月二二日判決
 原告らが、行訴法三六条所定の要件を充足し、本件原子炉設置許可処分の無効確
認を求める原告適格を有することについては、本件に関する最高裁平成四年九月二
二日判決(平成元年(行ツ)第一三〇号、平成元年(行ツ)第一
三一号)が次のとおり判示するところである。
第二 行訴法三六条の「法律上の利益を有する者」の要件該当性まず、原告らが行
訴法三六条の「法律上の利益を有する者」に該当することは、右のうち、平成元年
(行ツ)第一三〇号事件判決が次のとおり示している。
 「(原子炉等規則法)二四条一項三号所定の技術的能力の有無及び四号所定の安
全性に関する各審査に過誤、欠落があった場合には重大な原子炉事故が起こる可能
性があり、事故が起こったときは、原子炉施設に近い住民ほど被害を受ける蓋然性
が高く、しかも、その被害の程度はより直接的かつ重大なものとなるのであって、
特に、原子炉施設の近くに居住する者はその生命、身体等に直接的かつ重大な被害
を受けるものと想定されるものであり、右各号は、このような原子炉の事故等がも
たらす災害による被害の性質を考慮した上で、右技術的能力及び安全性に関する基
準を定めているものと解される。右三号(技術的能力に係る部分に限る。)及び四
号の設けられた趣旨、右各号が考慮している被害の性質等にかんがみると、右各号
は、単に公衆の生命、身体の安全、環境上の利益を一般的公益として保護しようと
するにとどまらず、原子炉施設周辺に居住し、右事故等がもたらす災害により直接
的かつ重大な被害を受けることが想定される範囲の住民の生命、身体の安全等を個
々人の個別的利益としても保護すべきものとする趣旨を含むと解するのが相当であ
る。」
 「(原告ら)は本件原子炉から約二九キロメートルないし約五八キロメートルの
範囲内の地域に居住していること、本件原子炉は研究開発段階にある原子炉である
高速増殖炉であり(規制法二三条一項四号、同法施行令六条の二第一項一号、動力
炉・核燃料開発事業団法二条一項参照)、その電気出力は二八万キロワットであっ
て、炉心の燃料としてはウランとプルトニウムの混合酸化物が用いられ、炉心内に
おいて毒性の強いプルトニウムの増殖が行われるものであることが記録上明らかで
あって、かかる事実に照らすと、(原告ら)は、いずれも本件原子炉の設置許可の
際に行われる規制法二四条一項三号所定の技術的能力の有無及び四号所定の安全性
に関する各審査に過誤、欠落がある場合に起こり得る事故等による災害により直接
的かつ重大な被害を受けるものと想定される地域内に居住する者というべきである
から、本件設置許可処分の無効確認を求める本訴請求にお
いて、行政事件訴訟法三六条所定の『法律上の利益を有する者』に該当するものと
認めるのが相当である。」
第三 行訴法三六条の「その効力の有無を前提とする現在の法律関係に関する訴え
によって目的を達することができない」の要件該当性
 また、原告らが、行訴法三六条の「(行政処分)の効力の有無を前提とする現在
の法律関係に関する訴えによって目的を達することができない」の要件を充足する
ことについては、平成元年(行ツ)第一三一号事件に関する最高裁平成四年九月二
二日判決が次のとおり示すところである。
 「(原告ら)は本件原子炉施設の設置者である動力炉・核燃料開発事業団に対
し、人格権等に基づき本件原子炉の建設ないし運転の差止めを求める民事訴訟を提
起しているが、右民事訴訟は、行政事件訴訟法三六条にいう当該処分の効力の有無
を前提とする現在の法律関係に関する訴えに該当するものとみることはできず、ま
た、本件無効確認訴訟と比較して、本件設置許可処分に起因する本件紛争を解決す
るための争訟形態としてより直裁的で適切なものであるともいえないから、(原告
ら)において右民事訴訟の提起が可能であって現にこれを提起していることは、本
件無効確認訴訟が同条所定の前記要件を欠くことの根拠とはなり得ない。」
第四 原告らは本件無効確認訴訟の原告適格を有すること
 以上のとおり、原告らは、行訴法三六条に基づき、本件原子炉設置許可処分の無
効確認を求める原告適格を有するものである。
第三章 司法審査のありかた
 原子炉施設の安全性に関する審査の性質、および原子炉設置許可処分の効力を争
う抗告訴訟における司法審査のあり方については、伊方原発訴訟上告審判決(最高
裁平成四年一〇月二九日判決一判時一四四一号四七頁)をはじめとする判例の蓄積
があり、また、判例理論をめぐって学界から幾多の研究成果が明らかにされている
が、「もんじゅ」に対する原子炉設置許可処分は、右判例理論を前提としても、違
法と判断されるべきものである。
第一 本件における司法審査のあり方と伊方原発訴訟上告審判決
 すなわち、伊方原発訴訟上告審判決(最高裁平成四年一〇月二九日判決―判時一
四四一号四七頁)は、原子炉施設の安全性に関する審査の性質、および原子炉設置
許可処分の効力を争う抗告訴訟における司法審査のあり方について、次のとおり判
示している。
① 「(原子炉施設に関する安全審査は)当該原子炉施
設そのものの工学的安全性、平常運転時における従業員、周辺住民及び周辺環境へ
の放射線の影響、事故時における周辺地域への影響等を、原子炉設置予定地の地
形、地質、気象等の自然的条件、人口分布等の社会的条件及び当該原子炉設置者の
技術的能力との関連において、多角的、総合的見地から検討するものであり、しか
も、右審査の対象には、将来の予測に係る事項も含まれているのであって、右審査
においては、原子力工学はもとより、多方面にわたる極めて高度な最新の科学的、
専門技術的知見に基づく総合的判断が必要とされるものであることが明らかであ
る。」
② 「(原子炉等)規制法二四条二項が、内閣総理大臣は、原子炉設置の許可をす
る場合においては、同条一項三号(技術的能力に係る部分に限る)及び四号所定の
原子炉設置許可の基準の適合性について、あらかじめ原子力委員会の意見を聴き、
これを尊重してしなければならないと定めているのは、右のような原子炉施設の安
全性に関する審査の特質を考慮し、右各号所定の基準の適合性については、各専門
分野の学識経験者等を擁する原子力委員会の科学的、専門技術的知見に基づく意見
を尊重して行う内閣総理大臣の合理的な判断にゆだねる趣旨と解するのが相当であ
る。」
③ 「以上の点を考慮すると、右の原子炉施設の安全性に関する判断の適否が争わ
れている原子炉設置許可処分の取消訴訟における裁判所の審理、判断は、原子力委
員会若しくは原子炉安全専門審査会の専門技術的な調査審議及び判断を基にしてさ
れた被告行政庁の判断に不合理な点があるか否かという観点から行われるべきであ
って、現在の科学技術水準に照らし、右調査審議において用いられた具体的審査基
準に不合理な点があり、あるいは当該原子炉施設が右の具体的審査基準に適合する
とした原子力委員会若しくは原子炉安全専門審査会の調査審議及び判断の過程に看
過し難い過誤、欠落があり、被告行政庁の判断がこれに依拠してされたと認められ
る場合には、被告行政庁の右判断に不合理な点があるものとして、右判断に基づく
原子炉設置許可処分は違法と解すべきである。」
第二 原子炉設置許可処分における行政庁の専門技術的裁量について
一 原子炉設置許可処分における行政庁の「合理的な判断」まず、原子炉等規制法
二四条一項は、「原子炉施設の位置、構造及び設備が核燃料物質、核燃料物質によ
って汚染された物又は原子炉による災害
の防止上支障がないものであること」(四号)という基準に適合していると認める
ときでなければ、許可をしてはならないと定めているところ、右最高裁判決は、原
子炉施設の安全性に関する審査においては、「多方面にわたる極めて高度な最新の
科学的、専門技術的知見に基づく総合的判断が必要とされる」として、規制法二四
条二項は、同条一項各号所定の基準の適合性について、「内閣総理大臣の合理的な
判断にゆだねる趣旨」であると判示している。
 右判示は、原子炉設置許可処分は裁量処分であることを認めたものと評価されて
おり、これを「専門技術的裁量」と呼ぶ論者もいる。
 そして、右規制法が予定している行政庁の裁量は、①具体的な安全審査の基準あ
るいは判断基準の策定についての裁量と、②規制法二四条一項四号の要件該当性の
認定判断における裁量(どのような根拠に基づき、どのような判断を経て、その要
件を充足するとの結論に達するかについての裁量)であるとされている。
二 原子炉設置許可処分における専門技術的裁量の特徴
1 ただし、原子炉設置許可処分における裁量(専門技術的裁量)は、これを、仮
に認めるとしても、法が処分を行政庁の裁量に任せる趣旨、目的に照らして、いわ
ゆる政治的、政策的裁量のような広汎な裁量の余地のないものである。
 たとえば、右最高裁判決は殊更に「裁量」という用語を用いていないが、その理
由として、①「専門技術的裁量といっても、その内容は人によって考えるところが
異なり、あまりに漠然としており、そのような用語は適切でないから裁量といわな
かったと考えられる。そしてそのこと自体は適切である」(山村恒年「判例批評」
民商法雑誌一〇八巻六号九二頁)、②「政治的、政策的裁量と同様の広汎な裁量を
認めたものと誤解されることを避けるためであろう」(高橋利文=ジュリスト一〇
一七号判例解説五五頁)、③「(右最高裁判決が)専門技術的裁量という言葉を使
わなかったことに大きな意味がある」(淡路剛久発言「座談会一伊方:福島第二原
発訴訟最高裁判決をめぐって」ジュリスト一〇一七号一五頁)などといわれてお
り、「専門技術的な裁量と伝統的な自由裁量とは別物」であるという理解(阿部泰
隆「原発訴訟における法律問題」判例評論三二一号一六頁)が一般的である。
2 専門技術的裁量が認められる実質的根拠は、その判断の特殊性に求められる。
 すなわち、専門技術的知識は、必ず
しも行政の独占物ではなく、本来私的領域において蓄積されているものであり、行
政庁も裁判所も自らは十分に有しない専門的技術的知識を法的判断に取り込まねば
ならないという点では同じであるところ、専門技術的判断の局面で行政決定の尊重
が正当化されるのは、私的領域で蓄積された専門技術的知識を法的判断にとりこむ
ために、裁判所に比べて、行政機関の方が、一般的に組織および手続からみて比較
的優位にあるからに他ならない(高木光「技術基準と行政手続」二三頁=行政法研
究双書9「技術基準と行政手続」所収=弘文堂平成七年刊)。
 ただし、専門技術的知識は、最近では極めて細分化され、非総合的で見解の対立
もある。本件もんじゅにおけるナトリウム漏洩火災事故の経験に照らしても、「専
門性」は、元来、経験と学習の積み重ねによるものであり、必ずしも客観性が担保
されているといい難いことが明らかであって、対立する見解を持つ専門家の間での
討議の積み重ねと、総合的な討議によってこそ客観的判断に近づけるということが
できる(山村恒年「判例批評」民商法雑誌一〇八巻六号九二頁)ことも忘れてはな
らない。
 したがって、専門技術的裁量は従来の自由裁量の概念とは根本的に違うものであ
り、その判断手法において、裁判所が法定の要件が満たされているかどうかを見
る、しかし、独自の見方で見るのではなくて、行政庁の判断過程を追いかけていく
形で見るという審理方法になることを意味するものと考えるのが正当である(小早
川光郎発言「座談会一伊方・福島第二原発訴訟最高裁判決をめぐって」ジュリスト
一〇一七号二五頁)。
3 従来の判例も、原子炉施設の安全性に関する評価、判断における裁量が狭いも
のであるとの点では一致しており、たとえば、福島第二原発訴訟第一審福島地裁判
決(判例時報一一二四号一二一頁)も、「(原子炉設置)許可処分に瑕疵があり、
このため原子炉等による災害が発生した場合には、本件原子炉施設周辺住民らの生
命、身体等に放射性物質の毒性による甚大な被害が生じかねないのであり、その放
射性物質の毒性の人間に与える影響の深刻さと不可逆性等からすると、右(許可処
分)の裁量の幅は、専門技術的裁量性を考慮してもなお狭いものでなければなら
ず、原子炉設置許可申請が告示や各指針に適合するのはもちろん、……専門技術的
審査によって一定の基準に適合していると認められなければ、設置許可をする
ことができないという裁量権の行使上の制約が存するものと解すべきである」と判
示している。
4 以上のとおり、行政庁による当該原子炉施設の安全性に関する評価、判断は、
高度の科学的判断が必要であり、あくまで、現在の科学技術水準に照らし、科学的
にみて合理的な判断をなすべきものであり、そこにおける裁量の幅は狭いものであ
って、政治的、政策的裁量のような広汎な裁量の余地はない。
第三 司法審査のあり方
一 伊方原発訴訟最高裁判決
 前記伊方原発訴訟最高裁判決は、行政庁による前記裁量を前提として考えた場
合、本件における司法審査のあり方は、行政庁の専門技術的判断に不合理な一点が
あるか否かという観点から行われるべきであり、具体的には、現在の科学技術水準
に照らし、①右調査審議において用いられた具体的審査基準に不合理な点があるか
否か、②当該原子炉設置施設が右の具体的審査基準に適合するとした原子力委員会
若しくは原子炉安全専門審査会の調査審議及び判断の過程に看過し難い過誤、欠落
があるか否かを審理し、右の具体的審査基準に不合理な点があり、あるいは、当該
原子炉設置施設が右の具体的審査基準に適合するとした原子力委員会若しくは原子
炉安全専門審査会の調査審議及び判断の過程に看過し難い過誤、欠落があり、被告
行政庁の判断がこれに依拠してされたと認められる場合には、被告行政庁の右判断
に不合理な点があるものとして、右判断に基づく原子炉設置許可処分は違法と解す
べきである旨判示する。
二 「看過し難い」「本質にかかわる」の意義、過去の事故や代替意見の検討の必

 ただし、右判決のいう「看過し難い」、「本質にかかわる」とは、具体的には、
如何なる場合をいうのかは、判文からだけでは明らかではないし、「合理性」乃至
「不合理性」の概念も解釈の余地を残す概念である。
 たとえば、「専門技術的知見は、最近では極めて細分化され、非総合的で見解の
対立もあるうえ、専門性のみによっては必ずしも客観性が担保されているとはいい
難く、むしろ対立する見解を持つ専門家の間での討議の積み重ねと、総合的な討議
によってこそ客観的判断に近づける。」、「(右判決が)何をもって、『看過し難
い』とか、『本質的にかかわる』とみるかは不明である。
 また、元来、専門的事項であっても、医療過誤訴訟や特許訴訟等では実体審理が
なされている。問題なのは、原子炉事故の場合は、専門技術的事項
だけでなく、予測を含むからである。」、「原子炉の安全性では『残存リスク』が
問題となる。それが市民にとって回避不可能なものである場合は安全性を欠くこと
になる。それは、本質的とか、看過し難いという問題ではない。さらに、手続的―
実体的にも、支配的意見だけに頼らず、代替意見等について論争討論が積み重ねら
れてこそ合理性が確保されるのである。」(山村恒年「判例批評」民商法雑誌一〇
八巻六号九四5九五頁)との指摘は正鵠を得たものである。
 また、「事故の際に侵害される生命・健康という価値の重大性に照らし、安全性
に関する判断は出来る限りその合理性、客観性―言い換えれば予測可能性、批判可
能性を確保す」べきであるところ、「『どの程度安全であれば十分安全である
か』」という実際的な判断」が「国会でもなく裁判所でもなく行政機関に委」ねら
れるのは、「私的領域で蓄積された専門技術的知識を法的判断にとりこむために、
行政機関のほうが、組織および手続からみて比較的優位にあることによる」に過ぎ
ず、そのことを「正当化する『専門技術性』という要素は、『客観性』の担保」に
見出されるが、「許可権者たる内閣総理大臣の『専門技術性』といっても、実質的
な安全性判断は『多数の専門家の判断』に委ねられ」ており、「原子力委員会な
り、安全審査会なりが『内規』として、あるいは『便宜上』基準を策定するのみ
で、行政組織上の合理的な役割分担がなされているとはいいきれ」ず、「科学技術
的な知見の進歩への即応という要請と、法的判断の客観性を調和させるためには、
政令、総理府令、省令等、裁判所にとっても拘束力を有する法形式によって『審査
基準』を策定する方が「個別的な判断のレベルでの『裁量』の幅が狭くなり」、
「憲法違反の疑いが薄れる」ことから立法論的には適切であり、同様の観点から、
現行法の運用としても、「代償措置として裁判所の審査密度を高く解」すべきであ
るとの指摘もなされている(高木光「技術基準と行政手続」一八~二六頁―行政法
研究双書「技術基準と行政手続」所収=弘文堂平成七年刊)。
三 本件訴訟における具体的審査方法
1 具体的審査方法
 以上のような判例理論を前提として、原子炉設置許可処分に対する抗告訴訟にお
ける具体的審査方法については、次のような指摘がなされていることに留意すべき
である。
① 「裁判所は、法定の要件が満たされているかどうかを見る、しかし
、独自の見方で見るのではなくて、行政庁の判断過程を追いかけていく形で見る
(という審理方法になる)」(「座談会:伊方・福島第二原発訴訟最高裁判決をめ
ぐって」における小早川光郎発言ジュリスト一〇一七号二五頁)。
② 「『災害の防止上支障がない』という概念の適用について本来の意味での裁量
は認められない。」「被告は原子炉の安全性を自ら積極的に立証しなければなら
ず、たんに裁量権行使の相当性を立証しただけでは足りない。原告は原子炉の安全
性に対する疑惑や不安を提出すればよく、被告はこれらの疑惑を解消するに足るだ
けの証拠や説明を提出しなければならない。ただし、裁判所は原子炉の安全性を自
らの目で終局的に判定する立場にないので、中立的な立場で、果して被告の説明で
疑惑が解消されたといえるかどうかを審理すべきである。」(阿部泰隆「原発訴訟
をめぐる法律上の論点」ジュリスト六六八号二〇頁)
③ 「裁判所は、許可が予め策定された基準に基づいてなされたかをまず審査す
る。許可が基準を合理的に適用したものであること、基準自体が許可当時の科学技
術の水準に照らして合理的なものであることを被告側は立証しなければならない。
他方、原告側は、安全性判断について基準によって示されている基本的な枠組みを
前提とするかぎりで、当該施設の安全性についての疑念を主張することができる。
この疑念が単に観念上のものでない場合(たとえば一般的な基準を適用するのにふ
さわしくない特殊な状況がある場合、専門家の見解が分かれているなどの理由で基
準の形で示すに至らなかった事項にかかわる場合など)には、裁判所はその限度で
実体的な審査を行う。ここでは、被告側は『合理的な判断をしたこと』のみではな
く『懸念される危険が十分小さいこと』について立証責任を負う。」、「『専門技
術的裁量』というカテゴリーを無条件で認め、裁量の一形態としてしまうことに疑
念が残る以上、何らかの形で実体的判断代置方式との調整の途をさぐる必要があ
る。……裁量統制一般論として位置づけ、『専門技術性』の分野ではそれに『基準
策定の機能』を加味するのが適切であると思われる。」、「裁判所は、実は、相当
程度実体にふみこんで審査したのであり、ただ理由づけにおいて被告側の理論構成
に多くを依拠したため実体審査に消極的なような印象を与え、そのため多くの批判
の対象となっているのではないか。」(高木光「技術基
準と行政手続」二六~二七頁行政法研究双書9「技術基準と行政手続」所収=弘文
堂平成七年刊)
④ 安全審査における合理性は、「①手続的合理性と、②実体合理性に分」けら
れ、②を「法目的合理性と価値合理性に分けて検討」すると、「審査基準について
の手続的合理性が認められるためには、基準案策定過程における情報公開、同案に
ついての対審的公聴会の開催等の参加手続の有無」、他方、「実体的合理性がある
といえるためには、法目的合理性として、住民の安全からみた合理性の有無、価値
合理性として、代替案の比較検討、複合影響評価、類似例(外国刷)比較評価等」
の方法により検討することが考えられ、「調査審議及び判断の合理性についても右
と同様である」(山村恒年・判例批評=民商法雑誌一〇八巻六号九四頁)。
2 「現在の科学技術水準に照らして」審査されるべきこと
 なお、右最高裁判決は、基準自体の合理性の審査は、処分時の科学技術水準では
なく、「現在の科学技術水準に照らして」審査されるべきである旨判示している。
第四 無効確認訴訟における立証責任と立証の負担について
一 立証責任と立証の負担
 被告内閣総理大臣がした本件原子炉設置許可処分の判断に不合理な点があること
の主張、立証については、まず、被告内閣総理大臣において、その依拠した前記の
具体的審査基準並びに調査審議及び判断の過程等、被告行政庁の判断に不合理な点
のないことを相当の根拠、資料に基づき主張、立証する必要があり、同被告が右主
張、立証を尽くさない場合には、同被告がした右判断に不合理な点があることが、
事実上推認されるものというべきである。
二 伊方原発最高裁判決
 すなわち、本件無効確認訴訟における立証責任と立証の負担の問題は、同じく抗
告訴訟である原子炉設置許可処分に対する取消訴訟について説かれている考え方が
そのまま妥当し、原子炉設置許可処分の取消訴訟に関する判例として、次のとお
り、伊方原発訴訟上告審判決(最高裁平成四年一〇月二九日判決H判時一四四一号
四七頁)がある。
 「原子炉設置許可処分についての右取消訴訟においては、被告行政庁がした右判
断に不合理な点があることの主張、立証責任は、本来、原告が負うべきものと解さ
れるが、当該原子炉施設の安全審査に関する資料をすべて被告行政庁の側が保持し
ていることなどの点を考慮すると、被告行政庁の側において、まず、その依拠した
前記の具体的
審査基準並びに調査審議及び判断の過程等、被告行政庁の判断に不合理な点のない
ことを相当の根拠、資料に基づき主張、立証する必要があり、被告行政庁が右主
張、立証を尽くさない場合には、被告行政庁がした右判断に不合理な点があること
が、事実上推認されるものというべきである。」
三 本件における立証の負担の具体的内容
 以上のとおり、「もんじゅ」の原子炉設置許可処分の判断に不合理な点があるこ
との主張、立証については、被告の側において、まず、その安全性に欠ける点のな
いことについて、十分な根拠を示し、かつ、非公開の資料を含む必要な資料を提出
したうえで立証する必要があり、被告が右立証を尽くさない場合には、原子炉設置
許可処分の判断に不合理な点があることが事実上推定(推認)されるものと解すべ
きである。
 これを具体的にいえば、まず、被告側において「もんじゅ」の機器の具体的な設
計とその機能を明らかにし、設計基準事故の選定、事故を模擬した実験、事故時の
安全解析の内容を確定して許可申請を行い、これについて安全審査を経て許可され
た状態であることをまず立証する必要がある。
 原告らは、このような被告の立証を踏まえて、実際の事故の経過と矛盾する点、
選定された設計基準事故が過小であること、実験の条件の選定が不合理であるこ
と、解析の手法における疑問点などを具体的に論証して、本件原子炉設置許可処分
の判断に不合理な点があることを論証することになる。
 そして、本件訴訟において、本件原子炉設置許可処分の判断に不合理な点がある
ことは、原告らがこれを立証してきたうえに、何より、現実に発生したナトリウム
漏洩事故とその原因究明の中で実証されたものというべきである。
四 「無効確認訴訟における違法主張の制限」に対する反論
 被告国は無効確認訴訟においても、取消訴訟に関する行訴法一〇条一項が類推さ
れ、違法主張の制限は制限されると主張するが、被告国の右主張は、理由がない。
 すなわち、無効等確認の訴えは、取消訴訟とは異なり、当該当街訴訟の対象とす
る処分がなにびとによっても、また、いつでもその効力を否定することができる瑕
疵があることを主張し、その無効等の確認を目的とするものであり、したがって、
取消訴訟に関する規定のうちに、この種の訴えに準用すべからざるものがあること
はいうまでもない。処分等の無効は、なにびとに対する関係においても無効であ
り、取
消の場合のように原告との関係においで相対的に決する余地はないから、取消の理
由を制限する行訴法一〇条一項の規定を準用すべきではない(杉本良吉「行政事件
訴訟法の解説」一二五項=昭和三八年・法曹界)。行訴法一〇条一項の主張制限
は、取消訴訟についてだけの制度であり、それゆえ客観訴訟である民衆訴訟及び機
関訴訟はもとより、無効等確認訴訟、不作為の違法確認訴訟といった他の抗告訴訟
及び当事者訴訟にも準用されていない(司法研修所編「行政事件訴訟の一般的問題
に関する実務的研究(司法研究報告書第四五輯第二号)」一七九~一八〇項=平成
七年・法曹会)というのが一般的な考え方である。
 したがって、無効確認訴訟においても取消訴訟に関する行訴法一〇条一項が類推
され、違法主張の制限は制限されるとする被告国の主張は理由がない。
第四章 安全審査の手続的違法性
第一 本件訴訟で考慮すべき「安全審査の対象」
一 被告国は「安全審査の対象」を狭く解釈しすぎている
 被告国は、二次系ナトリウム漏洩事故に関し、床ライナについての設置許可段階
での安全審査は、「鋼製のライナの設置によってナトリウムとコンクリートとの直
接接触の防止を図るという基本設計ないし基本的設計方針」を対象としたものであ
り、それで足りるとして、安全審査の対象を非常に狭く解釈する。
 しかし、安全審査の対象はそのように狭く解釈すべきではなく、最高裁判所が判
示するように、「基本設計の安全性にかかわる事項」の全てを含むと解釈すべきで
ある。
二 最高裁判所判決をどのように理解するか
1 「基本設計の安全性にかかわる事項」の具体的内容
 最高裁判所は、伊方原発訴訟及び福島第二原発訴訟に関し「原子炉設置許可の段
階における安全審査においては、当該原子炉施設の安全性にかかわる事項のすべて
をその対象とするものではなく、その基本設計の安全性にかかわる事項のみをその
対象とするものと解するのが相当である」として、原子炉設置許可の段階の安全審
査の対象にならないものとして、伊方原発訴訟においては「固体廃棄物の最終処分
の方法、使用済燃料の再処理及び輸送の方法、温排水の熱による影響等」を挙げ、
福島第二原発訴訟においては、「廃棄物の最終処分の方法、使用済燃料の再処理及
び輸送の方法、廃炉、マン・マシーンーインターフェイス(人と機械の接点)、S
CC(応力腐食割れ)の防止対策の細目等」を挙げた。
2 廃
棄物・使用済核燃料・廃炉は本来であれば安全審査の対象とすべき事項である。
 原子力発電においては、ウランの採掘・精錬、核燃料への加工、原子炉の設置運
転、使用済核燃料の輸送と再処理、廃棄物処理及び廃炉が一連の流れとになってい
る。特に高速増殖炉は、軽水炉の使用済核燃料から再処理により取り出されたプル
トニウムを利用して発電をすると同時に更に核燃料中に。プルトニウムを再生産す
る。その使用済核燃料を再処理してプルトニウムを取り出し、高速増殖炉用の核燃
料とするのであり、高速増殖炉の運転と使用済核燃料の再処理が車の両輪となって
いることを考慮すれば、もんじゅ設置許可申請の段階で、少なくとも使用済核燃料
の再処理(輸送を含む)の問題を視野に入れて検討しなくては、もんじゅの許可処
分を行う意味が失われる。従って、最高裁判所が、「規制法はその規制対象を精錬
事業(第二章)加工事業(第三章)、原子炉の設置運転等(第四章)、再処理事業
(第五章)、核燃料物質等の使用等(第六章)、国際規制物質の使用(第六章の
二)に分け、それぞれにつき内閣総理大臣の指定・許可・認可等を受けるべきもの
としている」ことを挙げて、①廃棄物(固体のみならず液体・気体も含む)の最終
処分の方法、②使用済燃料の再処理及び輸送の方法、③廃炉を、原子炉設置許可時
の安全審査の対象ではないとしたことについては、批判されるべきである。
 しかし、本件訴訟においては、審理の促進を図り、主要な争点を絞るために、原
告はこの三点については審理の対象として主張しないこととする。
3 温排水の熱による影響も本来であれば安全審査の対象とすべき事項である
 もんじゅを運転すれば、海水による冷却を行っているために、原子炉で発生した
熱の多くは海水の温度を上昇させ、環境中に多大の影響を与える。地球環境の保護
が大きな問題となっている現在、設置許可時の安全審査の対象として温排水の影響
を入れるべきであることは当然である。もんじゅの安全審査において考慮の対象と
されなかったことは大きな問題ではあるが、本件訴訟においては、審理の促進を図
り、主要な争点を絞るために、原告はこの点についても審理の対象として主張しな
いこととする。
4 「基本設計の安全性にかかわる事項」と「細目」の区別には言及していない
 ところで、最高裁判所は、「安全審査の対象にならないもの」として「マンマシ
ーンインターフェイ
ス、SCCの防止対策の細眉」の二点をあげている。この文章を、「マン・マシー
ン・インターフェイス」と「SCCの防止対策の細目」とに分けて読むと「マン・
マシーン・インターフェイス」は丸ごと安全審査の対象ではないと判示したことに
なるが、この問題は昭和五四年(一九七九年)に発生したスリーマイル島原発事故
後特に大きな問題となっているものであり、その趣旨は「マン・マシーン・インタ
ーフェイスの細目」を安全審査の対象としていないことだと解される。すなわち、
最高裁判所は「マン・マシーン・インターフェイスの細目」と「SCCの防止対策
の細目」を安全審査の対象とならないとしたのである。
 このように解すると次に、「基本設計の安全性にかかわる事項」と「細目」の区
別の基準が問題となる。最高裁判所は「原子炉の設置・運転等に関する規制の内容
を見ると、原子炉の設置の許可、変更の許可(二三条ないし二六条の二)の他に、
設計及び工事方法の認可(二七条)、使用前検査(二八条)、保安規定の認可(三
七条)、定期検査(二九条)、原子炉の解体の届出(三八条)等の各規制が定めら
れている」ことを挙げ、「原子炉の設置の許可においては「基本設計の安全性にか
かわる事項」を審査し、設計及び工事方法の認可以下の段階で「細目」を審査する
と考えているようにも思われるが、具体的な区別については述べてはいない。
三 「設工認」等でも「基本設計の安全性にかかわる事項」は素通りされている
1 被告国は、「原子炉設置許可は段階的安全規制の冒頭に位置するものであり、
それに続く設計及び工事方法の認可(二七条一項)において、原子炉施設の具体的
な詳細設計及び工事の方法を規制することとしている。また、使用前検査(二八条
一項)において、原子炉施設の工事が設計及び工事の方法の認可に従って行われて
いるか、並びにその性能が、原子炉設置許可申請書等に記載されたとおりの性能を
有するか否かを検査することとし、保安規定の認可(三七条一項)において、原子
炉施設の運転管理に関する事項を規制することとしている。さらに、定期検査(二
九条一項)において、原子炉施設の性能が、使用前検査の状態に維持されているか
否か等を検査することとしているのである」と主張する。この主張によれば、施設
が安全であるか否かのチェックは、基本設計ないし基本的設計方針については設置
許可の段階で行い、詳細設計につい
ては設計及び工事方法の認可の段階で行うことになっており、この両者によって、
「安全性」のチェックは細大漏らさず全て行われているものとしているようであ
る。
2 しかし、設置許可の段階においては、科学技術庁による第一次安全審査(行政
庁審査)の他に、原子力安全委員会による第二次安全審査を受けることになってい
るが、設計及び工事方法の認可の段階では、設置者は科学技術庁に申請し、そのチ
ェックを受けて認可されるだけに過ぎない。つまり、設計及び工事方法の認可の段
階では、ただ技術的に詳細な図面や強度計算・耐震計算を提出してチェックを受け
るだけである。設計及び工事方法の認可申請書は、原告が文書送付嘱託申立を行
い、被告国がそれを受けて一部公開しているが、強度計算と耐震計算が大部分であ
り、設置許可における安全審査を経た部分について技術的な計算を行ったに過ぎな
いものである。しかも、重要と思われる数値はすべて白抜きにしているので、被告
動燃と科学技術庁以外の第三者がチェックしょうとしてもチェックしようもない状
態である。
3 温度計のチェックはどの段階でもなされなかった
 ナトリウム漏洩火災事故の直接的な原因となった温度計については、その構造設
計が妥当であるかどうかのチェックは、原子炉の設置の許可、変更の許可(二三条
ないし二六条の二)、設計及び工事方法の認可(二七条)、使用前検査(二八
条)、保安規定の認可(三七条)、定期検査(二九条)のいずれの段階においても
なされなかった。また、設置者自身もメーカーまかせであり、自主的なチェックも
行っていなかった。確かに被告国が主張するように、ナトリウムの温度計は特殊な
ものではなく、具体的な構造まで許可時の安全審査で行うのは困難であるが、設計
方針として、温度計を配管を貫いて内部に差し込む方法を取れば、温度計はナトリ
ウムを外部に漏らさないための障壁(バウンダリ)の一部をなす重要な部品とな
る。従って、計測機器の具体的な仕様は安全審査の対象ではないが、ナトリウム取
り扱いの基本的設計方針として計測機器などの取り扱い方法・設置方法を審査の対
象とすべきである。
四 ナトリウム漏洩火災事故に関し本件訴訟で考慮すべき「安全審査の対象」
1 熱的影響評価は「建屋の健全性の確認」が目的である
 規制法二四条一項四号が規定するのは「原子炉による災害防止上支障がないもの
であること」と言う点のみである。
右「支障の有無」を審査する方法として、「発電用軽水型原子炉施設の安全評価に
関する審査指針」において、原子炉施設の安全設計の基本方針の妥当性を確認する
上で、異常状態、すなわち「運転時の異常な過渡変化」及び「事故」について解析
し、評価を行うことが必要とされている。
 二次ナトリウム漏洩事故における熱的影響の解析は、系統分離のための障壁を形
成している建屋の健全性の確認を目的として評価が行われている。安全審査におい
ては、建屋健全性の指標としては、①雰囲気温度上昇に伴う圧力、②構造体である
コンクリートの温度、③その前提となる床ライナの温度である(漏洩ナトリウム等
による熱的影響の解析、甲イ第四二六号証)。
2 「ナトリウムとコンクリートの接触防止」が基本設計である
 ナトリウムとコンクリートの接触を防止するという基本方針が妥当であるかどう
かを確認する上で選定された「事故」が、本件安全審査では「大規模漏洩」であっ
た。床ライナの温度に関しては、一九八〇年(昭和五五年)の許可申請書(甲イ第
四二〇号証)においては「ナトリウム漏洩によりナトリウム火災が発生するが、二
次主冷却系の各ループはそれぞれループ毎に独立な部屋に設置し、コンクリート壁
で仕切る等の防火上の隔離が行われている。部屋の床面には、鋼製ライナ又はナト
リウム受皿が施工され、万一のナトリウム漏洩に対しても床コンクリートとナトリ
ウムの接触を防止している」とされているのみであって具体的な記載はないが、八
一年(昭和五六年)の「許可申請書の一部補正について」(甲イ第四二一号証)で
は、配管室の床ライナ最高温度は約四一〇℃、過熱器室の床ライナ最高温度は約四
五〇℃であって、「設計温度五〇〇℃以下にとどまる」とされ、「漏洩ナトリウム
による熱的影響については、十分に厳しい条件を仮定しても、部屋の内圧および床
ライナの温度はいずれも設計値以下であり、その健全性が損なわれることはない」
と結論づけられた。
 八五年(昭和六〇年)の「変更許可申請書の一部補正について」(甲イ第四二二
号証)においては、過熱器室での漏洩量を九五立方メートルに変えた他は仮定は同
じであるが、計算コードを変えたために数値が変わり、配管室の床ライナ最高温度
は約四六〇℃、過熱器室の床ライナ最高温度は約五二〇℃となって一旦定めた設計
温度五〇〇℃を超えた。ところが、突然設計温度が五〇〇℃から五三〇℃に
変更され、「床ライナはいずれも設計温度以下であり、健全性は損なわれない」と
されたのである。
3 「設計温度」が床ライナ健全性の評価の基準である。
 「設計温度」は、被告動燃が許可申請書に記載し、安全審査において、床ライナ
の温度はこの設計温度以下に保たれるので安全であるとした「基準」である。この
数値は当然安全審査の対象であったし、本件訴訟の対象である。
 本件訴訟で考慮すべき「安全審査の対象」は「ナトリウムとコンクリートの接触
防止」である。その妥当性を判断するための資料が「設計温度」「計算温度」「実
験により確認された温度」等である。被告国の言うように、「鋼製のライナを設置
する」ことだけが「基本設計ないし基本的設計方針」であって、温度の具体的な数
値は安全審査の対象ではないとすることは、安全審査の対象の焦点を恣意的にずら
して狭く解釈することであり、許されない。
五 「被告動燃の技術的能力」は安全審査の対象である。
1 被告国は、
① 「通報遅れ」「ビデオ隠し」「虚偽報告」は、原告ら自身の法律上の利益に係
わらないから、およそ無効確認訴訟の審理の対象とならない。
② 「火災警報受信機の位置が中央制御盤から離れており、音響停止スイッチが入
っていた」「ナトリウム漏えい検出器の計測値を確認するのが現場制御盤であり、
中央制御盤ではない」「運転員が換気空調システムの早期停止の必要性を理解して
いなかった」「異常時運転手順書が不備で混乱を招く記載である」ことは、施設の
具体的な運転に関するものであり、安全審査の対象ではない。
③ 「ナトリウム漏えい検出器に検出遅れがある」「オーバーフロータンクのナト
リウム液位計が低感度である」「ナトリウム緊急ドレン関連機器の耐用性が欠如し
ている」等は、二次主冷却系に係わるが「具体的機能」に係る事項であって、基本
設計ないし基本的設計方針に係る安全性に関する事項ではない。
と主張するが、被告動燃が作成した「異常時運転手順書」は、許可申請書との関係
で矛盾が生じており、そのために運転員が対応を誤るという結果が発生している。
これは「被告動燃の技術的能力」に直接に係わる事項である。また「温度計」につ
いては、品質確保ができていないし、「もんじゅの他の機器にも問題が潜んでいな
いとは言い切れない」(原子力安全委員会第一次報告書、乙イ第一二号証一四頁)
のであるから、被告動燃の「技術的能力」の問題
である。①ないし③の他の項目も事故後に指摘された重要な事項であり、全て「被
告動燃の技術的能力」にかかわる事項である。
2 ①ないし③は、もんじゅの安全審査の段階においては表面化していなかった問
題であるが、「動燃の技術的能力」を「現在の知見」からとらえなおすものである
から、本件訴訟の審理の対象であり、ひいては安全審査の対象である。
六 結論
 被告国は安全審査の対象となるべき「基本的設計ないし基本的設計方針」を非常
に狭く解釈し、安全審査ひいては許可処分が無効であるとの結論を避けようと腐心
しているが、最高裁判所のいう「基本設計の安全性にかかわる事項」を正確に解釈
すれば、本件訴訟の対象は前述したとおりとなり、許可処分が無効であるとの結論
が導かれる。
第二 審査基準の不合理性
一 法規制・授権規定の欠如
1 抽象的な原子炉等規制法の審査基準
 原子炉等規制法は、内閣総理大臣がもんじゅの設置を許可する基準につき、①原
子炉が平和の目的以外に利用されるおそれがないこと(二四条一項一号)、②その
許可をすることによって原子力の開発及び利用の計画的な遂行に支障を及ぼすおそ
れがないこと(同二号)、③その者(本件では事業者である動燃)に原子炉を設置
するために必要な技術的能力及び経理的基礎があり、かつ、原子炉の運転を適確に
遂行する技術的能力があること(同三号)、④原子炉施設の位置、構造及び設備が
核燃料物質(使用済燃料を含む。以下同じ。)核燃料物質によって汚染された物
(原子核分裂生成物を含む。以下同じ。)又は原子炉による災害の防止上支障がな
いものであるこど(同四号)と、非常に抽象的な基準しか定めていない。
2 抽象的な規制基準は憲法三一条に違反する
(一) 被告国は、本件もんじゅが原子炉等規制法二四条一項四号の「原子炉施設
の位置構造及び設備が核燃料物質、核燃料物質によって汚染された物又は原子炉に
よる災害の防止上支障がないものであること」の許可要件に適合するものであるか
どうかについてのいわゆる安全審査にあたって、右のように法律の許可基準が非常
に抽象的なものであることにつき、伊方原発訴訟最高裁判決(最高裁平成四年一〇
月二九日判決・判タ八〇四号五一頁)の判決を引用し、「原子炉施設の基本設計な
いし基本設計方針に関する審査が、多方面にわたる極めて高度な科学的・専門技術
的な知見に基づいてされる必要があり、しかもその科学的技
術が不断に進歩し、発展していることから、原子炉施設の安全性に関する基準を具
体的かつ詳細に法律で定めることは困難であるのみならず、最新の科学水準への即
応性の観点からみて適当でないとする趣旨によるものである。」(平成五年一月二
九日付被告国準備書面(二)二八~二九頁)として、法律の規定が抽象的であって
も何ら問題ないとする。
(二) しかし、科学的技術が不断に進歩し、発展しているとはいっても、原子力
災害から国民の生命、身体、財産等の基本的人権を守るために、条文につきある程
度具体的により木目細かく書くことは可能である(山村恒年「判例批評」民商法雑
誌一〇八巻六号八七頁)。とりわけ、原子炉等規制法二四条一項四号の設けられた
趣旨は最高裁がもんじゅ上告審で述べるように、「単に公衆の生命、身体の安全、
環境上の利益を一般的に保護しようとするにとどまらず、原子炉施設周辺に居住
し、右事故等がもたらす災3害により直接的かつ重大な被害を受けることが想定さ
れる範囲の住民の生命、身体の安全等個々人の個別的利益としても保護すべきもの
とする趣旨を含む」(最高裁平成四年九月二二日判決・判例時報一四三七号二九
頁)ものである以上、現行法のような非常に抽象的な条文の定めでは、どのような
ことが安全審査の判断基準となるのか全く不明確であり、右法律によっては、最高
裁が認めるその立法目的にも反し、原子力災害から国民の生命、身体、財産等の基
本的人権を守ることはできない。
(三) したがって、本件もんじゅの設置許可基準を定める原子炉等規制法の抽象
的な規定は、憲法三一条が定める適正手続の保障条項に違反する。憲法三一条の定
める適正手続の保障は、刑事手続きばかりでなく、行政手続に及ぶことは、最高裁
も成田新法事件において、「憲法三一条の定める法定手続の保障は、直接には刑事
手続に関するものであるが、行政手続については、それが刑事手続ではないとの理
由のみで、そのすべてがその保障の枠外と判断することは相当ではない。」(最高
裁平成四年七月一日大法廷判決・判例時報一四二五号四五頁)として認めるところ
である。
3 法律あるいはその授権に基づかない指針等による安全審査は憲法違反である
(一) 被告国は、本件もんじゅの原子炉等規制法二四条一項四号の適合要件にあ
たるか否か安全審査にあたっては、内閣総理大臣の諮問に応じ原子力安全委員会
が、原子力安全委員会や原
子力委員会が決定した、
① 「原子炉立地審査指針及びその適用に関する判断めやすについて」
② 「高速増殖炉の安全性の評価の考え方について」
③ 「発電用原子炉施設の安全解析に関する気象指針について」
④ 「プルトニウムを燃料とする原子炉の立地評価上必要なプルトニウムに関する
めやす線量について」を基準とし、
⑤ 「発電用軽水型原子炉施設に関する安全設計審査指針について」
⑥ 「発電用軽水型原子炉施設の安全評価に関する審査指針」
⑦ 「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針について」
⑧ 「発電用原子炉施設に関する耐震設計審査指針について」等を参考にして判断
するとしている(平成五年六月一八日付被告国準備書面(三)一一~一四頁)とし
ている。
(二) しかし、被告国が原子炉等規制法二四条一項四号の許可要件に適合するか
否かの判断基準としている右に述べた安全審査指針等は、原子力安全委員会あるい
は原子力委員会が策定したもので、国会の立法権に基づく法律に基づくものでもな
く、また原子炉等規制法の授権に基づくものでもない。
 憲法四一条が、国会を唯一の立法機関と定め、憲法七三条一項が行政への包括
的・白紙的授権を禁じているのは、立法機関としての国会の地位を無意味なものと
し、行政権の恣意的な行使による人権の侵害から国民の基本的人権を守ることにあ
る。
 本件もんじゅの許可処分での安全審査は、原子力安全委員会あるしは原子力委員
会が、国会が制定した原子炉等規制法などの法律の授権に基づかず策定した安全審
査指針等をその判断基準としてなされたものであり、国会を唯一の立法機関と定め
た憲法四一条、行政への包括的・白紙的授権を禁じた同七三条一項に違反すること
は明白である。
(三) 伊方原発訴訟で住民側は、原子炉設置許可処分が法律又はその委任に基づ
いて定められたものではない基準を用いた安全審査に依拠してなされたものである
か憲法四一条、七三条一項、国家行政組織法一二条、一三条に違反をするとの主張
した。これに対し最高裁は、「本件原子炉施設の安全審査は、その合理性を十分首
肯し得る原子炉等規制法二四条一項四号の規定に基づいてされたものであるから、
それが法律の規定に基づかないものであることを前提とする所論は、その前提を欠
くというべきである。」とし、原子炉等規制法二四条一項四号の規定は、「設置許
可にあたっては、申請に係る原子炉施
設の位置、構造及び設備の安全性に関する審査の適正を確保するため、各専門分野
の学識経験者等を擁する原子力委員会の科学的、専門技術的知見に基づく意見を聴
き、これらを尊重するという慎重な手続が定められていることを考慮すると、右規
定(原子炉等規制法二四条一項四号)が不合理、不明確であるとの非難はあたらな
いというべきである。」(最高裁平成四年一〇月二九日判決・判タ八〇四号五一
頁)と、安全審査指針等の基準に基づく安全審査は、原子炉等規制法二四条一項四
号が合理性を有するものだとして、住民側の憲法違反の主張を斥けた。
(四) しかし、①安全審査を担当すべき原子力安全委員会(伊方原発設置許可当
時は原子力委員会)の委員は、原子力発電所を推進する側の専門家ばかりが選任さ
れており原発の安全性に疑問を抱く専門家の意見は反映されず、委員会の専門家の
意見が必ずしも客観的に合理的であるとは限らないこと(山村恒年「判例批評」民
商法雑誌一〇八巻六号九〇~九二頁)、②本件もんじゅの安全審査は原子力安全委
員会が行うが一その判断基準となる安一全審査指針等は原子力安全委員会自らが策
定したものであり、チェック機能が働かず審査の客観的合理性が担保し得ないこ
と、③もんじゅにおいて原子力安全委員会が予想もしなかったナトリウム漏洩火災
事故が発生し安全審査機能の不備を露呈したことから明らかなように、安全審査指
針等に基づく被告国による安全審査は、最高裁判決が述べるように審査の適正を確
保するため慎重な手続きが定められているとは到底言えない。原子炉等規制法二四
条一項四号の規定が合理性を有するものであるとして、法律の規定や法律の授権に
よらず安全審査指針等に従い本件もんじゅの安全審査を被告国が行うことは、憲法
四一条、同七三条一項に違反する。
二 高速増殖炉の設計基準事故の想定に関する審査基準の不合理性・・・・本件ナ
トリウム火災事故を中心に
1 設計基準事故の想定の誤りは本件許可処分の重大かつ明白な違法事由となる。
(一) 原子炉施設の安全性の確保については、ほとんど起こり得ない事態が発生
したとしても公衆が保護されるように対策を立てるものとされている。そして安全
確保の効果が期待される設備、機器が故障を生じたと想定した場合に考えられる事
故を解析してその影響を検討し、原子炉施設の性能を維持するとともに公衆を保護
するための機器を設計の中に組込むこ
ととされる。このような目的に用いるために想定される事故をアメリカでは「設計
基準事故」(Desighn Basis Accident, DBA)と呼
び、日本では「設計基準事象」(Design Basis Event)と呼ん
でいる(「発電用軽水型原子炉施設の安全評価に関する審査指針」の「解説」の項
を参照、乙イ・七)。
(二) ここで特に留意すべきは以下の三点である。
 第一に、被告国の主張によれば、被告国が安全審査の対象としている「原子炉施
設の基本設計ないし基本的設計方針」(いわゆる「基本設計論」)の妥当性を確認
するための唯一の手続が、設計基準事故の想定とその事故解析であること。
 第二に、従って「設計基準事故の想定」あるいは「この事故が発生したとしても
原子炉施設の安全性が余裕をもって確保されることを判断するための基準」のいず
れかでも不合理であることが判明すれば、これに基づく原子炉設置許可処分は少な
くとも違法となるべきこと。
 第三に、後に詳述するとおり本件ナトリウム火災事故では、①右の設計基準事故
の想定を誤り、かつ②「もんじゅ」の安全性が余裕をもって確保されることを判断
するための基準(審査基準)の設定をも誤った、即ち二重の誤りがあるから、この
ような場合は単なる違法ではなく重大かつ明白な違法が存在すること。
 この点に関連して、所謂「基本設計」なる概念は決して法的および科学的概念と
して確立されているものではないことにも留意すべきであるし、原告は国が自己に
都合よく利用する「基本設計」なる概念を認めるものではない。即ち、原子力安全
委員会委員長のP1が、
「何が基本設計なのか、何が詳細設計なのかというのは、どうやって区別するので
すか。
これは、明文化した指針あるいは基準のようなものがあるわけではございません。
これは、工学的な、常識的な判断と言ってよろしいかと思います。
その場合の工学的、常識的な判断というのは、もう少し具体的に御説明いただく
と、何ですか。基本設計と詳細設計と。
これは、あるいは人によって若干微妙な意見の相違があるかもしれませんが、私が
考えておりますのは、基本設計の段階というのは、ある一つの部分を評価するの
に、その部分だけに注目しては不十分であると。周りを全部見ないと、その部分の
正確な評価ができないと。…」
 「行政庁としても、あるいは、安全委員会としても、基本設計と詳細設計を区別
するそれなりの科学的と言うか、客観的というか、そういう基準が現在定立されて
いるわけではないわけですか。
これは文章になったようなものはないと思います。ないはずです。だからと言っ
て、全くでたらめにやっているというものでは決してございません。」
(P1証人・二七回・一一〇頁~一一一頁)
と証言するとおり、「基本設計」とか「基本的設計方針」なる用語は主観的なもの
であり、被告国の免責事由(注「基本設計の範囲外だから国の安全審査とは関係が
ない」などという弁解に用いられる場合の「基本設計」)の法的ないし客観的な根
拠または基準とは、およそなりえないことが特に留意されるべきである。
(三) なお右の設計基準事故の概念は、日本では後述の「事故」の概念に相当す
るものであり、その定義は「発電用軽水型原子炉施設に関する安全設計審査指針」
(乙イ・七)および「発電用軽水型原子炉施設の安全評価に関する審査指針」(乙
イ・七)に示されている。
 本件ナトリウム火災事故は右の設計基準事故「事故」に該当する。
2 本件ナトリウム火災事故に関する設計基準事故の想定と審査基準の不合理性
(一) 周知のとおり伊方原発最高裁判決によれば、
 「現在の科学技術水準に照らし、原子力安全委員会(などの)調査審議において
用いられた具体的審査基準に不合理な点がある(場合などは)、原子炉設置許可処
分は違法と解すべきである」
とされる。
 本件ナトリウム火災事故に関する右の審査基準は[高速増殖炉の安全性、「一の
評価の考え方」(乙イ・七。以下「評価の考え方」という)と解されるから、本件
では「評価の考え方」において想定された設計基準事故およびこれに対する審査基
準が合理的であったか否かが問われている。
(二) 「評価の考え方」では、「発電用軽水型原子炉施設の安全評価に関する審
査指針」などを引用している。そこにおいて安全評価の範囲は「『運転時の異常な
過渡変化』・・・・
原子炉の運転中において、原子炉施設の寿命期間中に予想される機器の単一の故障
若しくは誤動作又は運転員の単一の誤操作、及びこれらと類似の頻度で発生すると
予想される外乱によって生ずる異常な状態に至る事象を対象とする。
『事故』・・・・
『運転時の異常な過渡変化』を超える異常な状態であって、発生する頻度はまれで
あるが、発生した場合は原子炉施設からの放射性物質の放出の可能性があり、原子
炉施設の安全性を評価
する観点から想定する必要のある事象を対象とする。」
とされている。本件ナトリウム火災事故は右の「事故」に分類されるが、「発生す
る頻度はまれ」(=原子炉の寿命期間中には予想されないこと。「発電用軽水型原
子炉施設の安全評価に関する審査指針」・解説・Ⅱ・2参照。なおP1証人・二七
回・一〇三頁も参照)と定義される事態が、実用運転開始前で原子炉等規制法二八
条の使用前検査にも合格していない段階(被告国準備書面(七)・二頁)で早くも
生じたのが本件で特に有意な事態である。即ち「もんじゅ」が臨界に達したのは一
九九四年四月であり、「初の送電成功」と喧伝された(但し、水・蒸気系の最終過
程の過熱器を通過させず、電気出力五パーセントで一時間だけ送電したという実験
的な送電)のが一九九五年八月二九日である。本件ナトリウム火災事故は右の非実
用的な「初送電」から約三ケ月余の後に発生し、従って「もんじゅ」が電力供給の
わずかの一端に貢献したこともない。即ち「もんじゅ」は未だ「寿命期間」の始期
にも至っていなかったのである。
 「寿命期間」の始期にもない原子炉が「寿命期間中には予想されない」とされる
事故を発生させたことは、「考え方」および前記指針の、「運転時の異常な過渡変
化」とか「事故」という、安全評価の範囲の設定(これも審査基準の一と理解され
る)自体に不合理と誤りがあったと言うべきである。
(三) この点、原子力安全委員会委員長のP1は、
「今回の事故(注・本件ナトリウム火災事故)は(「もんじゅ」)の寿命期間中に
一回以下みたいな言い方になるんですか。
これは飽くまで推定される頻度でございまして、例えば一〇〇万年に一回起こるこ
とというのは、明日起こるかもしれません」
(P1証人・二七回・一〇五頁)
などと証言するが、これは暴言である。もし暴言ではないとすれば、
 第一に、発電用軽水型原子施設の安全評価に関する審査指針で「運転時の異常な
過渡変化」(=「原子炉施設の寿命期間中に予想される」事象)と「事故」(=
「運転時の異常な過渡変化を超える状態であって、発生する頻度はまれ」)を発生
頻度の観点から分類した意味が不明となり、ひいては右審査指針が審査基準として
の有効性と妥当性と合理性を有しないことを自白するに等しいこと。
 第二に、「一〇〇万年に一回」という発生頻度は後述の、「事故」よりもさらに
重大な影響をもたらす「技術的には起こると
は考えられない事象」についての発生頻度の単位であり、これを本件ナトリウム火
災事故に関連して論じることは無意味、さもなくば不見識であること。
 第三に、「もんじゅ」の「寿命期間」は、仮にこれを実用の軽水炉と同等と考え
たとしても、せいぜい三〇年程度と思われるところ、三〇年の寿命の原子炉が寿命
の始期をまたずに一〇〇万年に一回の「事故」を起こしたとすれば、被告ら(P1
証人)はこれに恐催するのが当然だが、被告ら(P1証人)にはそのような真蟄な
態度が全くなく、従って発電用軽水型原子炉施設の安全評価に関する審査指針など
の審査基準を端から無視していること。
 以上によれば、右のP1証言は、「評価の考え方」などの審査基準の「基準性」
(規範性)について被告らが無自覚であることを示している。換言すれば「評価の
考え方」などは被告らに対して何の規範力も有しない不合理なものにすぎないこと
が明らかである。
(四) 右に加え本件ナトリウム火災事故と本件許可申請における設計基準事故を
比較するとその事故想定および事故解析の現実性のなさが明らかである。
 即ち、「もんじゅ」の原子炉設置許可申請書(乙イ・六)での「二次冷却材漏洩
事故」、「事故原因及び防止対策」によれば、「この事故は、原子炉出力運転中
に、何らかの原因で二次主冷却系配管が破損し、二次冷却材が漏えいする事故とし
て考える。この事故が生じると、中間熱交換器での除熱能力が低下し、原子炉容器
入口ナトリウム温度が上昇するため、炉、心の安全な冷却ができなくなる可能性が
ある。」こと、そして「漏えいしたナトリウムの顕熱及び燃焼熱によって、漏えい
ナトリウムの流出・移送過程又は貯留後に部屋の雰囲気温度あるいは床面に設けた
ライナの温度が上昇し、ナトリウムとコンクリートの接触防止機能に悪影響を与え
る可能性がある。また、空気雰囲気の部屋では、内圧が上昇し、建物、構築物の健
全性を損なう可能性がある。」と説明されている。そして「漏えいナトリウムによ
る熱的影響の解析」においては、「漏えいナトリウムによる熱的影響の解析」が、
「流出・移送過程及び貯留後」について行なわれている。
 今回の事故との比較では「流出・移送過程」がまず問題となるが、そこでは、
「漏えい「ナトリウムが漏えい口から床ライナ上に流出落下し、床ライナ上を流れ
て連通管開口に達する過程の熱的影響」が解析されており、その解析手法と
して「計算コードSPAY―Ⅱ及びSOFIRE―MⅡを用いて、二次主冷却系配
管室及び過熱器室における二次冷却材漏えい事故時の内圧、雰囲気温度及び床ライ
ナ温度の時間変化」が求められている。「解析条件」としては、「二次主冷却系配
管室」又は「過熱器室でナトリウムが漏えいして、部屋の床ライナ上に落下し、漏
えいが生じた部屋及び隣接する部屋に溜まるものとする。」、「漏えいナトリウム
は室内雰囲気と反応して燃焼するものとし、流出過程、隣接する部屋の床上での滞
溜等を考慮する。」、「(ii)二次主冷却系配管における割れ状の漏えい口とし
て十分大きな、長さがD/2、幅がt/2(D及びtはそれぞれ管の直径及び厚
さ)のスリッドを考え、相当面積の円孔から冷却材が流出するものとする。(1)
したがって、漏えい口の大きさを一五〇cm2とする。」、「(iii)ナトリウ
ムの漏えい量は二次主冷却系配管室では一五〇m2、過熱器室では九五m3とし、
漏えいナトリウム温度はいずれも五〇七℃とする」となっている。
 その結果として、「二次主冷却系配管室でのナトリウム漏えいの場合に関し
て」、「内圧上昇は約〇・二二kg/m2であり、原子炉補助建物当該室の耐圧
〇・六kg/2cmG以下にとどまる。また、床ライナの最高温度は四六〇℃であ
り、設計温度五三〇℃以下にとどまる。」とされ、「結論」は「漏えいナトリウム
による熱的影響については、流出・送過程及び貯留後について、それぞれ、十分に
厳しい条件を仮定しても、部屋の内圧及び床ライナの温度はいずれも設計値以下で
あり、その健全性が損なわれることはない。建物コンクリートの温度も過度に上昇
することはなく、その健全性が損なわれることはない。」とまとめられている(乙
イ・六・一〇―三―三七~三八)。
(五) 右のとおり「もんじゅ」の設計および安全審査においては二次系ナトリウ
ムの漏洩事故は、大規模漏洩(一五〇立方メートル)による①炉心冷却能力への影
響と、②床ライナなどへの熱的影響の観点から想定・解析されているのみで、本件
ナトリウム火災事故における高温腐食(鉄とナトリウムと酸素が高温下で関与する
界面反応による腐食)に起因する各種の影響についての事故想定は完全に欠落して
いる。即ち、被告らは、当然設計基準事故=「事故」に分類されるべき本件ナトリ
ウム火災事故を全く想定しなかったという誤りがある。また床ライナなど
への熱的影響については、後述のとおり、本件ナトリウム火災事故で床ライナの温
度は七〇〇度から七五〇度に達したと推定され、原子力安全委員会第一報・乙イ・
一二・二六)、許可申請書の「設計温度」の五三〇度(乙イ・六・一〇―三―三
七)をあっさりと超過してしまった。右「設計温度」は後述(第六章第一の八の4
(一)(5))のとおり、動燃が「約束」し、原子力安全委員会がこれを「承認」
した審査基準としての意義を有する温度値である。ここにおいて右審査基準一「設
計温度」の不合理性も明らかとなる。さらに、条件によっては、高温の漏洩ナトリ
ウムと床コンクリートが直接し、コンクリート中の水とナトリウムの反応で生じる
水素ガスの爆発によって、建物・構築物の損壊、引いては炉心冷却能力の低下をも
たらす可能性もありえた。したがって、本件ナトリウム火災事故は被告らが想定し
た事故の範囲内(炉心冷却能力への影響と床ライナヘの熱的影響)でもその想定に
基づく事故解析の誤り=非保守性を明らかにしたものである。
(六) さらに本件ナトリウム火災事故の現場では、二次系配管と空調ダクトとグ
レーチング(作業用の架台)が垂直方向で部分的に重畳しているが、このような現
場状況でのナトリウム漏洩とこれの影響(ナトリウムの燃焼態様など)を被告らは
全く考慮していない。現実に発生した本件ナトリウム火災事故では右の空調ダクト
やグレーチングの存在が漏洩したナトリウムの燃焼態様を複雑にし(ナトリウムと
ダクト、グレーチングとの接触による)、被告らの机上の想定を超える事態をもた
らしたのである。
 熱的影響の解析については、床ライナの温度は「SOFIRE―MⅡ」によって
計算されている。これはプール火災を起こしているナトリウムを対象にした計算コ
ードであり、本件ナトリウム火災事故のように上部から落下してくるナトリウムの
火災は扱えないはずのものである。すなわちナトリウム漏洩量として仮定されてい
る一五〇立方メートルという量は量的には今回の事故を上回るが、ナトリウムが床
面に留まり、床ライナと直接接触するのはナトリウムであって燃焼は床ライナと離
隔したナトリウムの表面でのみ起こっているというプール火災の仮定を置いている
以上、床ライナにとっては極めて緩い条件を課すものである(床ライナとナトリウ
ムの接触面では燃焼その他の化学現象を想定していない)。これはナトリウム事故
と異な
る現実性の無いものであるばかりか、非保守的であり、安全側の解析になっていな
い。
(七) これらによれば被告らが本件ナトリウム火災事故を全く想定していなかっ
たことおよび想定した事故においてもその解析を誤ったことは明らかである。そう
であれば「これらの(『事故』の)判断基準による評価の他にも必要に応じて」M
FBR(注・液体金属=ナトリウムを用いる高速増殖炉)の特徴を踏まえ評価を行
うものとする」(「考え方」・別紙Ⅱ3(3)(3・2))とされてはいるもの
の、右の「必要に応じた」事故想定と安全評価は一切行われず、従って右の審査基
準が何の有効性を持たなかったことも、又、明らかである。因みに、原子力安全委
員会はその第二報(乙イ・四一)で、「設置許可当時の安全審査では、中小規模の
漏えいによる床ライナの影響は検討されなかった。これは当時の関係者が、床ライ
ナ温度が仮にナトリウムの沸点(約八八〇℃)に達したとしても、ライナ材料の融
点(約一五〇〇℃)に比べれば十分低いので、床ライナが溶融することはあり得
ず、したがって注目すべきは床ライナが熱膨張によって機械的に破損するか否かで
あるが、床ライナの全体としての熱膨張が最大になるのは、ナトリウムプールが形
成されてライナが全面過熱される大規模漏えいの場合で、中小規模の漏えい時の影
響はこれに包絡されると判断したためと考えられる。」(乙イ・四一・一六頁)
と述べ、自己の無知の責任を認めている。
(八) 要するに本件の設計基準事故の想定および事故解析の審査基準の設定にお
いて、被告国は現実の事態(即ち、本件ナトリウム火災事故の発生)を予測でき
ず、漫然と非現実的な審査基準に依拠したのである。
 そして右のような審査基準(前記の「考え方」)の不合理性は、
「これまでの調査審議を通じて得られた鉄、ナトリウム及び酸素が関与する界面反
応による腐食という知見を基に、「高速増殖炉の安全性の評価の考え方」における
ナトリウムによる腐食の考え方について検討し、その結果を早期に取りまとめるこ
ととする。」(原子力安全委員会第三報、乙イ・四二の二・三頁)として原子力安
全委員会がこれを認め、また原子力安全委員会委員長のP1も
「この指針、考え方(注・「評価の考え方」)自体に、今回の事故を受けて、どう
いう不備があった、あるいは、不備を指摘することは可能かどうかという点は、御
説明いただけますか。
ナトリ
ウムによる鉄の腐食というのは、一言書いてあるんでございますが、そこで言って
いる腐食というのは、通常こういう工業機器でよく見られる腐食でございまして、
寿命期間中にわたって、例えば零点何mmといったような程度のものを指しており
ます。したがって、一時間に何mmと言ったような、こういう、ものすごい激しい
腐食までは、とてもそれでは読めなかろうと。ですから、そういうことに対する考
慮も含めていかなければならないだろうと。これは現在検討中でございますが、そ
れも含めまして、見直しをしております。
(中略)
ということは、この考え方(注・「評価の考え方」)自体についても、現時点から
見れば、回顧的に見れば不備な点を指摘せざるを得ないと、こういうことになりま
すかね。少なくとも、ああいう激しい腐食については何ら言及しておりませんの
で、その部分は付け加える必要があるのではないかということで検討しておりま
す。」(P1証人・二七回・一三六頁および一三七頁)と証言する。即ち被告国も
「評価の考え方」その他の基準の不合理性、従ってこれらの改正の必要性を公言し
ているのである。
3 まとめ
 以上のとおり、現に発生した本件ナトリウム火災事故を直視すれば、「もんじ
ゅ」の設計基準事故の想定に関する審査基準が本件許可処分の基準として不合理で
あったことは明らかであり、被告国もこれを認めている。
 本項の冒頭で述べたとおり、設計基準事故とその解析は、被告国が原発訴訟で全
面的に依拠する「基本設計論」を担保するための唯一の手続である。本件ナトリウ
ム火災事故はその根拠となる審査基準の不合理性が、事故想定と事故解析の両面で
明らかになったのであり、このような審査基準は無効である。
三 蒸気発生器伝熱管高温ラプチャを設計基準事故としない不合理性
1 高速増殖炉の最大のウイークポイント蒸気発生器
 高速増殖炉の技術のうち最も危険性の高い技術の一つがナトリウムと水の一熱交
換を司る蒸気発生器である。わずか3ミリ程度の配管の壁を隔ててナトリウムと水
の間の熱交換を行なうという技術は根本的な困難を抱え込んでいる技術である。
 もんじゅはヘリカルコイル型で、伝熱管の材質もことなる蒸発器と過熱器という
二つの蒸気発生器が設備されている。これまで開発された高速増殖炉ではさまざま
な形式の蒸気発生器が試されたが、未だ定型と呼べる形式がない。それほど、困難
な技術なのである

2 PFR事故
 イギリスの高速増殖炉原型炉であるPFR炉において、一九八七年二月蒸気発生
器の過熱器の伝熱管の大量破断事故が発生した。
 最初の細管破断の原因はナトリウムのバイパス流が発生し、伝熱管への衝突流が
生じたためであるとされている。この事故はわずか一〇秒程度のうちに、破断した
細管付近の三九本の伝熱管を破断し、更に七〇本を損傷させるという重大事故に発
展した。この事故拡大の原因は事故調査結果によると、この二次破損原因のほとん
どは、発熱反応である水ナトリウム反応による過熱(高温ラプチャ)であり、従来
破損伝播の基本的な機序であるとされてきた腐食やウェステージは重要でなかった
とされた。
3 SWAT3RUN16実験の驚くべき結果
 被告動燃が九九年二月末に開示した「海外出張報告書」(甲イ四四三)によっ
て、被告動燃が一九八一年に実施したSWAT3RUN16において、もんじゅ蒸
発器の定格運転時の条件を模擬した実験で、伝熱管二五本の破断をもたらす驚くべ
き結果をもたらしていたことが判明した。そして、この大量破断のメカニズムも高
温ラプチャを原因とするものであった。破断の事故伝播に関してこれまでの安全審
査の前提となってきた現象把握自体が誤っていたといえる。
4 明らかになったもんじゅ安全審査の欠陥
 蒸気発生器の大量破断は中間熱交換器(一次系と二次系の接点)の破壊、大量の
放射能漏れ、さらには炉心の破壊につながる重大な事故である。もんじゅの設計基
準事故は当初一本の破断をきっかけに破損伝播三本とされてきた。この想定は七〇
年代までの知見と小規模のウェステージ実験に基づくものであった。
 PFR事故とSWAT3RUN16実験はこのような想定をはるかに上回る事故
であった。また、破断原因は想定されていたウェステージではなく、高温ラプチャ
現象であった。
 高温ラプチャによる伝熱管大量破断事故の発生の危険性は極めて高い。にもかか
わらず、SWAT3RUN16はもんじゅの安全審査中の実験であったにもかかわ
らず、国と原子力安全委員会に報告すらされず、高温ラプチャに関しては国の安全
審査は全く行われていないのである。安全審査の欠陥は明白と言わなければならな
い。
5 SWAT3RUN19実験は保守的な条件によるものといえない。
 被告動燃はSWAT3RUN19の実験で水流動のある伝熱管に高温ラプチャは
発生しなかったことを唯一
の根拠としてもんじゅでは高温ラプチャは起きないとしている。しかし、この実験
の条件は保守的なものといえないし、この実験でも加圧管の五本については高温ラ
プチャが発生しているのである。急速ブローが設備されていれば安全であることも
証明されていない。被告動燃の調査によっても、PFRでは、急速ブローは有効で
ないとして取り外されていた。又、仮に設備されていたとしても効果は大きくない
とされていた。
 高温ラプチャについてSWAT3RUN19で発生しないことを確認したとする
被告動燃の説明は、イギリスのPFRの技術者の納得を得ることはできなかった。
このことを被告動燃のレポートが自ら認めている。
6 再現実験と設計基準事故の設定のやり直しは不可欠である
 もんじゅで高温ラプチャによる伝熱管大量破断が発生しないことを確認するため
には、PFR事故も踏まえ、再現実験を行うべきであった。推定された条件による
解析による計算だけの現状では、事故とその影響の解明は不可能である。ナトリウ
ム漏れの事故についても再現実験によって腐蝕問題が明らかとなった。
 このような再現実験を実施し、その結果に基づいて設計基準事故を設定し直す作
業が不可欠である。そして、この新たに設定し直された設計基準事故に中間熱交換
器が耐えられるかどうかを検証する必要がある。
 もんじゅ蒸気発生器にはこのように、明白な安全上の重大な欠陥があり、又、こ
のことが全く国の安全審査で審査されていない。高温ラプチャ事故を設計基準事故
としないもんじゅの安全審査は明らかに不合理であり、重大かつ明白な違法があ
る。
7 蒸気発生器伝熱管破損事故評価に関する被告の主張に対する反論
 被告国は、安全評価は、単に安全設計の妥当性を念のために確認するだけのため
に行うのであり、防止対策が施されていることを確認しているとして、安全審査で
高温ラプチャを考慮する必要はないと主張する。しかし、被告が確認したのは、防
止対策の基本方針にすぎず、ましてやその基本方針が高温ラプチャを防止しうるこ
とを「念のため」にも確認したわけではない。それを「高温ラプチャは生じ得ず」
と根拠もなく強弁しているに過ぎない。被告国は、そもそも安全審査時に高温ラプ
チャを検討したかどうかさえ明らかにしていないが、検討したという主張がないと
ころがらすれば、このような検討はなされていなかったと考えられる。
 また、SWAT13
試験のRUN―16で多数の高温ラプチャが発生したのは「使用条件とは大きくこ
となる条件で実験したため」として、実機条件を模擬したとするRUN―19の存
在を理由に、同様の現象は「もんじゅ」で起こらないとしているが、RUN―19
は、単に条件を理想化した一例にすぎず、RUN―16で高温ラプチャが起こった
のは使用条件と大きく異なったからであるとする実証的根拠は皆無である。
 いずれにしても、被告国が、一度も公式に検討したことのない事項について、な
ぜこのような主張が可能なのか、根本的な疑問がある。伝熱管破損事故の初期条件
は多くあり、そのいくつかの違いによって事故経過も結果もことなる。それらを調
べる系統的実験等をやらず、判断材料になるデータが極めて乏しい状態で、被告動
燃が行った僅か一つの実験だけを根拠に、これについて公式の検討を行うことな
く、高温ラプチャを考慮する必要はないとしていることは、安全審査をすべき任務
を放棄するものである。本件の事実関係のもとでは、本件許可処分を維持すること
は到底許されない。本件許可処分の違法性は重大かつ明白であって無効と断ぜざる
を得ない。
四 炉心崩壊事故を設計基準事故としない不合理性
1 炉心崩壊事故は高速増殖炉の苛酷事故=シビアアクシデントである
(一) 一九五五年にアメリカの高速増殖炉EBR―1で起きた炉心溶融事故は高
速増殖炉に特有な危険性によるものであった。そのため、「高速増殖炉の反応度が
何らかの原因により上昇して出力が上昇したり、あるいは炉心の冷却が不十分にな
ったのに、原子炉の緊急停止に失敗したために、炉心温度が上昇して燃料や被覆材
の溶融などが生じ、炉心が破損する事故」=「炉心崩壊事故」が研究の重要なテー
マとなった。
 一方、軽水炉に関しては、アメリカの原子力規制委員会(NRC)は、一九七五
年に発行した原子炉安全研究報告書において原子炉のリスクを定量的に評価し、設
計基準事故(DBA Design Basis Accident、わが国の
「発電用軽水型原子炉施設の安全評価に関する審査指針」(乙第四号証二七一頁)
では設計基準事象(DBE Design Basis Event)と呼び変え
ている)を超える炉心損傷ないし炉心溶融に至る事故(苛酷事故=シビアアクシデ
ント)の発生確率を求めたが、一九七九年にアメリカのスリーマイル島二号炉でT
MI事故が発生しその後の調査
によって、炉心燃料領域の約三分の一が溶融、三分の二が崩壊した事故(甲イ第三
八八号証)であったことが明らかになり、設計基準事故を超える炉心損傷事故が現
実に起こりうることを示したものとして世界中に大きな衝撃を与えた。
 それ以降、シビアアクシデントの重要性が認識され、アメリカや旧西ドイツ、フ
ランスなどでは検討が始まった。この動きはチェルノブイリ事故によって加速さ
れ、欧米の多くにおいて新たな設計上の対応がせまられた。
(二) 原子力安全委員会は苛酷事故=シビアアクシデントを、「設計基準事象を
大幅に超える事象であって、安全設計の評価上想定された手段では適切な炉心の冷
却又は反応度の制御ができない状態であり、その結果、炉心の重大な損傷に至る事
象」と定義している(原子力安全委員会原子炉安全基準専門部会共通問題懇談会中
間報告(一九九〇年)甲イ三八九号証四頁)。この高速増殖炉版が炉心崩壊事故で
ある。
2 高速増殖炉では軽水炉よりも苛酷事故=シビアアクシデントが起こりやすい
 高速増殖炉では、申炉心冷却の失敗が引き金となって出力暴走事故が起き、しか
も制御に失敗することが最も厳しい事故だと考えられる。軽水炉と違って、高速増
殖炉がこのような危険性を持つのは次の理由による。
① 炉心が、反応度が最も高い状態にない。一旦未臨界になっても燃料が溶けて寄
り集まったりして炉心の配置が変われば再び臨界になる(再臨界)ことが起こりう
る。
② 炉心の出力密度が高く、燃料棒間隔が狭く、冷却材通過が困難になりやすい。
③ ボイド反応度が正であって、出力が上昇しやすい。
④ 原子炉停止系は制御棒のみであり、軽水炉がボロン水注入のような原理の異な
る停止系を持っているのと比較して同じ原理の停止系しかない。
3 「技術的には起こるとは考えられない事象」は安全審査の対象となった
(一) 「運転時の異常な過渡変化」と「事故」は設計基準事故
 原子力委員会が一九七八年に定めた「発電用軽水型原子炉施設の安全評価に関す
る審査指針」では、さまざまな事象を、発生頻度と放射性物質放出の可能性の有無
によって「運転時の異常な過渡変化」と「事故」に分けている。この二つの範疇は
設計基準事象とされており(乙イ第七号証一〇九頁)、解析に当たって考慮すべき
事項として、使用するモデル及びパラメータについては「評価の結果がきびしくな
るように選定しなければならない」とされ、故障等の仮定については「作動を要求
される安全系の機能別に結果を最も厳しくする単一故障を仮定しなければならな
い」とされている。つまり、保守的な、安全側に立った条件を用いて解析すべきこ
とが条件とされているのである(同一〇六頁)。
 もんじゅでもここまでは軽水炉と同じであるが、このような事故解析の外に更に
一段厳しい事象を評価することが、「高速増殖炉の安全性の評価の考え方につい
て」に規定されている(乙イ第七号証六五五頁)。これが「5項事象」(同頁)=
「技術的には起こるとは考えられない事象」(乙イ第六号証一〇―四―一頁以降)
という、大きな問題をはらんだ項目である。
(二) 「技術的には起こるとは考えられない事象」は安全審査の対象ではある
 この項目は、動燃が一九八〇年(昭和五五年)一二月に提出した最初の許可申請
書には存在しなかった。翌年一二月二八日になって、先に提出した許可申請書に対
する補正申請書が提出され、その中ではじめて登場したのである。もんじゅは軽水
炉と著しく違う性質を持つので、その安全性を評価するためにも軽水炉とは違う基
準が必要となるが、もんじゅの安全審査が始まる前には軽水炉について定めた「発
電用軽水型原子炉施設の安全評価に関する審査指針」しがなかった。許可申請書を
提出する直前の一九八〇年一一月になって、もんじゅを対象として原子力安全委員
会は「高速増殖炉の安全性の評価の考え方について」と題する指針を決定した。原
子力安全委員会は、一九七九年に設置された原子炉安全基準専門部会高速炉小委員
会で、高速増殖炉の安全性を評価する際の基本的な考え方を得ようとして、実験炉
「常陽」の経験を踏まえ、外国の考え方を参考にし、もんじゅを念頭において検討
を行わせていたのである。その中で、軽水炉の安全性評価の考え方を基本的にはと
るものの、高速増殖炉の運転経験が少ないので、「事故より更に発生頻度は低いが
結果が重大であると想定される事象」について、「その起因となる事象とそれに続
く事象経過に対する防止対策との関連において十分に評価を行う」ものとした。
「運転時の異常な過渡変化」「事故」を説明したあとに第5項として書かれている
ために、「5項事象」とも呼ばれる項目がこれである。この事象は安全審査の体系
上は「技術的には起こるとは考えられない事象」に位置づけられている。
 当時、国際的に苛酷事故月シビアアクシデントの研
究が進み、高速増殖炉の分野では以前から炉心崩壊事故が問題になっていたので、
これを無視することはできなかったために、この概念とほぼ重なり合うように、
「技術的には起こるとは考えられない事象」という独立した項目を考え出し、「高
速増殖炉の安全性を評価するために選定すべき事象」としたのである(乙イ第七号
証六五二頁)。
4 安全審査の対象ではあるが、設計基準事故とはされていない
(一) 「運転時の異常な過渡変化」及び「事故」については、解析に当たって使
用するモデル及びパラメータは評価の結果が厳しくなるように選定しなければなら
ない。つまり、初期条件や途中の計算条件・数値などについては保守的な、より厳
しい、安全側に立った条件をもちいなければならないとされている。これは「設計
基準事故」として取り扱うことを意味する。
(二) ところが「技術的には起こるとは考えられない事象」は、「施設の安全裕
度を確認するために、念のために」行うに過ぎないものと位置づけられ、保守的解
析条件をもちいなくて良いとされてしまっている。この点につき、被告動燃や被告
国は「炉心損傷に至るおそれのある事象を選定するに際して、非現実的な仮定をあ
えてしたものであり、起因事象の選定それ自体において極めて保守的な考慮がされ
ているので、解析に用いるモデルやパラメータについては「最も確からしいものを
用いた解析を行って事象経過を忠実に再現することができればその目的を達するこ
とが出来るのであり、解析にあたり、事象の不確かさの範囲内で保守的なものを考
慮すれば十分であって、これにとどまらず、更に非現実的に保守的なパラメータ等
を用いて解析すべき理由はない」と主張する。
 しかし、これは、設計基準事故を超える事故のシナリオを造ることと、そのシナ
リオに基づいて具体的な計算をする際に保守的な条件を使用することとを混同して
いる。当初の仮定が厳しくても、途中の計算の際の仮定を甘く取れば炉心崩壊事故
によって放出されるエネルギーの値を幾らでも小さくすることができる。これでは
安全審査の対象とした意味のほとんど全てが失われることになる。
5 アメリカや西ドイツなどではより厳しい基準が置かれている。
(一) アメリカでは実質的に設計基準事故とした
 クリンチリバー原型炉(CRBR)について、審査側であるアメリカの原子力規
制委員会(NRC)は、「炉心崩壊事故は設計基準事故では
ないが、事故の影響の軽減を目的とする設計対応をとるべきである」という許認可
指針を発表し、更に「崩壊事故後、最低二四時間以内は格納容器の健全性が維持で
きること」を申請側に要求した。その上で、原子炉冷却バウンダリの健全性を保証
するために、瞬時に発生する機械的エネルギーの上限として、申請者側が一気圧ま
での膨脹で六六一MJを選択したのに対して、審査者側は一二〇〇MJを要求し
た。これは実質的にみれば、炉心崩壊事故を設計基準事故と見るのに等しい取り扱
いであった(甲イ第三七三号証一〇一頁)。
(二) ドイツの規制も日本より厳しい
 規制当局である州政府は、炉心崩壊事故を格納容器の設計基準事故とし、実証炉
もその影響評価を行うべきと考えていた。そして耐衝撃評価としては、初期の許可
段階で以下の二つの要求をした。
① 一五〇MJの有効仕事エネルギーに対しても原子炉容器は健全で崩壊熱が除去
できるようにすること
② 三七〇MJの有効仕事エネルギーに対しても原子炉容器および一次系バウンダ
リの健全性は格納容器に対する損傷を避けうる程度に維持されること
 ところで、有効仕事エネルギー計算の基準であるが、もんじゅでは一気圧までの
等エントロピー膨脹を仮定し「構造物の耐衝撃評価にあたっては膨脹過程における
最大有効仕事量として五〇〇MJを考慮する」とされているのに対し、原型炉SN
R三〇〇ではカバーガス(七〇立方メートル)まで膨脹したときの値を使用してい
る。一気圧まで膨脹した時の値はカバーガスまで膨脹した時の値の二・五~三倍程
度になるので、西ドイツの基準である一五〇MJはもんじゅの基準に換算すると四
〇〇MJ程度となるが、三七〇MJは一〇〇〇MJ程度となって、もんじゅよりも
厳しい基準となる(甲イ第三七三号証五七頁)。
(三) フランスでは設備設計上の配慮を厳しく求めている設計基準事故にはして
いないが設備設計上の配慮は具体的でかつ厳しくなっており、一次系バウンダリに
一五〇MJ(カバーガス体積相当)が基準とされている。実証炉スーパーフェニッ
クスでは、溶融燃料をうけとめるためのコアーキャッチャーを原子炉容器の底に設
けることも要求されている(甲イ第三七三号証六七頁)。
 アメリカ、西ドイツ、フランスの規制をまとめると、設計基準事故としているの
は西ドイツだけであるが、アメリカとフランスでは事実上それと同程度の厳しい要
求がなされている
のである。
6 事故解析に保守性・安全側の仮定をおかない不合理性
 炉心崩壊事故の解析は困難である。どのような事象が炉の内部で起こっているか
わかりにくいし、実物大の施設で実験をするわけにはいかないので、どうしてもコ
ンピューターシミュレーションに頼らざるをえない。そうなると使用するパラメー
タをちょっとでも変えれば事故の経過は変わるし結果も大きく変わる。安全審査で
考慮した道筋以外の道筋で事故が拡大することもありうる。研究開発段階の原子炉
については、事故のみちすじを十分に予想できないのは当然であろう。従って、考
えうる最悪の事態を考慮するのは、設置者にも安全審査を担当する者にも課せられ
た義務である。
 一旦炉心崩壊事故が起これば、炉内の放射性物質は外部に放出され、住民に恐る
べき被害をもたらす。従って、不合理な基準に基づく「安全審査」に依拠した原子
炉設置許可は無効であり、また、運転は差し止められるべきである。
五 耐震設計基準の不合理性
1「もんじゅ」の耐震設計の概要
 「もんじゅ」は、原子力安全委員会の定めた「発電用原子炉施設に関する耐震設
計審査指針」(以下「耐震設計審査指針」もしくは単に「指針」と言う)に従って
耐震設計がなされている。
 この耐震設計審査指針の概要は次のとおりである。
① まず、原子炉施設の耐震設計上の施設別重要度をA、B、Cの三クラスに分け
る。このうちAクラスの中の特に重要な施設をAsクラスとする。
② Aクラスの施設は、設計用最強地震による地震力又は以下の静的地震力のいず
れか大きい地震力に耐えること。更にAsクラスの施設は、設計用限界地震による
地震力に対してその安全機能を保持できること。
 B、Cクラスの施設は、以下の静的地震力に耐えること。
 (静的地震力については、各クラス,ことに層せん断力係数等を定めている)。
③ 敷地の解放基盤表面において考慮する地震動(基準地震動)は、強さの程度に
応じ二種類の地震動S1とS2とを選定するものとする。
(a) S1をもたらす地震(設計用最強地震)としては、歴史的資料から過去に
おいて敷地又はその近傍に影響を与えたと考えられる地震が再び起こり、敷地及び
その周辺に影響を与えたと考えるおそれのある地震及び将来敷地に影響を与えるお
それのある活動度の高い活断層による地震のうち最も影響の大きいものを想定す
る。
(b) S2をもたらす地震(設計用限界地震
)としては、地震学的見地に立脚し設計用最強地震を上回る地震について、過去の
地震の発生状況、敷地周辺の活断層の性質及び地震地体構造に基づき工学的見地か
ら検討を加え、最も影響の大きいものを想定する。S2には、マグニチュード六・
五の直下地震によるものも含む。
④ 過去の地震動の強さの統計的期待値として、河角マップあるいは金井マップの
ような統計的研究結果を考慮する。
⑤ これらのS1、S2について地震動の最大振幅、地震動の周波数特性、地震動
の継続時間及び振幅包絡線の経時的変化を導き、動的解析を行なう。
⑥ 各クラスごとに荷重の組み合わせと許容限界を定める。
 Asクラスの建物・構築物については、常時作用している荷重及び運転時に作用
している荷重と、S1による地震力又は静的地震力とを組み合わせ、その結果発生
する応力に対して、安全上適切と認められる規格及び基準による許容応力度を許容
限界とする。また、常時作用している荷重と運転時に施設に作用する荷重とS2に
よる地震力との組合わせに対して、当該建物・構築物が構造物全体として十分変形
能力の余裕を有し、建物・構築物の終局耐力に対して妥当な安全余裕を有している
こと。
 Aクラスの建物・構築物については、右のうち、S1等との組合わせによる許容
限界を適用する。
 (B、Cクラスの建物・構築物についての規定)
 Asクラスの機器配管については、通常運転時、運転時の異常な過渡変化、及び
事故時に生じるおそれの荷重とS1とを組み合わせ、その結果発生する応力に対し
て、降伏応力又はこれと同等な安全性を有する応力を許容限界とする。また、通常
運転時、運転時の異常な過渡変化時、及び事故時に生じるおそれの荷重とS2によ
る地震力とを組み合わせ、その発生する応力に対して、構造物の相当部分が降伏
し、塑性変形する場合でも過大な変形、亀裂、破損等が生じ、その施設の機能に影
響を及ぼさないこと。
2 耐震設計審査指針の問題点
(一) S1とS2を区分することの意味(「過去起きたから危険だ」論から「過
去起きていないから危険だ」論への転換)
(1) 耐震設計審査指針(乙イ七号証六六ページ)は、基準地震動をS1とS2
の二種に区分し、基準地震動S1としては、歴史的資料から過去において敷地又は
その近傍に影響を与えたと考えられる地震が再び起こり、敷地及びその周辺に同様
の影響を与えるおそれのある地震及び近い将来
敷地に影響を与えるおそれのある活動度の高い活断層による地震のうちから最も影
響の大きいものを想定するとする。そのうえで、指針の解説(同六九ページ以下)
は、この基準設定の根拠を、歴史的証拠から過去において敷地又はその近傍に影響
を与えたと考えられる地震が、同じ場所で同じ規模で、近い将来再び起こり敷地お
よびその周辺に同様の影響を与えるおそれがあると考えることを妥当とすることに
求めなお更に、これだけでは不備があるかもしれないとして、確実な地質学的証拠
と工学的判断に基づいて近い将来敷地に影響を与えるおそれのある活動度の高い活
断層による地震を考慮に入れるとしている。
 しかし、現在の知見によれば、歴史地震の位置付けは確実に変わってしまってい
る。この耐震設計審査指針策定にも加わったと思われる松田時彦は、一九八一年に
活断層から発生する地震の危険度Pを、最新の地震から現在までの経過時間tと地
震の活動間隔Rの比で定義し、危険度〇・五を超える活断層もしくは断層系に注意
を要することを指摘した(甲ハ六七号証二〇〇ページ以下)。この要注意断層とし
ては、右の無地震経過率の大きいもののみならず、一つの断層帯の一部分が比較的
最近(歴史時代)に活動している場合には、残りのまだ活動していない区間もまた
注意を要するとされている(甲ハ六五号証九二ページ以下)。価これは、「過去に
地震が起きたことがあるから将来も危険だ」とする考え方から、「過去に地震が起
きていないからこそ危険だ」という考え方に、根本的に転換したということを意味
している。
 日本では、過去二回以上動いたような活断層記録はなく(甲ハ四五号証一三ペー
ジ以下)、特定の内陸断層からの大地震では、その再来間隔は四桁(一〇〇〇年以
上)と考えられていることから、一旦、歴史地震が起こっているなら、再び起こる
可能性はまず考える必要がなくなっている(ただし、余程古い記録の場合で、断層
の平均変位速度が大きい場合は注意を要する場合がある)のである。たとえば兵庫
県南部地震が、近い将来、同じ場所で同じ規模で、また起こると思う者は、現在で
はいない。右に述べた同じ断層系の他の部分が危険だという意味は、動いた部分は
危険とは言えないということを意味しており、松田時彦自身が、その考え方を変え
たと見て良いのである。この歴史地震を起こした断層は、むしろ近い将来には再び
活動しないという考え方は、ほとんど常識と化していると言って良いが、この耐震
設計審査指針は、古い考え方に立ち、歴史地震を重視する態度をとり続け、「地震
が過去起きたことがあるから危険だ」論にしがみついている。
(2) 耐震設計審査指針は、更に、活動度の高い活断層をも考慮することにして
S1を導こうとしている。しかし、この「活動度」というのは、要するに平均変位
速度が大きい活断層ということを意味する。変位速度の大きさによって活断層はA
級・B級・C級に分類されるが、このうちA級がもっとも活動性が高い。しかし、
注意を要する活断層は、決してこうした活動度の高い活断層に限らない。このこと
は、松田による要注意断層の定義を見れば明らかであり、活動度の如何にかかわら
ず、危険度Pが大きければ危険なのである。なお、この危険度による判断は、必ず
しも十分なものとは言えず、活動する区間が地震ごとによって異なることもあっ
て、危険度Pが小さくても安心することはできない。次の地震の時期と規模をもっ
と狭い範囲で特定することは難しいのが実情であり、松田時彦や藤田和夫も「活断
層があるだけで黄色信号がともっていると考えるべきだ」と言っているのである
(甲ハ六八号証五五ページ)。
(3) 地質学は、日進月歩と言って良い変化を遂げた。ところが、この耐震設計
審査指針は、昭和五六年に策定されて、以後、全く改訂されていない。このこと自
体が、極めて異常なことと言うべきである。本件においては、民事事件において、
昭和五七年に東京大学名誉教授になった木村敏夫証人が証言するだけで、新進の学
者は、被告動燃側の証人には一切なっていない。この時代遅れの耐震設計審査指針
を擁護するのは、まさしく古い学者でしかないのであって、新進の学者が証人とな
らないのもいわば当然のことであり、極めて象徴的なことなのである。
(4) こうして、S1とS2を区分する理由は何もないということなってしま
う。歴史地震を重視してS1を定めるという考え方自体が、もはや採用の限りでは
ないのである。前記の「活断層があるだけで黄色信号がともっている」という考え
方に従えば、S1なる概念を取るべきではないのであり、S2に相当する地震をS
1として扱わなければならないのである。
(5) 耐震設計審査指針は、また河角マップ・金井マップを採用して、過去の地
震動の強さの統計的期待値なるものも基準地震動評価にあたって考慮するとさ
れている。この河角マップ金井マップは、有史以来発生した地震が、そのまま、今
後も再び起こるという古い考え方に基づいたものであり、有史以来発生した地震を
統計的に見て、作成されたもので、歴史地震重視の考え方をそのまま体現したもの
である。これに対して、現在は、力武マップが作成されている(甲ハ六六号証)
が、この力武マップは、歪が進行して、歪が限界に達して地震を発生させるという
現在の考え方に依拠するものであり、歪の平均進行率を求めて危険度を算出しよう
というものである。この河角マップ・金井マップから力武マツプヘの転換・発展こ
そが、「過去起きたから危険だ」論から「過去起きてないから危険だ」論への転換
を、象徴的に現わしている。今や河角マップ・金井マップは歴史的価値しか持ちえ
ていないのである。指針は、こうした歪の進行によって地震が発生するという考え
には立っていないから、力武マップのような歪の進行率から算出する危険度を考慮
するとはされていない。
 ところで、動燃は、昭和六一年一一月七日付準備書面一九ページ以下において、
「本件原子力発電所の敷地を含む若狭湾東部地域における過去数十年間の地震活動
を見ると、昭和三八年にマグニチュード六九の越前輝沖地震が発生しており、した
がって、右地域においては大きな地震を引き起こすようなひずみは解放されている
ものと考えられる」と言う。では「ひずみは解放され」て再び近い将来起こると考
えられないと、暗に主張する動燃が、なぜS1の策定にあたって、この越前岬沖地
震を考慮したのか(甲イ六号証6―5―29)。この動燃が準備書面で主張する考
え方は、空白域の存在が重要であることを認めて、越前岬沖地震をS1対象地震と
して考慮した申請書の方法が誤りであることを自ら認めたものにほかならず、指針
の考え方を真っ向から否定するものである。指針は、あくまでも空白域などを問題
とはせず、歴史地震を重視しているのであり、結局、この考え方にそって行なった
耐震設計において、動燃のS1策定にあたって決定的な影響を与えたのも近年にな
って発生した濃尾地震であった。
 動燃の指定代理人は、自らの主張を行なうにあたって、原子力安全委員会の許可
を得たのだろうか。この主張は、動燃および原子力安全委員会が金科玉条のごとく
守り続けてきた歴史地震重視の考え方を、自ら否測定してしまったのである。
(二) 活動性を問うことの問題
(「過去動いていないから安心」論の誤り)右のとおり、活断層の活動性を問うこ
とは意味がないということになる。いかに活動度が低くとも、危険度Pが1に近け
れば、極めて危険ということになる。「満期の近い」あるいは「充填率が一〇〇
%」に近ければ、その活断層は明日にも動くかもしれない。
 そこで、問題となるのは、この耐震設計審査指針が、この断層の活動性を問うた
めに常に起こっている次の問題である。
 本件審査においても、断層の危険度の判定には、「最上位層堆積後の活動は考え
られない」等との文言がいくつも登場する。例えば甲楽城断層について「扇状地堆
積物が断層によって変位を受けていない」(乙イ第六号証6―3―15)、「最上
位層堆積後の活動は考えられない」(同6―3―18)である。これらはしかし、
右に述べた考え方からすれば、むしろ長期間活動せずに歪みがたまりにたまってし
まっているということを意味することになる。むしろ最上位層が変位を受けていな
ければ、極めて危険なのである。添付の音波探査記録の図4―2―5―1(原告準
備書面(一一)添付図4と同じ)を見れば、④の部分の最上位層には地層の乱れは
ない。しかし、その下方を見れば、変位した地層の山状の形態が、下に行くほど高
く鋭くなっていっている。これは、明らかに定期的にこの断層が活動しているこ
と、いまなお活動していることを示しているのである。この記録は、本件敷地の目
の前の海域の記録であり、この断層はすでに歪みが相当程度充填されてしまってい
るのである。
 この考え方は、「最近断層が動いていないから安心だ」とする考え方である。こ
れは、「過去地震が起きているから危険だ」とする歴史地震重視の考え方の反面で
あり、この歴史地震重視の考え方が転換されれば、同様に、「動いていない断層は
安心」という考え方も誤りということになる。あるいは、逆に、これまで活断層を
可能な限り耐震審査の対象からはずしてきたのが、この「動いていない断層は安
心」という考え方であるからこそ、それを変更するわけには行かず、やむなく歴史
地震重視の考え方も変更をすることができなかったのかもしれない。いずれにせ
よ、この歴史地震重視の考え方も動いていない断層は安心とする考え方も、現在で
は根本から転換せざるをえないのである。
(三) 地震のマグニチュード及び地震動の最大速度振幅を推定する方法には、大
きな誤差があるのに
、誤差については全く考慮していないこと
(1) 前記1項⑤で述べたような地震動に関係する諸量を推定するためには、
「指針」の「解説」にあるように、これまでのデータに基づいた「経験式」や、算
定法が使用されている。本件では、動燃は、経験式の一つである「金井式」と算定
法の一つである「大崎の方法」とを用いている。また、地震動算定に必要な地震の
規模(マグニチュード)は、「松田式」という経験式が用いられている。
(2) 松田式は、もともと単なる目安でしかないものとされ、多くの誤差を含む
ことが予定されている。この松田式は、断層線の長さから地震のマグニチュードを
推定する経験式であり、他に弾性論と地殻の歪限界に基づく推定の坪井の式や水準
点の変動域からの推定による檀原の式がある。断層線の長さは、今回の兵庫県南部
地震でも野島断層の部分しか地表面では動かなかったことからも明らかなように、
歪限界や水準点の変動域よりも短く出がちで、そのために松田式による推定は他の
式より大きくなっている(乙ハ一六号証)。逆に言えば、断層線の長さだけでは、
乙一六号証の七ページにあるような歪領域の範囲は、正確には分からないことが多
い。結局、甲ハ五三号証七ページの松田式の三本の直線を更に包含して、その点を
も包含するある範囲が誤差の範囲ということになる。正確にはその誤差の範囲がど
の程度かは不明であるが、「鳥取地震の点がほぼマグニチュード〇・六ほど松田式
による計算値より大きいから、松田式による計算値はマグニチュードで〇・六程度
の誤差は有すると言って良いということになる。マグニチュード〇・六の差は「地
震のエネルギーでは約八倍の差となり、極めて大きな誤差があるということにな
る。
(3) 金井式もまた、大きな誤差を含むものとされている。甲ハ五五号証の大崎
総合研究所の田中貞二論文は、金井式の誤差を(ガルで表わしているものではある
が)〇・六四~一・五七としており、金井式で算出された値の一・五七倍の値まで
が一σでの誤差としている。
 もっとも、同じ論文の別の部分である乙ハ一五号証によれば、伊豆半島沖地震や
伊豆大島近海地震では、計算値に比べ実測値は1/3~1/4小さい(同三四ペー
ジ)ということになっており(これは短周期成分の発生が少ないという特殊性によ
るものとされている)、他方で宮城県沖地震では、逆に計算値に比べ実測値が大き
くなっている。その程
度は、二九ページの図―26の破線が二月二〇日の地震のものであって、白丸に対
応しているが、例えば破線の20ガル付近を上方に見ていけば、60ガルのあたり
に白丸がある。ここでは約三倍の誤差が現われているということになる(図4―2
―5―2右上の図)。
 なお、いずれにせよ、この論文は関東以北の地震に関するものであり、本件に関
係する西南日本についてはデータが不足しているとされているので、正確な結果が
本件について出るわけではない。したがって、西南日本を考える場合には、誤差の
範囲はより大きく取る必要がある。ちなみに、甲八九号証の図―26では、斜線の
範囲が実測値の範囲であるが、金井式の一〇〇ガルのところを上方に上げてみれ
ば、斜線の範囲は二五〇ガル程度まで存在する。この図では誤差は二・五倍程度は
あるということになる(図4―2―5―2下の図)。
 この式の誤差を考慮しないということは、要するに図4―2―5―2左上の図の
実線から上の斜線部分の黒丸の地震については考慮しないということにほかならな
い。仮にこの実線が妥当な経験式を表わすとしても、実践の上下に同数の測定値が
ちらばることになる。そのうち半数の経験式を上回る地震が起きたときに、どうな
るかは、評価しなくて良いというのが、この耐震設計審査指針の方針なのである。
誤差といっても、決して小さいものではない。田中貞二の言うところがらしても、
一・五七倍、その論文中の図―25からすれば三倍程度、甲八九号証の図からすれ
ば二・五倍程度の誤差があることになる。この半数の地震が無視されているという
事実は、この指針が丁半博打をやっていることを意味している。要するに、丁が出
れば安全、半だったらどうなるか分からない、それで審査して良しというのが、こ
の指針なのである。
(4) これとほぼ同一の考え方が用いられているのが、技術的には起こると考え
られない事象である。これについての被告動燃の平成九年一二月一〇日付準備書面
によれば、「『事故』より更に発生頻度が低く、非現実的な仮定をして初めて発生
が想定され」(五ページ)、「発生頻度は無視しうるほど極めて低い」(八ペー
ジ)、(技術的には起こると考えられない事象の一つとされている)「HCDAの
解析は、起因事象の選定それ自体において極めて保守的な考慮がなされているか
ら、解析に用いるモデルやパラメータについては、最も確からしいものを用い
た解析を行って事象経過を忠実に再現することができればその目的を達成すること
ができるのであり、解析に当たり、事象の不確かさの範囲内で保守的なものを考慮
すれば十分であって、これにとどまらず、更に非現実的に保守的なパラメータ等を
用いて解析すべき理由はない」(三四ページ)とされる。この解析結果を原子力安
全委員会も認めて本件許可処分をしていることから、原子力安全委員会も、同様の
考え方を審査基準として採用していることは明らかである。
 ところで、耐震設計においては、金井式や松田式によって算定された数値を用い
れば足り、その誤差を考慮して保守的に考える必要などがないというのが動燃・原
子力安全委員会の共通の立場であり、ひいては国の採用する審査基準でもあるが、
その根拠は、金井式・松田式によって算定された数値が「最も確からしい」数値だ
からというところに求めるほかはない。してみると、最強地震も限界地震も、右の
「技術的には起こると考えられない事象」と同様に、「非現実的な仮定をして初め
て発生が想定され」るというのであろうか。しかし、地震は現実であり、兵庫県南
部地震は、決して幻ではない。活断層は、今もわずかづつ変位し続けており、いつ
原発の敷地近傍で地震が起こるかも分からない。非現実的な仮定等そのどこにもな
く、すべて現実であり真実である。現に、すでに述べたように、歴史地震が、近い
将来再び起こり敷地等に影響を与えるおそれがあると考えることは妥当とするのが
指針自身の考え方であるから、最強地震については現実的なものと指針も考えてい
ることは明らかであり、限界地震についても、五万年以降活動したと認められる活
断層、地震の再来期間が五万年未満の活断層等が、考慮の対象となっているのであ
るから、これも同様に現実的なものと指針は考えている。
 したがって、右のように誤差を考慮しないという審査基準は、事故について採用
されている審査基準とも齟齬を来しており、誤りであることが明らかである。
(5) 大崎の方法においても、松田式や金井式ほどではないものの誤差が存在す
る。甲ハ五六号証七五ページの図では、大崎スペクトルをはみ出す実地震動スペク
トルがあることが認められる。大崎の方法では、「実地震動スペクトルをほぼ包絡
したもの」とされているので、大方の実地震動スペクトルは、大崎スペクトルより
小さいことになるが、それでも「すべて上回っている
訳ではない」のであり、幾分かの誤差は生じ得るのである。もっとも、この点の誤
差については、どうやら動燃も一応対応策をとっているようであり、乙ハ一八号証
四一五ページの図4―3の、スペクトルを左右に広げたものは、この誤差を考慮し
たものと思われる。
 もっとも、この点の誤差の考慮は、かえって松田式や金井式での誤差をどうして
取り上げないかという問題を浮き彫りにさせてしまう。そこで、この図4―3に金
井式の二・五倍の誤差を取った場合の図を添付する(図4―2―5―3)。この大
きくはみ出した線こそが、金井式の誤差を考慮した線なのであり、誤差と言りて
も、極めて大きな誤差が考慮されなければならなかったのである。なお、更にこれ
に松田式の誤差を加えるならば、図は更に大きく上方に伸びることになる。前記の
八倍という数値を取るなら、これを上に更に八倍すべきことになる。
 結局、このような大きな誤差を考慮しては、到底、採算にあう設計などできるは
ずもなく(特に[もんじゅ」では熱応力設計による制約から、そのように言え
る)、金井式や松田式の誤差について、無視している理由は、決して「忘れた」わ
けではなく、それを経済的に考慮するわけには行かなかったというところに求めら
れるであろう。しかし、この誤差の無視は、半数の起こりうる地震については、起
こったら最後という結果をもたらす。それが許容されるわけのないことも、また明
らかである。
(四) 活断層を五万年以内に活動したことのあるものに限ったこと
 耐震設計審査指針の解説は、また、B及びC級の活断層については、五万年以降
活動したもの、又は地震の再来期間が五万年未満のものを評価上考慮するとしてい
る。このように制限した理由について、右指針の本文は、「大地震発生の可能性が
極めて低い活断層に対して、再びそれが発生することを予期するのは、工学的見地
からは必ずしも適切とはいえない。」からだとしている(前記七一ページ)。なぜ
このように五万年に限ったのか、だれがそのような限定をすることにしたのかは、
甲八一号証によれば、結局のところ不明のままである。大崎順彦によって提唱者だ
ったと言われている松田時彦は、「原子炉のハードの部分との兼ね合いということ
で五万年にしたのではないか」と言いつつ、結局はだれが提唱したものかは良く分
からないことになっている。
 ところで、もちろん、松田時彦は工学的な専門家では
ない単なる地質学者である。それが、仮に「工学的見地」からの提案をしたという
なら、全く不相当と言うしかない。実際、工学的見地からの事故の確率で、五万年
に一回などという大きな確率で原子炉が崩壊するような事故が起こって良いとはだ
れも言ってはいない。五万(炉)年に一回というのは、一つの事象についてのもの
であり、耐震設計では一つの断層についてのものである。そのような事象なり断層
は、他にも存在し、複数ある事象の全体からすると一〇の事象あるいは断層を考え
れば五〇〇〇年に一回ということになる。更に、原子炉は多数存在するから五〇基
の原発を考えれば、一〇〇年に一回、原子炉が崩壊するということになる。事象の
数が増えれば、更に確率は大きくなり、何十年に一回起こっても良いということに
なってしまう。だから、このような大きな数字を工学的見地に立つ専門家はだれも
言うはずがない。それを言うことができたのは、実は工学的な専門家ではない松田
時彦ら地質学者もしくは行政官だったのではないかと疑われる。
 ちなみに国も動燃もその存在及び内容を争わない訴状三五〇ページ以下に記載の
WASH一四〇〇は、「同じような一〇〇基の原子炉のグループを考えると、一〇
人以上の死者が出る事故の可能性は一年につき三万分の一であり、一〇〇〇人以上
の死者が出る事故の可能性は一年につき一〇〇万分の一である。」としている。一
〇〇基の原発のグループで一〇〇万年に一回の確率で、ようやく無視しうる確率と
なるというのであり、無視しえない「事故」については一〇〇基の原発で三万分の
一の確率だというのである。ところが、活断層についての「五万年(に一回)」と
いう値は、一基の原発についての、しかもその周辺の一つの活断層についての値で
ある。これが著しく高い確率であることは、もはや何人も争うことができない。
 要するに、五万年なる数字は、決して工学的な専門家が出したものではありえ
ず、実際に五万年に一回という確率自体も、極めて大きいと言わなければならな
い。数字の根拠も不明で、専門家の判断ではないと考えられ、実際にも不適切な数
字である「五万年」で、活断層を切り捨てている右指針は、審査基準として著しく
不相当なのである。
 更には、指針の定義によっても、B級活断層とは、年平均変位速度が、〇・一ミ
リから一ミリまでのものを言うとされる。この断層が五万年以降活動したことがな
いとす
れば、五万年の間の変位量の蓄積は五メートルから五〇メートルとなる。ところ
で、兵庫県南部地震は、三つの断層が次々蛤動いたが、それぞれの断層のずれの量
は、一・七メートル、二・二メートルと二・六メートルであった(甲ハ六五号証五
〇ページ)。このずれの量に比べ、五メートルから五〇メートルという変位量は、
余りにも大きい。これだけの量の歪が蓄積され、それが放出されていなかったな
ら、その断層はいつ動いてもおかしくはないし、動いたときのエネルギーは莫大な
ものがある。もっとも、五メートルから五〇メートルも変位が蓄積されるというの
が、おかしい。甲ハ六七号証によれば、級の定義は異なっていて、年平均変位速度
が〇・三ミリから〇・七ミリとされているものの、その場合の蓄積期間は、断層の
長さを四〇キロメートルとしても、二九八三年から九二八一年に過ぎない。その時
の蓄積される変位量は、最大二・八メートル程度である。要するに、五メートルの
変位量というのは、かなり膨大なものであり、五〇メートルの変位量が蓄積される
というのは、ありえないことなのである。一回の地震で五〇メートルもずれてしま
うことがありうると、本当に思っているのであろうか。また変位量五メートルとし
ても、それだけの変位量が蓄積されて放出されていないというなら、すこぶる危険
であることは容易に理解できるであろう。要するに、指針の変位量と蓄積期間との
間で矛盾が生じているのである。ではこの矛盾は、どう解決されるのか。変位量
は、現在進行中の変位の量であるから、それほど不正確になることはない。すなわ
ち、蓄積期間が誤っているのである。従来、活断層の活動間隔は、A級活断層一、
〇〇〇年、C級一〇、〇〇〇年、B級がその中間と言われてきたとされる(甲ハ六
七号証二〇六ページ)。それで初めて変位量との矛盾はなくなる。例えば、B級活
断層の活動間隔を五〇〇〇年としたら、変位量は、五メートルから〇・五メートル
となり、不自然な変位量とはならない。
 もっとも、このように変位量と蓄積期間が合致しないように見えるものも、実際
に本件原子炉の設置許可申請書(以下「申請書」という)で行なっている作業を見
れば、実は不自然ではないことが分かる。申請書で行なっていることは、地表地質
踏査等を行なって、いくつかの露頭を調査して、破砕帯を覆っている地層が断層に
よって切られていないか否かを確認し、あるいは地
形を見て、活動性を見るのである。ところが、実際の断層の運動は、地表にすべて
現われるわけではない。兵庫県南部地震でも、一部の区間のみが地震断層として地
表に現れただけで、大方の部分は地下深くでずれが生じただけであった。要する
に、実際に申請者の側が行なっている作業は、その断層の活動性を明確に知るには
不十分なものでしかないのである。こうして不十分な調査のまま、活動した証拠な
しとして、審査の資料から排除しようとしたからこそ、変位の蓄積量が莫大なもの
になってしまうという矛盾を抱えてしまったのである。
 そこで翻って、再度、指針の解説の定め(乙イ七号証七三ページ)を見るなら
ば、評価上考慮するのは、A級活断層のほか、「B及びC級活断層に属し、五万年
以降活動したもの、又は地震の再来期間が五万年未満のもの」としている。これ
は、実は、B、C級活断層というだけでは評価の対象とせず、五万年以降に活動し
た(あるいは地震の再来期間が五万年未満)とされるもの、すなわち、そのように
立証されたもののみを対象とするとしているのである。この表現は、五万年以降に
活動した可能性のあるものとなっているわけではない。可能性だけでは対象となら
ず、五万年以降に活動した等と認められる必要があり、原則はB、C級活断層は評
価の対象ではなく、五万年以降の活動等が立証されて初めて評価の対象となる。そ
のため、このような立証のない場合には、実際には五万年以内に活動していても、
評価の対象外となり、前記の矛盾が生じたのである。
 しかし、実はC級活断層が活動して起こる地震でも、従来、一万年がおおよその
再来期間とされており、金折の新しい見解によっても、C級活断層で断層の長さ二
〇キロメートルのものの(次の活動までの)歪の蓄積期間は、一万三三四〇年から
四万〇九七〇年とされている(甲ハ六七号証二〇六ページ〉。この期間を超えるも
のがありえないわけではないものの、C級活断層も、通常は五万年以内に活動する
のである。
 右のとおり、実はB、C級であっても大多数の活断層が五万年以降に活動したも
のであるのに、指針は、活断層を五万年以降に活動したもの、又は地震の再来期間
が五万年未満のものに限るとして、「五万年以降の活動証明」を求め、証明のない
ものを評価の対象から排除しようとした。しかし、右のとおり、大多数の活断層が
五万年以降に活動しているものであるならば、仮に「
地震の再来期間が五万年を超えるものは評価の対象としなくとも可とする」という
見解に立ったとしても、右解説の五万年以降の活動証明を必要とする考え方が不合
理なことは明らかである。右見解に立ってもなお、B級、C級の全ての活断層は五
万年以降に活動した蓋然性が高いのであるから、このような証明などは不要とし
て、全て評価の対象としなければならない。
 この点でも、指針は、誤った考え方に立ち、本来評価すべき活断層を、評価の対
象外にすることを許容している。
(五) 断層距離と震央距離
 地震は断層が起こすものであるから、細長い断層からの距離に応じて、地震動の
強さの同じ範囲は、細長く楕円状に分布する。ところが、金井式の適用に当たって
は、地震のエネルギー放出の中心である震央からの距離を用いている。これでは、
地震動の大きさを正しく算出することは不可能である。兵庫県南部地震において
も、この点の矛盾があらわになっている。
(六) 直下地震
 指針では、S2の基準地震動策定にあたっては直下地震も考慮するとし、その解
説で、マグニチュード六・五の直下地震を想定するものとしている。このようにし
た理由は、「活断層がなければ直下のマグニチュード七級の地震は起こらない」と
いう考えに基づき、原発は活断層の上に立地しないからその直下でマグニチュード
六・五を超える地震が発生することはないからだとされる(甲ハ七二号証一三五ペ
ージ四行目以下)。しかし、大地震の震源断層が深くて岩石のずれが地表に現れな
かったり、大地震がまれにしかおこらなくて地表のずれが浸食されて認められなく
なってしまったりすれば、地下に大地震発生源があっても活断層は認められない。
つまり活断層がなくても大地震は起こる。現に、一九二七年北丹後地震(マグニチ
ュード七・三)や一九四三年鳥取地震(マグニチュード七・二)は、いずれも地表
地震断層を伴う海岸近くの直下地震であるが、活断層がほとんど認識できないとこ
ろで発生した。一九四八年福井地震(マグニチュード七・一)も同様である(同三
一五ページ八行目以下、P4証人三四回一一丁裏以下)。更には、一九八四年九月
一四日の長野県西部地震(マグニチュード六・八)のように、もともと断層がある
と認められていなかった場所で、マグニチュードが六・五を超える地震が発生し、
しかも地震断層も現われなかった例もある(P4証人三四回一二丁表以下)。
 そこで
、「活断層がなくてもマグニチュード六・五以上の地震は起きる」として、松田時
彦は、地表地震断層の生じない最大地震をマグニチュード七・一にすべきだとし、
島崎邦彦はこれを六・八に変えた方が良いとする(同三一六ページ)。この見解
は、それ以上のマグニチュードの地震なら地表地震断層が出現すると考えてのもの
である。実際に、地表地震断層の発生を伴わずに生じた地震の最大マグニチュード
が六・五を優に超えていることからすれば、想定する直下地震のマグニチュードを
六・五としたのが、合理的根拠に欠けていることは明らかである。しかも、右のと
おり、出現した地震断層が浸食されるなどして認識できなくなることをも考えれ
ば、地震断層の出現しない最大地震を考えるだけでも不足ということになる。
 特に、地震断層が、それまで活断層として認識できなかった場所に現れうるとい
うことになれば、原発の基礎岩盤が、地震断層でずれてしまうことも考えなければ
ならない。そうなっては、耐震設計の前提が、完全に崩れ去ってしまうことにな
る。本件において、もっとも懸念されることは、後述のとおりまさしく基礎岩盤の
破壊であるが、指針の直下地震の想定は、この点からしても、全く不相当と言わな
ければならないのである。
 更には、直下地震のもう一つの危険性は、後述のとおり、衝撃的破壊の生じうる
ことである(甲ハ七二号証一九四ページ以下)。この衝撃的破壊についての知見
は、最新の知見であり、指針は全く考慮をしていない。
 直下地震に関する指針の規定は、想定する地震のマグニチュードが六・五とされ
る点でも、直下地震を想定するならば基礎岩盤が断層によって破壊されることをも
想定しなければならない点でも、また衝撃的破壊について考慮していない点でも、
明らかに合理性を欠く、重大な過誤、欠落のあるものとなっている。
(七) 遠方の地震を考慮しないこと
 「もんじゅ」において、歴史地震は、震央距離が一五〇キロメートル以内のもの
だけを取り上げ、活断層については三〇キロメートル以内のものだけを取り上げて
いる。しかしアメリカでは、二〇〇マイルの範囲にあり、それが原発の安全にとっ
て重要であろうと考えられるなら、これをも考慮するということになっている(甲
ハ三四号証二七四ページ)。実際、遠方でも地震動の大きさがそれほど減衰しない
場合もあり(甲八六、七号証)、一五〇キロメートル以上離れた太平洋側
のグレート境界地震が、日本海側にも被害を与えたことがある(甲八九号証六九ペ
ージ宝永地震、一二四ページ安政東海地震、一二八ページ安政南海地震)から、こ
れを検討しないでよいとすることは審査基準の不備の一つである。
3 結論
 もはや、現在の知見では、耐震設計審査基準は時代遅れの遺物でしかない。それ
によってなされた審査も、審査の名に値しようがない。とりわけ、①時代遅れの基
準に従って、本来区分する理由のないS1、S2に区分して歴史地震を重視し、そ
の反面で活断層を軽視していること、②考慮すべき誤差を無視しているため想定に
保守性がないこと、③評価上考慮すべき活断層を五万年以降活動した(と立証され
る)活断層、又は地震の再来期間が五万年未満のもの(と立証される)活断層に限
って、本来考慮すべき活断層を考慮の外に置くことができることとしたこと、④生
ずべき直下地震についても想定するマグニチュードを現在の科学的知見にそぐわな
い小さなものしか想定せず、更には直下地震による地震断層の出現や衝撃的破壊を
一切考慮していないことから、指針の審査基準は合理性を完全に失ってしまってい
る。この基準を具体的に適用した本件許可処分が、結局、その根拠をすべて失って
いるのは、現在の知見に照らし、明白であるから、それが重大かつ明白な瑕疵を伴
うものとなっていることも明らかである。
六 放射能被曝基準の不合理性
1 被告国の審査基準
 被告国は本件もんじゅの設置許可が、原子炉等規制法二四条一項四号の「災害の
防止上支障がないものであること」という許可要件に適合するか否かの安全審査に
ついて、放射能につき、①平常時運転に伴って放出される放射能の公衆に対しては
年間五ミリシーベルト(五〇〇ミリレム)、②重大事故が発生した場合に公衆が放
射線障害のため居住し続けることのできない非居住区域との間の距離を判断する際
のめやすとして甲状腺(小児)一・五シーベルト(一五〇レム)、全身〇・二五シ
ーベルト(二五レム)、③仮想事故が発生した場合に何らの措置も講じなければ公
衆に著しい放射線災害を与えるかも知れない非居住地域の外側の低人口地帯との距
離を判断する際のめ一やすとして甲状腺(成人)三シーベルト(三〇〇レム)、全
身〇・二五シーベルト(二五レム)をその判断基準とするとしている。
 ①は許容被曝線量と呼ばれるもので、本件設置許可処分がなされた昭和五八年五
月当時
は、昭和三五年九月三〇日科学技術庁告示第二一号「原子炉の設置、運転等に関す
る規則に基づき許容被曝線量等を定める件」(以下「許容被曝線量等を定める件」
という)二条において年間五ミリシーベルト(五〇〇ミリレム)と定められていた
が、現在の基準は昭和六三年七月二六日科学技術庁告示二〇号「試験研究の用に供
する原子炉等の設置、運転等に関する規則等の規定に基づく線量当量限度等を定め
る件」(以下「線量当量限度等を定める件」という)第三条で年間一ミリシーベル
ト(一〇〇ミリレム)と定められている。
 ②及び③はめやす線量と呼ばれるもので「原子力委員会決定「原子炉立地審査指
針及びその適用に関する判断のめやすについて」(以下「立地審査指針」という)
にその定めがおかれている。
2 ICRP勧告に根拠を求める不合理性
(一) 被告国はわが国では、身体的障害及び遺伝的障害の発生する確率が無視し
得る線量を社会的に容認できる被曝線量の限度とする国際放射線防護委員会(IC
RP)の勧告を尊重し、許容被曝線量を定めているとする(被告国準備書面(三)
四八頁)。
 ICRPの人体に対する被曝線量についての勧告は、一九三四年にICRPの前
身である「国際エックス線ラジウム防護委員会」(IXRCP)がアメリカのムチ
ュラーが提案した、人が少しも障害を受けず長時間にわたり耐えうる線量という意
味での耐用線量という考え方を認め、一日あたり職業人に対し〇・二レントゲン
(〇・二レム、年間換算七三レム)を勧告したことに始まる。
(二) 右勧告値は原告準備書面一四で詳述したように、
       公衆    職業人
一九三四年勧告 七三レム
一九五〇年勧告 一五レム
一九五四年勧告 一・五レム  一五レム
一九五八年勧告 〇・五レム   五レム
と変遷しており、本件設置許可処分後の一九九〇年勧告は、一九八五年のパリ声明
(公衆の構成員に対する実効線量当量限度を一年につき〇・一レムとするが、生涯
にわたる平均の年実効線量当量が右限度を超えることのない限り、一年につき〇・
五レムという補助的線量限度を数年にわたって用いることが許される)を経て、公
衆については〇・一レム(一ミリシーベルト)、職業人に対して、いかなる場合も
一年間に五レム(五〇ミリシーベルト)を超えないという条件付で五年間の平均値
が年間ニレム(二〇ミリシーベルト)とされるに至っている。
 右ICRPの勧
告値の変遷を見ると、職業人については一九三四年に定めた勧告値の一日〇・二レ
ムから年間二レムと約三六分の一、公衆については一九五四年の年間一・五レムか
ら一五分の一に低減された値となっており、右のようなICRPの勧告値の変遷自
体、低線量域での被曝による危険性の認識が年々深まっていることを物語ると同時
に、その勧告値の数値が人間の生命・健康に対する被曝の安全基準として科学的根
拠が暖昧で、しかも信頼に値し得ないものであること暴露するものである。
(三) ICRPの勧告値が、人間の生命・健康に対する被曝の安全基準として生
物学的・科学的の裏付けに乏しいことは、一九六五年の勧告において、当時公衆の
線量限度を職業人の一〇分の一(職業人年間五レム、公衆年間〇・五レム)と格差
をつける理由を、「放射線作業者に対し容認できると考えられる線量と同程度の大
きさの線量を公衆の構成員が受けることは望ましくない。公衆の構成員中には子
供、すなわち成人より大きい危険にさらされるかも知れず、また全生涯を通じて被
曝するかもしれない者を含んでいる。公衆の構成員は(放射線作業者と異なり)被
曝するかしないかの選択の自由がなく、かつ、その被曝から直接的利益を何も受け
ないであろう。これらの人々は放射線作業に必要とされる人選、監督及びモニタリ
ングを受けないし、また自身の職業の危険にさらされている。」としか説明されて
ないことにもあらわれている。
3 しきい値の不存在
(一) 許容被曝線量やめやす線量の考え方は、これ以下の線量では人体に影響が
生じないという線量である「しきい値」が存在することが前提となる。
(二) 被告国は、「プルトニウムに関するめやす線量について」の解説におい
て、最低の放射線被曝の線量によって人体に着目する影響が発生した事例の線量で
ある最小限界線量をもととしてめやす線量を設定する姿勢は、一九七七年ICRP
勧告が、放射線のリスクを他のリスクとの比較において評価するという相対リスク
論の立場をとったことにおいて、その普遍性が強まり、常識として定着した「しき
い値がない」という傾向に矛盾することを自ら認めている(甲ロ一八・六三三
頁)。
(三) 放射線の影響については、そこまでなら大丈夫というような安全量という
ものはなく、どんなに微量であっても、必ずガンとか、遺伝的影響とかいう影響を
与えるというふうに考えるべきである(P13証人
第二七回二〇丁表)。
 低線量の被曝でもガンなどが発生し危険な影響があることは、①一九八六年にD
S八六と呼ばれる広島・長崎の被曝線量の見直しによる被曝によるガン死リスク推
定値の大幅な上昇―ICRPも、一九七七年勧告ではガン死リスク推定を一万人シ
ーベルトあたり一〇〇人としていたが、一九九〇年勧告では五〇〇人としている一
(甲イ一七一・一頁)、②ジョージ・ニールとアリス・スチュワートによるハンフ
ォード原子力施設の労働者の死亡原因の再分析(甲ロ九)、③ウィングによる原爆
製造計画に関わって研きたオークリッジ国立研究所の職員の死亡率の追跡調査(甲
ロ一〇)など最近明らかになっている。
(四) ICRPも、個々の状況下で許容されるべき最大値であるとみなされる線
量をあらわすものと使われてきた「最大許容線量」が、あたかも放射線に安全量、
すなわち「しきい値」があるように誤解されてきたことの反省から、一九六五年か
ら新たに「線量限度」という用語に変えるよう各国政府に勧告している。
 ICRPは一九九〇年勧告において、「たとえ非常に低い線量でも、細胞内の重
要部位に十分なエネルギーが沈着し、その結果細胞の修飾あるいは死さえもたらす
可能性がある。一個あるいは少数の細胞の死は、多ぐの場合組織中の何の影響も生
じないであろうが、最終的に悪性腫瘍となる遺伝学的変化または形質転換のような
一個の細胞の修飾が、重大な影響をもつことがあるかもしれない。これらの影響は
確率的と名づけられた。非常に低い線量でもそのような確率的事象の発生の有限な
確率はあるので、・・・・しきい値はないことになる。」(乙ロ一・一一六頁)
と、「しきい値」がないことを認めている。
(五) わが国の原発訴訟においても、女川原発訴訟第一審で仙台地裁は「低線量
域における被曝線量と晩発性障害等の発生の間の関係については、しきい値がない
と認定すべきである」(女川原発訴訟第一審仙台地裁平成六年一月三一日判決・判
例時報一四八二号一八頁)と、放射線被曝と晩発性障害等の発生の関係において
「しきい値」がないと判断している。
4 安全審査のための二つの基準の不合理性
(一) 被告国の安全審査では、平常運転に伴って放出される放射能については公
衆に対し年間五ミリシーベルト(五〇〇ミリレム)という許容被曝線量を判断基準
とするが、重大事故あるいは仮想事故が発生した場合には、平常運転時の
二五〇倍もの数値である全身〇・二五シーベルト(二五レム)というめやす線量を
その判断基準とする。
 被告国は、原子炉の公衆との隔離に係る立地条件の適否を判断するための一方法
としてのめやす線量と、公衆にその線量値までの被曝を許容するものとしての許容
被曝線量年間〇・五レム(現在の値は年間〇・一レム)とは本質的にその意義を異
にするものである(被告準備書面(三)一七五頁)と主張する。
(二) 被告国は、昭和六三年の科学技術庁告示の改訂により許容被曝線量から改
められた線量当量限度について「この限度以下であれば、放射線による障害は、発
生するとしてもその可能性は極めて小さく社会的に容認し得る程度のものと考えら
れている」(乙イ七・「線量目標値の解説」)とし、一方めやす線量については、
「放射線被曝によって、着目する影響が発生した人体に関する事例の文献を探索
し、最低の線量による発生事例における線量をもとにして決める」(甲ロ一八六三
三頁「プルトニウムに関するめやす線量について」の解説)としている。
 右用語の説明からは、許容被曝線量もめやす線量も、いずれも被曝による人体の
生命・健康を保護する目的のため、人体に対する放射線被曝の影響が発生する最低
限の線量という観点から定められたものと解すべきで、本質的に意義を異にするも
のではない。
(三) 原子炉施設周辺の住民の生命、身体の安全等個々人の個別的利益を保護す
べきものとして設けられた安全審査において、事故時には、平常運転時に比べ二五
〇倍もの放射線被曝に原子炉周辺の住民が晒され、それらの生命、身体、健康が犠
牲にされてもよいとする理由など何ら見つけることはできない。
 当該原子炉施設が、その周辺住民の生命、身体、健康の保護するため、災害の防
止上支障がないものであるか否かを審査する安全審査において、二五〇倍もの違い
がある「許容被曝線量」と「めやす線量」の被曝線量の基準を設け、審査する理由
は何ら存在しない。かえって放射線被曝の審査基準に関し、安全審査において二つ
の異なる基準を設けていること自体、それらの設定された基準の非科学性・不合理
性を露呈するものである。
5 不合理な放射能被曝基準による安全審査は違法である
(一) 低線量被曝による晩発性障害や遺伝的障害の発生においてしきい値が存在
しないという今日における科学技術的知見からすると、本件もんじゅの安全審査に
おいて被告
国が原子炉から環境へ放出される放射性物質による放射線被曝の安全性を判断する
基準として用いている許容被曝線量の年間五ミリシーベルト(五〇〇ミリレム)と
いう値も、めやす線量の全身〇・二五シーベルト(二五レム)という値も、何ら合
理性を有するものではなく、右被曝線量は、これ以下であれば人体の生命、身体、
健康にとって安全であるというものではけっしてない。
(二) したがって、被告国が定める放射線被曝に関する審査基準に基づき本件も
んじゅの安全審査を行うことは、国民の生命、身体、健康の安全を最大限に尊重す
る憲法一三条及び憲法二五条に違反し、原告ら原子炉施設周辺に居住する住民の生
命、身体の安全等個々人の個別的利益も保護すべきものとした原子炉等規制法二四
条一項四号に違反する明白かつ重大な違法が存在する。
第五章 もんじゅの潜在的危険性の根源―放射能
第一 危険性の根源
一 放射能の危険性
1 もんじゅの潜在的危険性
 高速増殖炉もんじゅの潜在的な危険性とは、その運転時に核燃料物質であるプル
トニウムとウランの混合酸化物を燃料として燃焼させるため、燃焼の際に燃料のプ
ルトニウム二三九を含む人体に有害な放射性物質が大量に原子炉内に発生すること
である。原子力発電所では、その構造上、原子炉内の燃焼によって発生した放射性
物質をすべて原子炉内に閉じ込めることはできず、運転時に環境へ一定量放出する
ことが避けられない。
 また、原子力施設も人工の施設である限り、どのような安全上の対策を講じたと
しても、絶対的に原子炉格納容器そのものが破壊されるような事故を発生させない
ようにすることが不可能なことは明らかである。
 一度原子力発電所で原子炉格納容器が破壊され炉内の放射能が環境へ放出される
事故が発生すれば、全世界的な規模での放射線汚染は広がり、その被害が甚大かつ
深刻なものになることはチェルノブイリ事故の現実が如実に示している。
2 放射線の種類と人体への影響
(一) 放射線は、電子等の荷電粒子及び中性子等の非荷電粒子からなる粒子線と
電磁放射線とに分かれる。粒子線であるベータ線、アルファ線、中性子線、電磁波
であるエックス線、ガンマ線等は物質と反応してその物質を電離させる能力があ
り、総称して電離放射線と呼ばれる。
 放射能という言葉は、もともと放射線を出す能力を指す言葉であるが、その能力
をもつ放射線物質の意味に使われることが多い。
(二
) アルファ線は、ヘリウムの原子核(アルファ粒子)が高いエネルギーを持って
飛んでいる粒子の流れである。物に当たるとその表面近くで止まってしまい、貫通
力はない。ところが、そのわずかな間に持っていたエネルギーのすべてを与えるこ
とになるので、当たった部分に対する破壊力は極めて大きく、人体に対して危険度
の高い放射線の一つである。アルファ線を出す物質には、ウラン、プルトニウム、
ラジウムなどがある。
(三) ベータ線は、電子の流れで、マイナス電荷を持った電子が多い。薄い紙な
どは貫通するが、薄い金属板などで止められてしまう。原子炉の中でウランが燃え
てできる死の灰のほとんどは、ベータ線を出す。
(四) ガンマ線は、基本的には光と同じ性質を持ち、光よりエネルギーの強い電
磁波である。貫通力が強く、人体に対して奥深くまで入ったり、突き抜けたりす
る。ガンマ線はふつう、アルファ線やベータ線といっしょに放出される。
3 放射線による被曝の人体への影響
(一) 人体はタンパク質などの一種の化学物質でできているが、それらの化学結
合は電子がつくっている。そのような物質中の電子を跳ね飛ばすことを電離とい
う。放射線が人体に入って来たり突き抜けると、自分が持っていたエネルギーによ
ってこの電離を起こす。
 放射線のエネルギーは化学結合をつくっている電子よりもはるかに大きいので人
体に放射線が通ればかならず傷つく。とくに、細胞核中の染色体とその上に配置さ
れた遺伝子(DNA)が傷がつくことが問題で、それがすぐに障害になるとは言え
ないが、この傷がさまざまなかたちで顕在化する。それが放射線の影響である。
(二) 人間の放射線による被曝には、人体の外部に存在する放射性物質からの放
射による外部被曝と、呼吸や食物、飲料水などの経路により環境に放出された放射
性物質を摂取して体内に取り込み、人体内部に取り込んだ放射性物質からの放射に
よる内部被曝とがある。
 外部被曝の場合、アルファ線やベータ線のような透過力の小さい放射線の場合
は、身体内部の諸器官はほとんど被曝せず皮膚のみにとどまるが、ガンマ線のよう
に透過力の大きい放射線の場合は、身体内部の諸器官も含め全身がほぼ均等に被曝
する。これに対し、内部被曝の場合は、体内に取り込まれた放射性物質から放出さ
れる放射線のエネルギーが、直接身体内部の諸器官に吸収されることになり、アル
ファ線やベータ線は、その
ほとんどのエネルギーを周囲に与えることになる。
(三) 放射線による被曝は、外部被曝で大量の放射線を皮膚にあびたとしても痛
覚や温覚がなく、呼吸や食物等を摂取することにより内部被曝した場合にも、嗅覚
や味覚で感じとることができないという特徴があり、そのため個人のみの知識・力
量だけでわが身を被曝による影響から守ることは不可能である。
4 放射線の人間に与える障害の種類
(一) 身体的障害と遺伝的障害
 放射線の人間に与える障害には、被曝した個人に現れる身体的障害と、その被曝
した個人の子孫に現れる遺伝的障害とがある。遺伝的障害は、放射線の照射によ
り、DNAの塩基配列が変えられてしまう突然変異や、染色体の構造自体やその数
まで変えてしまう染色体異常があり、生殖細胞またはその原基細胞に起きることに
より、その子孫にもたらされる遺伝的影響による障害である。
(二) 急性障害と晩発性障害
 身体的障害には、短期間に比較的高線量の放射線を被曝した場合、吐き気、倦怠
感、下痢、白血球の減少、脱毛、紅紫斑、水泡、皮膚炎、急性潰瘍等の症状を引き
起こし、高線量被曝の場合には死に至る急性障害と、短期間に高線量の放射線を被
曝したときだけでなく、低線量の放射線を長期間被曝した場合、数カ月から数年以
上、長い場合には数十年の潜伏期間を経て、白血病その他の癌、白内障、寿命短
縮、生殖力や免疫力の低下等の症状をもたらす晩発性障害とがある。
 急性障害は、全身または身体の大部分が短時間におよそ二〇ラド(〇・二グレ
イ)以上の被曝を受けた場合に生じ、ほぼ五〇〇ラド(五グレイ)で死亡率は一〇
〇パーセントに達する。急性障害における放射線の致死作用のうち最も重要なもの
は、造血組織、とりわけ骨髄における影響である。骨髄の幹細胞は放射線の影響を
極めて受けやすい細胞である。骨髄組織の破壊はすべての種類の血液細胞の形成を
抑制する結果を招く、一〇〇ラド(一グレイ)から五〇〇ラド(五グレイ)の線量
域において、骨髄の破壊の程度が著しい場合には、通常六週間以内に死亡する。五
〇〇ラドから二〇〇〇ラド(五グレイから二〇グレイ)の線量域においては、胃腸
管系の細胞死が原因となりさらに早期に死に至る。二〇〇〇ラド(二〇グレイ)以
上の非常に高い線量を被曝した場合には、脳細胞の変性、大脳の浮腫、脳血管の炎
症などにより中枢神経の病理学的変化によって更に急速に死に至る(甲
一〇・四二~五二頁)。
5 最近の放射線の危険性に対する認識の深まりとその知見
(一) セラフィール一再処理工場周辺住民の白血病被害の顕在化
(1) 一九八三年一一月イギリスのヨークシャーテレビ局は、そのドキュメンタ
リー番組で、セラフィ―ルド再処理工場周辺の町村では子供のガンや白血病の発生
率が全国平均よりはるかに高く、二・四キロメートル離れたシースケール町では全
国平均の一〇倍になっており、その原因は再処理工場から放出された放射性物質で
あるという放映を行った(甲ロ四)。
(2) 右報道は英国内に大きな衝撃を与え、英国政府はダグラス・ブラック卿を
委員長に指名して、専門家からなる諮問委員会を組織し、右委員会は一九八四年七
月英国政府に報告書を提出した。
 右報告は、セラフィールド工場南側のシースケールを含むミロム地区の二五才未
満の若年者の間では、白血病死亡率が一九六八~七八年の間で四倍、一九五九~七
八年の間では二倍となっており、シースケールでは一〇才未満の白血病が期待値に
対し約一〇倍高く、小児悪性リンパ腫罹患率は、英国北部地域の七六五の同規模の
区の中で三番目に高く、シースケールを含むミロム地方区の二五才未満の白血病死
亡率は同程度の人口の一五二地方自治区の中で二番目にランクされ、これらの地区
の白血病発生率は高いことを認めた。しかし、その原因については、公表された放
射性物質の放出データから計算される周辺住民の被曝線量からは、このような白血
病の異常発生は説明できないとして不明であるとしている(甲ロ四)。
(3) 一九九〇年二月、M・J・ガードナーらは英国医学学会誌に、セラフィー
ルド再処理工場周辺の西カンプリア地方で生まれ、一九五〇年―八五年の間に二五
才以下で白血病患者(五二人)、非ホジキンス氏リンパ腫患者(二二人)、ホジキ
ンス氏病患者(二三人)と、これらの患者と同性で年齢も近い一〇〇一人の対照群
とを比較した、「英国セラフィールド核施設周辺の子供たちに生じている白血病、
リンパ腫についての調査研究」という論文を発表した。
 M・J・ガードナーらは右論文で、白血病と非ホジキンス氏リンパ腫にかかる相
対危険率が、セラフィールドから五キロメートル以上に離れた所で生まれた子供は
〇・一七、子供の受胎期に父親がセラフィールドで雇われていた場合二・四四子供
の受胎前に父親が一〇〇ミリシーベルト以上被曝をしている場合
は六・四二と、セラフィールド近くで生まれた子供と、父親が核施設で働いている
子供に高かった事実から、ブラック卿の報告書の結論とは異なり、「父親が受胎前
に電離放射線で被曝することは、彼らの子孫に白血病の発生をもたらす事と関連し
ている」と因果関係を認めている(甲ロ一六・三頁、二二頁)。
(4) 英国では、スコットランドのドーンレイの再処理施設周辺においても、一
九七九~八四年の期間の若年齢の白血病発生率が、スコットランド地方の期待値に
比べ六倍も高く、特に一二・五キロメートル以内では一〇倍も高いという有意な結
果が明らかにされている(甲ロ五)。
(二) 福島原発の労働者の被曝による染色体異常の発覚
(1) 一九八八年福島県環境医学研究所の村本淳一専門研究員は、一九八四~八
八年の五年間に集積線量一五レム未満の被曝を受けた福島第一及び第二原子力発電
所に従事する二〇代から六〇代までの労働者の一一五名を対象とした、末梢血リン
パ球の染色体異常の調査研究の結果を発表した(甲一四~一八)。
(2) 染色体は人間においては一つの細胞に四六本あり、正常なものは途中に動
原体と呼ばれるくびれが一カ所ある。調査対象となった原発労働者では、くびれが
二カ所ある二動原体染色体やリング状の環状染色体は細胞全体の〇・二二パーセン
トにみられ、一般住民の細胞に検出された同種の染色体異常の出現頻度〇・一二パ
ーセントと比較すると二倍近いことが判明した。
 この染色体異常の出現頻度は、集積被曝線量が多くなるほど、その出現率が高く
なる傾向にあり、集積被曝線量が一四レムの労働者について、一般住民の五倍の値
となっている。
(3) 福島原発の労働者の血液細胞にあらわれた染色体異常の発生頻度の一般住
民との有意な違いは直ちにこれらの異常染色体を持った人々カ被曝によるガンや白
血病などの健康上の影響を受けたと言えるものではない。
 しかし、職業人に対する許容被曝線量である年間五レム(現在の規制は五年間の
平均値が年間二レム)以下でも、福島原発に従事する労働者に染色体異常が発生し
ている事実の発覚は、わが国の原子力発電所内に従事する労働者が、被曝により危
険な状況に晒されている実態を明らかにした。
(三) 広島、長崎の被曝線量の再評価と放射線リスク評価の見直し
(1) ある集団が放射線の一定の量の被曝を受ければ、一定の確率でガン死が発
生するという考え方に基づき、ある一定量の放射線をあびた場合に、生涯の間にど
れくらいの確率でガン死するかという尺度を、リスク評価あるいはリスク係数と呼
ぶ。
 ICRPは一九七七年勧告において、全身均等照射による放射線誘発ガンに関す
る死亡リスク係数を、男女及びすべての年齢の平均値として一レム当たり約一万人
分の一であるとして、一万人シーベルト(一〇〇万人レム)あたり一〇〇人から一
二五人としていた。
(2) 従来の発ガン等のリスク評価の基礎データは、広島・長崎の原爆被曝者を
対象として被曝線量を推定した米国オークリッジ国立研究所が一九六五年に発表し
た丁六五Dと呼ばれる評価システムであった。
 これに対し、一九八一年に米国のローレンス・リバモア国立研究所とオークリッ
ジ国立研究所の研究員らが、それぞれ、広島・長崎の原爆被曝者の放射線被曝線量
の推定の見直し作業を行った結果を発表したところ、その結果はいずれも、従来用
いられてきたところのT六五Dの線量に比較し大幅に低いことが明らかにされた。
そのため、T六五Dを基礎資料として行われてきた放射線のガン死リスク評価が著
しく過小である疑いが生じ、一九八三年に日米両国合同による線量再評価委員会が
設置された。右委員会において広島、長崎の原爆被曝線量の再評価の作業がなさ
れ、その上級委員会によって一九八六年に新たに承認されたのが、DS八六と呼ば
れる広島・長崎の新たな線量評価システムである(甲一一、甲ロ三)。
 放射線量に関しDS八六と丁65Dを比較すると、広島では、DS八六の中性子
線はT六五Dのおよそ一〇分の一であり、それだけT六五Dの中性子は過大評価で
あった。逆にDS八六のガンマ線推定値は、T六五Dの二~三五倍となり、長崎で
は、DS八六の中性子線はT65Dのそれの二分の一ないし三分の一となり、ガン
マ線はほとんど変わらない。
 右線量評価システムの再評価より、実際に生じている被爆者たちの発ガンとガン
死を説明するには、今まで考えられてきたよりもガンマ線をはるかに大きく評価し
なければならなくなり、放射線の影響についてのこれまでの認識を一層厳しく見な
ければならなくなった。
 また、広島、長崎の被曝データは年々蓄積が進んでおり、一九八五年までのガン
死亡率に関する放射線影響研究所の寿命調査によると、被曝から四〇年の歳月が経
っているが、被曝当時一〇歳代あるいはそれ以下であった若い年齢層での被曝した
人が
、現在五〇歳とか六〇歳というガン年齢を迎え、その年齢に達してからのガンによ
る死亡が非常に多いことが顕著であることが判明してきており、放射線についての
危険が再認識されるに至っている(甲ロ一四・二頁、五四頁、第二七回P13証人
六丁表~七丁表)。
(3) 一九八七年九月、プレストンとピアスは、新しい線量評価システムである
DS八六を用いてガンと白血病の死亡リスク評価を行い、「原爆被爆者の線量推定
方式の改定による癌死亡リスク推定値への影響」という論文を発表している(甲一
二)。これによると、ガン死リスク係数は一万人シーベルト(一〇〇万人レム)あ
たり一六二〇人、白血病死のリスーク係数は一万人シーベルト(一〇〇万人レム)
あたり一二〇人で、合計すると一万人シーベルト(一〇〇万人レム)あたり一七四
〇人となる。
 一九八八年五月、放射線影響研究所の清水由紀子らは、一九五〇年から一九八五
年までの広島長崎の死亡率追跡調査をもとにDS八六の線量評価に従いガン死リス
クを推定しているが、一万人シーベルト(一〇〇万人レム)あたり一三〇〇人のガ
ン死という結果が示されている(甲ロ一四)。放射線の影響に関する国連科学委員
会(UNSCEAR)は一九八八年一万人シーベルト(一〇〇万人レム)あたり、
絶対モデルでは四〇〇人~五〇〇人相対モデルでは七〇〇人~一一〇〇人、一九九
〇年アメリカ科学アカデミーの電離放射線の生物的影響に関する委員会(BEIR
―V)は、相対モデルで八八五人の放射線によるガン死というリスク評価を公表し
ている(甲イ一七一・一頁)。
(4) P13は、もんじゅ民事訴訟裁判において、広島、長崎の被曝線量のDS
八六による再評価により、放射線によるガン死のリスク評価について、一万人シー
ベルト(一〇〇万人レム)あたり一〇〇〇人のガン死が出るという認識が得られた
とする(第二七回P13証人一一丁表、第二八回同証人一丁表)。
(四) ハンフォードの追跡調査等にみられる低線量被曝の危険性とICRPのリ
スク評価の誤り
(1) ジョージ・ニールとアリス・スチュアートは、一九四四~七八年までの米
国の原爆製造計画に携わってきたハシフォードの原子力施設で働いていた労働者四
万四一〇一人の被曝と一九四四~八六年までの期間の死亡した者九四四三人のうち
のガン死との関係について再分析をした。
 再分析の結果、ジョージ・ニールらは、いかなる線量レベ
ルでもガン死のリスクがあり、ガン死のリスクが被曝年齢及び死までの期間と正の
相関をもつことが明らかになったとし、固形の腫瘍よりも白血病を引き起こしやす
いとか、線量率が低い放射線によってガンになる割合が低くなる(ICRP一九九
〇年勧告が導入している線量率有効因子またはDREF仮説)とかいう考え方に賛
同できないとしている(甲ロ九・一、五、六頁)。
 右論文は、実際の被曝者集団について分析したところ、大変低い被曝線量のとこ
ろまでガンの発生が顕著であることを明らかにしている(P13証人二七同一〇丁
表~同裏)。
(2) ウィングは、一九四三年から一九七二年までアメリカテネシー州オークリ
ツジ国立研究所に雇用されていた白人職員を一九八四年においてその時点の生存者
八三一八名、死亡者一五二四名の追跡調査を行った。
 右調査結果によると、一九七七年までの調査では放射線とガンとの相関関係は見
つからなかったが、体外放射線被曝後二〇年に達するくらいのデータが蓄積された
一九八四年の調査で、放射線が死亡のすべての原因に一〇ミリシーベルトあたり
二・六八パーセント増と関係し、特にガン死亡率との関係では一〇ミリシーベルト
あたり四・九四パーセント増と、その相関関係が明らかになった(甲ロ一〇)。
 オークリッジの右追跡調査の結果は、放射線とガン死との関係が、長い年月を経
て初めてはっきりすることを示している(P13証人二七回一一丁表~一二丁
裏)。
(3) 一九九二年に発表された九五〇〇人以上(うち六六〇〇人は既に死亡)の
英国の放射線労働者全国登録(NRRW)のデータによると、ガン及び白血病のリ
スク推定値は、統計的不確かさが大きいとされるが、ICRPの一万人シーベルト
(一〇〇万人レム)あたり四〇人(白血病)及び四〇〇人(ガン)という推定より
二倍高い値となった(甲ロ一七、P13証人二七回一二丁裏~一四丁裏)。
(4) ICRPは、一九九〇年勧告において、名目値で放射線よるガン死のリス
ク評価につき、一万人シーベルト(一〇〇万人レム)あたり五〇〇人とガン死とい
う値を示した。右数値は、低線量域・低線量率における放射線の被曝は高線量域・
高線量率でのそれよりも影響は低いという誤った考え方を前提に、低線量及び低線
量率に有効性因子(DDREFないしはDREF)という概念を導入し、DDRE
F二という値を使用し、DS八六の線量評価で示されたリ
スク推定値を二分の一にしてしまったものである。
 しかし、ハンフォード原子力施設、オークリッジ国立研究所及び英国の放射線労
働者全国登録の右調査結果は、低線量域・低線量率における放射線の被曝は高線量
域・高線量率でのそれよりも影響は低いとして有効性因子(DDREFないしはD
REF)という概念を導入したICRPのリスク推定が誤っていることを示すもの
である(P13証人二七回一三丁裏)。
二 プルトニウムの危険性
1 莫大なもんじゅ炉内のプルトニウムの放射能量
(一) プルトニウムは原子番号九四の自然界には本来存在しない元素でありて、
超ウラン元素の一つである。
(二) プルトニウムの安定した形態は酸化プルトニウムであり、軽水炉型原発は
二酸化ウランを燃料として使用するが、もんじゅではこのプルトニウムとウランの
混合酸化物である酸化プルトニウムを燃料として使用する。もんじゅで炉内に入れ
られる二三・五トンの燃料のうちプルトニウムの量は一・四トンで、右プルトニウ
ムのうち燃えるプルトニウムであるプルトニウム二三九とプルトニウム二四一の占
める割合は一トンである。これは長崎に投下された原爆の五〇個分以上の量に相当
する(甲イ一九九・二〇七~二〇八頁)。
(三) もんじゅでは、このようなプルトニウムとウランの混合酸化物を燃料とし
て原子炉で燃焼させるだけでなく、さらに燃えないウラン二三八に高速中性子をあ
て燃えるプルトニウム二三九に変換する増殖も行われることになるので、運転時に
は軽水炉と比べ莫大な量のプルトニウムが炉内に内蔵されることになる。
 もんじゅ(電気出力二八万キロワット)の炉内に内蔵されるプルトニウムの放射
能の量は、軽水炉原子力発電所(電気出力一〇〇万キロワット)と比較すると左記
のとおりである(乙一六・一〇―五―二九、甲五・七九頁―比較の数字の単位はキ
ュリー)。
   もんじゅ(二八万KW)   軽水炉原発(一〇〇万KW)
プルトニウム二三八 四三〇、〇〇〇       五七、〇〇〇
プルトニウム二三九 五七、〇〇〇        二一、〇〇〇
プルトニウム二四〇 八三、〇〇〇        二一、〇〇〇
プルトニウム二四一 一四、〇〇〇、〇〇〇 三、四〇〇、〇〇〇
プルトニウム二四二 二四
 もんじゅは電気出力では軽水炉の三割程度でしかないにもかかわらず、原子炉内
に内蔵するプルトニウムの放射能の量では一五〇〇万キュ
リーと軽水炉の四倍以上となる。
(四) 原子炉で燃焼された使用済燃料のなかに含まれる。プルトニウムは、右の
とおり五つの同位体(二三八、二三九、二四〇、二四一、二四二)で構成されてい
るが、そのうち代表的なものは、核分裂を起こしやすく、半減期が二万四一〇〇年
と長いプルトニウム二三九である。半減期が長いということは、長い間放射能を出
し続けるということである。
 プルトニウム二三八、二四〇、二四一は、一グラム中の放射能の強さ(時間当た
りの壊変数)はプルトニウム二三九よりいずれも大きくその毒性は、プルトニウム
二三九より強い。
2 プルトニウムの人体への摂取経路とその危険性の深まり
(一) プルトニウムは物にあたるとその表面近くで止まってしまう貫通力のない
アルファ線を出すので外部被曝はそれほど問題とならない。プルトニウムでは問題
となるのは、大気を呼吸によって鼻から吸い込むことや、汚染された食物、飲料水
を口から摂取することにより、プルトニウムが、身体内部の諸器官に吸収され、そ
れらの細胞に対しアルファ線が放射し影響を与える内部被曝が大きな問題となる。
(二) 原子炉から環境へ放出されるようになったプルトニウムは、安定した酸化
プルトニウムの状態で大気中に漂う。大気中漂う酸化プルトニウムは、直径一ミク
ロン前後の微粒子の状態であるので、呼吸器系から生体内へ取り込まれやすい。鼻
から空気の吸入により呼吸器系を通っての体内へ取り込まれると、酸化プルトニウ
ムは非常に溶けにくい物質なので、一旦体内に入るとなかなか体外へ排出されな
い。そのため、プルトニウムが気管や肺の繊毛、肺の組織に沈着し、長く留まりそ
の細胞が長期間にわたってアルファ線によりて被曝するとその強い破壊力によって
細胞が破壊され肺ガンの原因となる。また、気管、気管支、肺の呼吸器系に入った
プルトニウムの一部は、血液や体液に取り込まれ骨や肝臓に達し、骨腫瘍、肝臓ガ
ン、白血病の原因となったり、生殖腺に達し遺伝障害の原因となる。
 一方汚染した食物や飲料水など口から摂取されたプルトニウムは、食物等と一緒
に胃、小腸、大腸などへ運ばれ、それらの消化器官の壁から血液や体液に取り込ま
れ、吸入摂取と同様の経路をたどり骨や肝臓に達し、骨腫瘍、肝臓ガン、白血病の
原因となったり、生殖腺に達し遺伝障害の原因となる。
(三) 経口摂取され消化器官から入ってくるプルトニウムについて
は、吸収摂取と比較し以前はそれほど影響がないものと考えられていた。消化器官
壁から血液や体液に入ってくる吸収率について、ICRPは一九七九年の公報三〇
で、一〇万分の一とか一万分の一という数値とし、わが国も右数値を採用してい
た。
 ところが、一九八六年の公報四八では、一〇〇〇分の一という数値に改定した。
右経口摂取に関する吸収率の改定は、ICRP自身がプルトニウムの危険性が、従
来考えていたよりも更に高いという認識を持ったからである。わが国も一八八九年
(平成元年)、プルトニウムの経口摂取の吸収率につき、ICRPのより厳しい認
識を採用している(甲イ一七一・三頁、甲ロ一八・六四一頁、P13証人二七回一
六丁表~一八丁裏)。
3 一グラムで、一八億人分の摂取限度となるプルトニウムの危険性
(一) わが国では、放射線関係の業務に従事する労働者につき、プルトニウムな
どの放射性物質の年摂取限度は、試験研究の用に供する原子炉等の設置、運転等に
関する規則等の規定に基づく線量当量限度等を定める件(昭和六三年七月二六日科
学技術庁告示第二〇号)により定められている。右告示では、職業人に対し年間五
〇ミリシーベルトという線量当量限度という被曝の規制値を定めている。年摂取限
度とは、職業人へ右五〇ミリシーベルトになるような被曝を与えるプルトニウムな
ど放射性物質の摂取量のことで、これはプルトニウムなどの放射能量で表示され、
その単位はベクレルで測られる(P13証人二七回一九丁表~裏)
(二) プルトニウムで代表的なプルトニウム二三九の年摂取限度は、酸化物での
吸入摂取の場合五九〇ベクレル、重量だと〇・二六マイクログラム(一グラムの一
億分の二六)である。
 チェルノブイリ事故で、ウクライナ、ベラルーシ、ロシアなどの周辺地域で深刻
な土壌汚染をもたらし、ヨーロッパでは食品等のなかに取り込まれ大きな被害をも
たらしたセシウム一三七の吸入摂取の年摂取限度は五四〇万ベクレルある。プルト
ニウム二三九の摂取限度は五九〇ベクレルであるから、プルトニウム二三九と比較
し、セシウム一三七の摂取限度は一万倍近い量となっている。これは、プルトニウ
ム二三九がセシウム一三七と比較し一万倍危険であるということである。
 原子力発電所の燃料となるウラン二三八の酸化物吸入の年摂取限度は一五〇〇ベ
クレルで、重量にすると〇・一二グラムあり、プルトニウム二三九の四六万
倍である。これは、プルトニウム二三九はウランニ三八と比較して四六万倍危険で
あるということである。右プルトニウム二三九の年摂取限度のセシウム一三七やウ
ランニ三八との比較からも、プルトニウムの毒性が如何に強く危険なものかが窺え
る。(P13証人二七回二一丁裏~二二丁裏、甲イ一七一・四頁)
(三) 原子力発電所から取り出される使用済燃料に含まれるプルトニウムの成分
には、前述したようにプルトニウム二三九より更に毒性が強いプルトニーウム二三
八、二四〇、二四一がそれぞれ含まれている。
 プルトニウム二三九単独の場合の年摂取限度は〇・二六マイクログラムである
が、使用済燃料のなかのプルトニウムには、プルトニウム二三九より毒性が強いプ
ルトニウム二三八などの同位体を含むため、その毒性が更に強くなり、プルトニウ
ム二三九単独の場合の約一〇分の一にあたる二八ナノグラム(〇・〇二八マイクロ
グラム)が年摂取限度となる。
(四) 右数値は職業人に対するものであり、わが国の現在の公衆に対する線量
 当量限度が年間一ミリシーベルト(〇・一レム)という規制値からすると、公衆
の年摂取限度は職業人の五〇分の一となるから、公衆に対しては〇・五六ナノグラ
ム(一億分の六グラム)が年摂取限度になる。
 これは、原子力発電所の使用済燃料に含まれている一グラムのプルトニウムは、
公衆一八億人分の年摂取限度になるということを意味する(甲イ一七一・五頁、第
二七回P13証人尋問調書二三丁裏~二五丁裏)。
4 マンハッタン計画作業労働者のプルトニウム被曝によるガン死の疑い
(一) わが国の「プルトニウムに関するめやす線量について」の解説では、米国
の原爆製造計画であるマンハッタン計画に一九四四5四五年にかかわり、プルトニ
ウムの精製作業中に硝酸プルトニウムの蒸気を吸収した作業者につき、三七年経過
後の調査によっても、プルトニウムに由来すると考えられる健康影響は見られない
としている(甲ロ一八・六三五頁)。
(二) しかし、G・L・ヴェルツとJ・N・P・ローレンスは、一九九一年八月
ヘルス・フィジクスという雑誌のなかで、マンハッタン計画にかかわったプルトニ
ウム作業労働者に対し四二年間にわたり追跡調査したところ、プルトニウムの沈着
量が現行の放射線防護基準以下と推定される低い線量で、肺ガン二名、骨肉腫一名
の死者がでたと発表している(甲ロ一九)。
(三) ガンは、プ
ルトニウムによって引き起こされる可能性がある病気であり、骨肉腫は一般の放射
線以外の影響によっては、余り起こりにくいガンの種類である。マンハッタン計画
に従事した労働者の肺ガンなどの死亡は、十分にプルトニウムが原因になったとい
う考えもできる(P13証人二八回四八丁裏~五〇丁表)。
三 チェルノブイリ事故が明らかにした放射能の危険性
1 原発事故史上最大の環境への放出放射能量
(一) 一九八六年四月二六日、旧ソ連(現在のウクライナ共和国)のチェルノブ
イリ原子力発電所四号炉で起こった出力暴走事故の現実は、原子力発電所で実際に
事故が起こった場合の放射能の被害の恐ろしさ・深刻さを現実のものとして見せつ
けた。
(二) 一九八六年八月IAEA(国際原子力機関)に提出された旧ソ連政府の事
故報告書によると、チェルノブイリ事故が発生した同年四月二六日から同年五月六
日までの間原子炉から環境へ放出された放射性物質は、次頁の表のように気体であ
るキセノン等の希ガスは炉内からほぼ一〇〇パーセント放出されその量は五〇〇万
キュリー、その他のヨウ素一三一、セシウム一三七、ストロンチウム九〇、プルト
ニウム二三九等のエアソル放射能は五〇〇〇万キュリーの合計一億キュリー放出さ
れたとされている(甲六・二五頁、甲イ三七二・二七頁)。
 チェルノブイリ事故が発生するまでは原発史上最大の事故と言われた一九七九年
三月二八日アメリカのペンシルバニア州スリーマイル島原子力発電所の事故での放
射能の放出量は一公式の報告では希ガスが約二五〇万キュリー、ヨウ素一三一約一
五キュリーとされている。チェルノブイリ事故の放射能の放出量は、スリーマイル
島の原発事故と比較し桁違いに大きいものである。②しかし、右ソ連報告書の数値
は事故から一〇日後の五月六日時点の放射能量に換算された値であって、五月六日
以降もかなりの放射能放出があったことを示唆する敷地上空の空気中放射能測定デ
ータが明らかになっている。
 京都大学原子炉実験所の今中哲二は、ソ連報告書に示されているデータやヨーロ
ッパ諸国で公表された放射能汚染データからの総沈着量の推定等から、セシウム一
三七はソ連報告書の三倍の三〇〇万キュリー(炉内の四三パーセント)、ヨウ素一
三一は七倍の五〇〇〇万キュリー(五月六日換算で二〇〇〇万キュリー、炉内の五
五パーセント)の放射能が炉内から大気中へ放出されたとしている(甲イ
三七二・二七頁)。
 また、事故から一〇年を経過した一九九六年・ウクライナ専門家が発表したチェ
ルノブイ原発事故の報告書では、炉内存在量の一五パーセント近くが環境に放出さ
れ、その総放出量は二億九六〇〇万キュリー(1・09×1019Bq)と、ソ連
報告書の約三倍の数値となっている(甲ロ二一・九九頁前頁の表の数値)。
 もんじゅで事故が起こった際環境への放出が問題となるプルトニウム二三九はソ
連報告書では炉内の三パーセントにあたる七〇〇キュリー、右ウクライナの報告書
によると炉内の三・五パーセントにあたる八一〇キュリー(3・5×1013B
q)が大気中に放出されたとしている。
2 チェルノブイリ原発から炉外へ放出された核種
(一) チェルノブイリ原発事故でまず問題になった核種はヨウ素一三一である。
半減期は八日と比較的短いが、とにかく大量に出て遠くまで飛んでくる。ヨウ素は
牧草の表面につき、それを食べた乳牛を汚染し、ミルクを汚染する。それらを食べ
たり飲んだりすることで、多くのヨウ素一三一が人間の体内に入り、甲状腺に取り
込まれる。
 ヨウ素一三一の影響は、とくに小さな子供に深刻となる。子供の甲状腺は小さ
く、大人の一〇分の一だから、同量の放射能を取り込むとその危険性は一〇倍にな
る。信州大学医学部が一九九一年から五回にわたってベラルーシの汚染地域と非汚
染地域で現地調査したところ、汚染地域での子供の甲状腺障害の発生率は非汚染地
域の一〇倍であるとの結果が出ている(甲ロ一三の三)。胎児の場合はさらに大き
な影響を受け、その危険性はだいたい大人の約一〇〇倍と考えられている。
(二) 次に問題になったのは、セシウム一三四とセシウム一三七である。セシウ
ムはガンマ線を出すので測定しやすく、地面、食品などの測定値として示され、放
射能汚染の指標となる。セシウム一三四は半減期が二年、セシウム一三七は三〇年
と、とても寿命が長い。セシウムは地面の表面に留まり、牧草、野菜などあらゆる
ものに入り込み、食品をとおして長期間人類に影響を与え続ける。セシウムは筋肉
や生殖線に集まり、全身に影響を与える。
(三) プルトニウムは、わずか一グラムが公衆一八億人分の摂取限度となる、寿
命が長い(プルトニウム二三九の半減期は二万四一〇〇年、プルトニウム二四〇の
半減期は六五八〇年)猛毒の放射性物質である。これが体内に取り込まれると、肺
ガン、肝臓ガン、骨
腫瘍、白血病などを発生させる。
(四) ストロンチウム九〇の半減期は二八年で、化学的物質がカルシウムと似て
いるため生物の骨に集まりやすく、とくに成長期の子供達にとって深刻な影響をも
たらす。
3 チェルノブイリ事故による住民避難と汚染地域の拡がり
(一) チェルノブイリ原子力発電所から北西四~五キロメートルに位置する原発
関係者のための造られたプリピャチ市では、事故直後の四月二六日午前九時の放射
線量が毎時一四~一四〇ミリレントゲンに達したため、事故発生からの約三六時間
後の四月二七日午後二時から四万五〇〇〇人の住民の強制避難が一三〇〇台のバス
を使って実施された。非難実施中の放射線量は毎時二九〇~一四〇〇ミリレントゲ
ンだったとされる。
 五月二日にはプリピャチ市以外のチェルノブイリ原子力発電所から半径三〇キロ
メートル以内にある七〇もの町や村から九万人の住民避難が決定され、事故から一
〇日後の五月六日には三〇キロメートル圏内に居住しているプリピャチ市の住民も
含めた一三万五〇〇〇人の避難がほぼ完了したと言われている。
(二) セシウム一三七が一平方キロメートルあたり一キュリー以上の汚染地域
は、ベラルーシ、ロシア、ウクライナの三国で、わが国の本州の六〇パーセントに
匹敵する一四・五万平方キロメートルに広がり、その地域は、次頁の図にあるよう
にチェルノブイリ原発周辺ばかりでなく、飛び地のように六〇〇キロメートルも離
れた場所までおよんでいる。
 一九九一年にベラルーシ、ロシア、ウクライナの三国では、これらの汚染地域の
うち、セシウム一三七が一平方キロメートルあたり四〇キュリー以上の地域を避難
ゾーン、一五~四〇キュリーの地域を住民の移住を義務づける移住ゾーン、五~一
五キュリーの地域を希望をすれば移住が認められる移住権利ゾーン、一~五キュリ
ーの地域を放射能管理強化ゾーンと定め、事故当初の三〇キロメートル圏内だけで
なく、放射能汚染の深刻な地域からの避難を義務づけている。三カ国を合わせた移
住義務対象地域の面積は一万平方キロメートル余りにおよび、日本では福井県(四
二〇〇平方キロメートル)、京都府(四六〇〇平方キロメートル)、大阪府(一九
〇〇平方キロメートル)を合わせた面積に相当する範囲となる(甲ロ二一一四~一
五頁)。
4 公表された急性障害と明らかにされつつあるその実態
(一) ソ連報告書によると、チェルノブイリ原発
事故による被曝によって急性の放射線障害が現れたのは二三七人でその全員が原発
職員と消防士であり、そのうち二八人が三カ月以内に死亡し、事故による死者は、
破壊された原子炉建屋に閉じ込められた一人、事故当日火傷で死亡した一人、他の
原因による死者一人を加えて合計三一人だったとし、三〇キロ圏内から避難した一
三万五〇〇〇人の一般住民のなかには急性放射線障害が生じた者は一人もいなかっ
たとされている。右周辺住民に一件の急性放射線障害もなかったというソ連報告書
の見解は、一九九一年ソ連崩壊後もIAEAやWH〇(世界保健機構)などに受け
継がれ現在に及んでいる。
(二) しかし、一九九二年四月に暴露されたソ連共産党秘密議事録には、「五月
六日九時現在、病院収容者は三四五四人になった。そのうち二六〇九人が入院治療
中であり、その中には幼児四七一人が含まれている。確かな情報によれば、放射線
障害が現れた者は三六七人、うち子供一九人となっている。そのうち三四人が重体
である。モスクワの第六病院に入院治療中の者は一七九名で、その中には二名の子
供がいる。」などと事故直後に病院へ収容されたり放射線に被曝した人の数が記録
されており、事故処理作業に従事しなかった住民にも急性放射線障害が発生してい
た事実が明らかとなっている(甲ロ二一・一三五頁)。
 ロシア科学アカデミー社会科学研究所のウラジーミル・ルパンディンは、ベラル
ーシ共和国ゴメリ州α1地区の地区中央病院に残されていた事故当時作成された住
民のカルテを一九九二年に調査した結果、八二件の放射線被曝例の記録を見いだ
し、うち八件に急性放射線障害を確認し、そのことからチェルノブイリ周辺三〇キ
ロメートル圏全体では、少なくとも一〇〇〇件の急性障害があったとしている(甲
ロ・一四〇頁~一四六頁)。
 右八件の急性放射線障害と確認された事例のうち、四月二六日と二七日チェルノ
ブイリ原子力発電所の北方一七・五キロメートルにあるα2のプリピャチ河畔で日
光浴と魚釣りをして過ごしたため一〇〇レムから三〇〇レムという非常に高いレベ
ルの放射能を被曝(α2の放射線レベルの四月二六日及び七七日の記録はないが四
月二八日で一二〇ミリレントゲン/時であったことからそれ以上であったことが推
測される)した二〇歳の男性は、嘔吐、全身衰弱、胃痛、頭痛、口渇、高熱(三九
度)、便秘などの症状を訴えホイニキ地区中央病院へ五月
一日入院し、右病院での検査の結果、肝臓からガンマ線五~一〇ミリレントゲン/
時、甲状腺から一・五ミリレントゲン/時が測定され、白血球数の三六〇〇の減少
も見られ、全身衰弱、吐き気、嘔吐、頭痛、めまい、会話困難により五月三日には
ゴメリ州立病院へ転院したとされるが、右症例は急性放射線障害の典型例である。
5 明らかになってきた子供達を中心とした晩発性障害の実態
 これに対して、比較的低いレベルの放射線をあびたとき生じる晩発性障害があ
る。被曝から時間が経過してから被害が発生するのが特徴である。
 晩発性障害の最も典型的なものに白血病とガンがあり、広島・長崎の被曝者の場
合、白血病は早くて被曝後約四、五年くらいから、他のガンでは一〇年くらいから
あらわれだすのが一般であった。しかし、チェルノブイリの場合には、事故後四年
目ころからベラルーシやウクライナの汚染地域で子供達に甲状腺疾患などさまざま
な症状が急増していることが伝えられはじめた。また貧血や運動機能低下、免疫機
能の低下なども報告されており、これは広島や長崎で原爆ブラブラ病といわれた病
状とよく似ている。小児甲状腺ガンの増加は一九九〇年から顕著にあらわれ、以後
増え続けている。
 チェルノブイリでもこの晩発性障害があらわれてきているが、放射能が胎児に大
きな影響を与え、知能障害や新生児死亡につながっている。
(一) 甲状腺ガン
 ベラルーシ共和国ミンクスの保健局の高度に汚染された地区の調査によると子供
の甲状腺ガンの発生は一九八六~八九年では年間二~六例で平均四例だったのに、
一九九〇年以降は、九〇年二九例、九一年五五例、九二年前半三〇例と大幅に増加
した。特に汚染のひどかったゴメリ地区では、九一年三八例、九二年前半一三例を
記録し、これは世界平均である「百万人の子供で一年間に一人」の八〇倍にあたる
(甲ロ一三の一)。
 一九九五年一一月には、これまで事故との因果関係を認めてこなかったWH〇
(世界保健機関)も、ジュネーブで開かれた「チェルノブイリその他の放射線事故
による健康影響に関する国際会議」で、チェルソブイリ原発の周辺地域で多発して
いる小児甲状腺ガンについて、ようやくチェルノブイリ事故にともなう放射能が原
因であるとの結論を出すに至った。
(二) 先天性胎児障害
 晩発性障害としては、ほかにも遺伝子的影響がある。
 放射線が生殖細胞の遺伝子や染色体に異常を与えるこ
とで起きるとされる先天性異常である。ベラルーシ共和国では口唇・口蓋裂、腎
臓・尿管異常、多指症等の形成不全がみられる先天性胎児障害は、事故前(一九八
二~八五年)と事故後(一九八七~九三年)を比較すると、次頁の表に示されるよ
うに、その増加は放射能汚染度が強いほど大きい傾向すなわち、一平方キロメート
ル当たりセシウム一三七が一五キュリー以上の汚染地域では一〇〇〇人当たり三八
七人±〇・三一人(症例数一五一)から六・九二人±〇・三八人(症例数三三七)
へと七九パーセント増、一~五キュリーの汚染地域では四六一人、±〇・一九人
(症例数五五九)から六・二二人±〇・一九人(症例数一一〇八)へ三五パーセン
ト増、他の汚染の低い地域では、四・七二人±〇・一八人(症例数六七八)から
五・八六人±〇・一九人(症例数一二一七)へと二四パーセント増という結果が統
計的にも明らかになっている(甲イ三七二・七一頁)。
(三) 小児の末梢血リンパ球染色体異常
 チェルノブイリ原発三〇キロメートル圏内のベラルーシのゴメリ州のブラーギン
地区に事故から約二週間放射能にさらされ五月七~八日に三〇キロメートル圏外の
ミンクス州のクリーン地域へ避難した子供達(以下「三〇キロメートル圏から非難
した子供達」という)と、ブラーギン市で一カ月放射能にさらされ一カ月後にクリ
ーン地域へ非難し、三カ月あまり滞在した後、ブラーギン市へ戻った子供達(以下
「ブラーギン市の子供連」という)、それにチェルノブイリ原発から三〇〇キロメ
ートル離れたミンクス市などの子供達(以下「対照グループの子供達」という)の
それぞれの末梢血リンパ球の染色体について一九八六年に検査したところによる
と、下の表のように、①、染色分体型の染色体異常(切断、交換)を持つ細胞一〇
〇個あたりの頻度は、対照グループの子供達一・四±〇・二に対し、三〇キロメー
トル圏から避難した子供達六・八±〇・二、ブラーギン市の子供達七・七±〇・
二、②、染色体にくびれが二カ所ある二動原体染色体やリング状の環状染色体など
の異常の細胞一個あたりの出現頻度は、対照グループの子供達〇・〇〇〇六に対し
三〇キロメートル圏から避難した子供達〇・〇〇九五、ブラーギン市の子供連〇・
〇〇五三と、汚染地域に居住していた子供達とそうでない地域に居住していた子供
連の間に有意な違いが生じている。
 なお、その後の一九九一年の検査において
、放射能汚染地域の子供達の末梢血リンパ球に観察される染色体異常の頻度は、年
々増加する状態が継続していることが明らかになっている(甲イ三七二・七二頁~
七四頁)。
(四) 子供達の健康状態への影響
 ベラルーシ共和国で被曝した子供達のうち三万三四八八人の健康状態のチェック
や医療記録の収集などの疫学的調査によると、一九八七年には完全に健康であると
認められる子供の割合は六一・三パーセントだったのが一九九二年には一八・六パ
ーセントに減少し、それに引き替え、何らかの慢性疾患を持つ子供は、一九八七年
は一〇・九パーセントであったが一九九二年には三〇・三パーセントと増加した。
 被曝した子供達のうち、三〇キロ圏から避難した子供達の腫瘍、悪性腫瘍、甲状
腺ガンの発生率は特に高く、ベラルーシ全体との発生率と比較すると、下の表に示
されるように一〇〇〇人あたりの発生率は腫癌は二・七六人で三・二倍、悪性腫瘍
は二・二一人で一八・四倍、甲状腺ガンは二・二一人で実に七三・七倍と、チェル
ノブイリ事故は周辺に住む子供達の健康状態へ大きな影響を与えている(甲イ三七
二六三頁~二六五頁)
6 世界を覆いつくした放射能汚染
(一) 爆発したチェルノブイリ原発から飛び出した放射能の一部は、炉心の熱に
よっていったん蒸発した後、すぐに凝縮して粒子となった。この粒子は風にのって
流れていく。これが放射能雲であり、放射能雲が通過した地域は放射能をあびる。
また、この放射能の粒子は、触れるものにすべて付着するので、環境中のありとあ
らゆるものが汚染される。雲が通過してからも、この付着した放射能の粒子から引
き続き放射線をあびることになる。
 不揮発性の放射能であるジルコニウム九五などは、大きな粒子として放出される
から、現場近くに落ちる。それに対し、揮発性の高いヨウ素一三一やセシウム一三
七などは、気体や微粒子として一〇〇〇~二〇〇〇メートル、あるいはそれ以上の
高さまで噴き上げられ、北西へ南西へと風向きを変えながらヨーロッパ、そして北
半球全域に拡がり、遠くまで運ばれた。
(二) 四月二九日チェルノブイリ原発かち一三〇〇キロメートル離れたスウェー
デンで通常の一〇〇倍の放射能が観測された。
 同国では、一時、毎時一ミリレムが記録されたこともある。毎時一ミリレムとい
う数値は、日本で原子力委員会が一九八〇年六月に決定した『原子力発電所等周辺
の防災対策について』
によれば、防御の準備体制に入るための目安とされる数値である。
(三) ヨーロッパ大陸を吹く風の向きが変わった五月一日には、通常の西ドイツ
でも三〇、スイスでも一〇倍の放射能が観測された。チェルノブイリ原発から一〇
〇〇キロメートルも二〇〇〇キロメートルも離れたヨーロッパでさえ、凄まじいば
かりの放射能汚染に見舞われた。
 西ドイツの都市レーゲンスブルグにおける浮遊塵中の放射能は、一立方メートル
あたり、一四二八・三ピコキュリーであり、北イタリアにおける野菜一キログラム
あたりの放射能は一〇万ピコキュリーであった。
 チェルノブイリから五〇〇キロメートルしか離れていないポーランドでは、事態
はもっと深刻であった。政府は、子供や妊婦には外出を避けるように呼びかけ、特
に一六歳以下のすべての子供達にはヨウド剤を配布し、牧草を食べている牛の牛乳
の飲用を禁止した。
 イギリスでも、北部地域で牛乳から平常値の二〇〇倍の放射能が検出され、七歳
以下の小学生に対するミルクの給食が禁止された。
 スウェーデン政府は、ソ連、ポーランド、チェコスロバキア、ルーマニア、ブル
ガリアからの肉・じゃがいも、野菜等の生鮮食品の輸入を禁止し、西ドイツもそれ
にならった。
(四) チェルノブイリから約七〇〇キロメートル離れたモスクワにおいても、購
入された牛乳から一リットル当たり一三〇〇ピコキュリーのヨウ素一三一が検出さ
れている。
7 わが国へのチェルノブイリ事故の影響
(一) 摂取制限値を超える放射能の検出
 放射性物質は、八〇〇〇キロ離れた日本へもやってきた。検出された核種は、ヨ
ウ素一三一、セシウム一三七のみならず、ルテニウム一〇三、テルル一三二などに
も及んでいる。
 わが国で検出された雨水一リットル当たりのヨウ素一三二は、千葉では一三三〇
〇ピコキュリー、東京で九三〇〇ピコキュリー、島根で八九二三ピコキュリー、福
島で八三二〇ピコキュリー、神奈川で五四〇〇ピコキュリー、秋田で五一〇〇ピコ
キュリーといずれも飲料水の摂取制限値三〇〇〇ピコキュリーを越えたものであっ
た。ヨモギ一グラム当たりの数値でも、福井衛生研究所で一五・一ピコキュリー、
敦賀で一六ピコキュリー検出されている。
(二) 規制値を超え積み戻された輸入食品
 一九八六年一二月に横浜・神戸両港に荷揚げされたトルコ産へーゼルナッツ三〇
トンから五二〇~九八〇ベクレル(一キロ当たり)のセシウムが
検出された。その後も翌年一月に輸入されたトルコ産月桂樹五二トンから四九〇~
六七〇ベクレル(一キロ当たり)、セージ(サルビア)の葉一四・五トンから一〇
〇〇~三〇〇〇ベクレル(一キロ当たり)、フィンランド産の牛胃一・二六トシか
ら四四〇ベクレル(一キロ当たり)、スウェーデン産トナカイ肉から三八九ベクレ
ル(一キロ番たり)のそれぞれセシウムを検出した(甲九)。
 右の数値は、わが国の規制値である一キロ当たり三七〇ベクレルを超えるためこ
れらの食品はわが国への輸入を拒否され積み戻しになった。一九九四年一一月まで
の間、制限値を超える放射能が検出されたため、ハーブ茶、きのこ、ぜんまい、セ
ージ葉等の輸入食品が三〇数回にわたり積み戻しになり、輸入できなくなった(甲
イ三七二・九四頁)。
8 沈着した放射能の影響によるガン及び白血病の死者予測
(一) ベラルーシ科学アカデミー・物理化学放射線問題研究所のミハイル・V・
マリコは、チェルノブイリ事故のもたらした放射線汚染のデータを総合的に分析
し、その集団被曝線量から長期的なガンと白血病への影響を予測している。
(二) 右予測によると、チェルノブイリ事故により大気中へ放出された放射能の
うちベラルーシ、ロシア、ウクライナ三国に、セシウム一三七は一二〇万キュリ
ー、ヨウ素一三一は一九四〇万キュリーが沈着していることから、集団実効線量当
量の合計は三二万八五〇〇人シーベルトとなり、それにリスク係数を乗じるとガン
と白血病による死者は、ベラルーシ、ロシア、ウクライナの旧ソ連国内だけで約四
万四〇〇〇人となるとしている。全世界的にみると、旧ソ連国外にも、ベラルーシ
など旧ソ連国内と同量のセシウム一三七が沈着しているから、チェルノブイリ事故
の放射線汚染により約九万人がガンや白血病で死者を生み出すことになる。
 これは広島、長崎への原爆投下によってもたらされたガンと白血病の死者と同じ
程度であることを意味するとしている(甲ロ一二・一〇七頁)。
(三) わが国でチェルノブイリ事故と同程度の放射能を放出する原発事故が起き
たとすると、わが国はベラルーシ、ロシア、ウクライナと比較し平均寿命が一〇~
一五年以上長く、人口密度も高いこと(日本の人口密度は一平方キロメートルあた
り三二七人であるが、ベラルーシは四八・二人、ロシアは三六・六人、ウクライナ
は八四・二人)から、ガン及び白血病の犠牲者数はベラル
ーシなど三国の約四万四〇〇〇人という数ではおさまらず、その七~八倍というも
のになる。
第二 もんじゅにおいて起こり得る事故の放射能被害の甚大性
一 最高裁も指摘するもんじゅの危険性
 もんじゅでは、第六章第四「炉心崩壊事故解析の誤り」で述べるように、ウラン
とプルトニウムの混合酸化物の燃料を高速中性子によって核分裂連鎖反応を起こし
エネルギーを発生させる仕組になっているため、出力暴走により炉心崩壊事故を招
く危険性は軽水炉と比較し格段と高い。
 最高裁ももんじゅ上告審の判決で、「炉心の燃料としてはウランとプルトニウム
の混合酸化物が用いられ、炉心内において毒性の強いプルトニウムの増殖が行われ
ることが明らかであって、・・・・安全性に関する各審査に過誤・欠落がある場合
に起こり得る事故等による災害により直接的かつ重大な被害を受けるものと想定さ
れる」(最高裁平成四伍九月二二日判決・判例時報一四三七号四二頁)と、もんじ
ゅは、その炉心特性から、安全審査に過誤・欠落があり事故が起こった場合、甚大
な被害が起こるとしている。
二 非現実的な安全審査の事故想定
1 本件もんじゅの安全審査で、動燃は本件設置許毎申請書で重大事故を超えるよ
うな技術的見地から起こるとは考えられない事故であるとして、「炉心内のすべて
の燃料が溶融、破損したと仮定した場合に放出される放射性物質の量に相当する量
の放射性物質が原子炉格納容器内に放出されることを仮定した事故」(平成五年六
月一八日付被告準備書面(三)一七二頁)である仮想事故を想定しているが、それ
に対し被告国は、右仮想事故が起こった場合にも原子炉等規制法二四条一項四号の
「原子炉による災害の防止上支障がないもの」との要件を具備し安全であるとす
る。
2 しかし、右事故想定は、被告国が述べるように「基本設計ないし基本的設計方
針で採られている安全対策をすべて無効とする設定は、そもそも基本設計ないし基
本的設計方針の是非を審査するという安全審査の趣旨に反し不合理である。そこ
で、ガードベッセルや原子炉格納容器等の安全防護施設の存在を無視し、あるい
は、これらが全く機能しないような場合において始めて発生し得る事故の状態まで
も考慮する必要はないことになる」(平成五年六月一八日付被告準備書面(三)一
六九~一七〇頁)とするもので、もんじゅで起こり得る炉心崩壊事故による原子炉
や原子炉格納容器のそのものの健
全性が破壊され、原子炉内から大量の放射能が環境へ放出される事故を安全審査で
審査することを被告国は放棄している。そのため右仮想事故で審査対象となる大気
中に放出される核分裂生成物の量は、
・ヨウ素(Ⅰ―一三一等価) 約二、三〇〇キュリー
・希ガス(ガンマ線〇・五メガボルト換算) 約四七〇、〇〇〇キュリー
・プルトニウム 約五一キュリー
という数値となっているが、これらの炉内存在量のうち大気中に放出される割合は
ヨウ素は〇・〇〇四五パーセント、希ガスは〇・二四パーセント、そしてプルトニ
ウムにいたっては〇・〇〇〇三四パーセントという著しく過小なものとなってい
る。
3 アメリカ原子力委員会(AEC)は、一九七五年に公表した「WASH―一四
〇〇」(ラムスッセン報告)において、軽水炉において炉心崩壊事故などの重大事
故時に原子炉格納容器の健全性が破壊され原子炉内の放射能が大気中へ放出された
場合における災害評価を行っている。右災害評価では、加圧水型軽水炉において炉
心冷却系が故障して炉心熔融を起こし、さらに格納容器の天井から大量の水を撒き
散らせる格納容器スプレイシステムと熱除去系も故障するため、格納容器の圧力上
昇を押さえることができず、格納容器がその耐圧限度を突破して破裂するという事
故タイプ(PWR―二)では、プルトニウムの大気中への放出量は炉心内蔵量の
〇・四パーセント、沸騰水型軽水炉において、炉心冷却系が故障して炉心が熔融し
格納容器の床に落下し蒸気爆発を起こし格納容器が破壊されるという事故タイプ
(BWR―一)では、プルトニウムの大気中への放出量は炉心内蔵量の〇・五パー
セントとしている。
 右事故タイプはいずれも軽水炉の炉心熔融事故によるものであるが、高速増殖炉
である本件もんじゅで想定される事故は、炉心が崩壊して出力が暴走する事故であ
り、そこでは炉心燃料が気化するから、プルトニウムの大気中への放出量は、軽水
炉のそれに比べかなり大きく、控えめな数字としても炉内存在量の一パーセントと
すべきである(P13証人二八回五三丁表~裏)。
4 チェルノブイリ事故では、出力暴走により原子炉格納容器が破壊されたが、数
字的に過小であると批判がなされているソ連報告書でも、希ガスは炉内存在量の一
〇〇パーセント近くにあたる五〇〇〇万キュリー、ヨウ素一三一は炉内存在量の二
〇パーセントにあたる七三〇万キュリー、プルトニウム(二三八
、二三九、二四〇、二四一)は炉内存在量一四万二五〇〇キュリーの三パーセント
にあたる四二七五キュリーが大気中に放出されるとしている(甲六・二五頁)。
5 炉内存在量の〇・〇〇〇三四パーセントにあたる五一キュリーしかプルトニウ
ムが大気中に放出しないとする本件もんじゅの仮想事故想定の放射能の放出量の数
値は、アメリカ原子力委員会の「WASH―一四〇〇」における軽水炉の重大事故
時のプルトニウム放出量との比較、そして現実に起こったチェルノブイリ事故での
プルトニウムなどの大気中への放出割合からいっても、非現実的なものだと言わな
ければならない。
三 もんじゅで起こり得るべき事故の被害
1 はじめに
 本件全審査では、仮想事故を想定する際、高速増殖炉がその炉心特性などから崩
壊事故や出力暴走事故を起こす危険性が軽水炉型原発に比較し、はるかに大きいに
もかかわらず、出力暴走により炉心崩壊が起こり原子炉及び原獅子炉格納容器の健
全性そのものが破壊されるという事故を想定しなかったため、大気中に放出される
プルトニウムがわずか五一キュリーなどとその放出される放射能の量は不当に少な
い数値となっている。被告国は右数値から安全審査においてもんじゅは安全だとし
ている。
 これに対し、原子力資料情報室のP13は、もんじゅの危険性を立証するため、
もんじゅにおいて炉心崩壊事故が実際に起こった場合の事故想定について、自ら行
った解析結果に基づき民事訴訟事件で証言した。また、京都大学原子炉研究所助手
であったP14は、スリーマイル島やチェルノブイリで原発事故が起こってしまっ
た現実を踏まえ、その著書「原発事故‥‥‥‥その時、あなたは!」(甲ロ二〇)
で、わが国に点在する原発で事故が起こった場合の事故想定をしているが、そのな
かでもんじゅで炉心崩壊事故が起こった場合の事故想定もしている。
2 二〇万人のガン死―P13の事故想定
(一) もんじゅでの炉心崩壊事故の想定条件
(1) P13の本件もんじゅで予想される炉心崩壊事故の想定とは、原子炉容器
内の一次冷却材のナトリウムが、ポンプの異常などによりその流量が減り、炉心が
過熱状態になり、冷却材のナトリウムが沸騰して炉心熔融を起こし、ナトリウムが
蒸発するため原子炉の出力が上昇し、第一次の暴走が起き、そこで溶けた燃料とナ
トリウムが反応して蒸気爆発を起こし爆発によって炉心が押し下げられ収縮が起こ
り、これが
原因で再臨界に達し、第二次の大爆発へと発展し、それにより原子炉容器が破壊さ
れ、格納容器の健全性が破壊され、大量の放射能が原子炉から放出されるというも
のである(P13証人第二八回四二丁表、同二二丁裏~二四丁表、甲イ一七七・一
四頁)。
(2) プルトニウムの放出量は、炉内存在量の一パーセントがエアロゾルとなっ
て外部環境に放出されることを設定しており、炉内存在量の〇・〇〇〇三四パーセ
ントのプルトニウムしか大気中へ放出されないとする本件安全審査の数値に比べれ
ば三〇〇〇倍近い数値となるが、数一〇パーセント程度の放出を見なければならな
いというリチャード・ウェブの考え方からすると、炉心崩壊事故のプルトニウムの
放出量としてはむしろ控えめな数値としている(P13証人第二八回四二丁表~
裏)。
(3) 右災害評価にあたっては、放出高度は二〇〇メートル、大気安定度は最も
よく出現する標準的な大気の状態であるD、風速は三メートルとし、「発電用原子
炉施設の安全解析に関する気象指針について」(昭和五二年六月一四日原子力委員
会決定)に基づいて、各地点のプルトニウムの大気中の濃度を求め、避難せずその
大気を吸入した人に対して、「プルトニウムを燃料とする原子炉の立地評価上必要
なプルトニウムに関するめやす線量について」に従って、肺、骨表面、肝臓の被曝
線量、実効線量当量を計算し、他の放射性物質の影響は無視しプルトニウムだけの
影響を評価し、そのプルトニウムの影響の評価についても、土壌汚染や水、食料の
汚染になって体内に入ってくる経路は無視し、大気中にプルトニウムが拡散し、そ
こにいた人が呼吸によってプルトニウムを吸入すると、それがプルトニウムの内部
被曝になって影響を与えることだけを評価している。
(二) 近隣市町村の壊滅的打撃と二〇万人のガン死
(1) 本件もんじゅにおいて右に述べたような炉心崩壊事故が起こることによ
り、原子炉及び原子炉格納容器の健全性は破壊され、炉内存在量の一パーセントに
あたるプルトニウムがエアロゾルとなって大気中へ放出され、それが南々西の風に
より京都、大阪方面へ運ばれて行くと仮定すると、P13による災害評価では以下
のような壊滅的な被害が予測される(甲イ一七一・一七頁~一八頁及び末尾添付図
表、P13証人二八回四一丁裏~五一丁表)。
(2) もんじゅから二四~二五キロメートル以内に位置する敦賀市白木地区、美

町、α3、小浜市などの市町村では、そこに住んでいる住民に対し骨表面(人体組
織においてはその影響が最も厳しい部位)では一〇シーベルト(一〇〇〇レム)、
実効線量当量(全身に被曝した場合にどういう影響を与えるかということに換算し
た値)では一シーベルト(一〇〇レム)の被曝をもたらすことになり、それらの住
民は深刻な急性の障害か、急性の死亡まで至るという壊滅的な打撃を受ける。
(3) もんじゅから七四キロメートルの距離にある京都の北端に及ぶまでの範囲
では、その被曝量は被告国が基準として定める「プルトニウムに関するめやす線量
について」の骨表面のめやす線量二・四シーベルトを超えることになり、その範囲
では急性障害が発生し、被告国の基準に従ったとしても、その範囲内では人が住む
べきではなく無人化しなくてはならないことになる。
(4) 被告国の「原子力発電所等周辺の防災対策について」(昭和五六年六月三
〇日原子力安全委員会決定)では、原発事故により放射性物質が大量に大気中に放
出した場合の周辺住民の退避についての指標につき、一〇〇ミリシーベルト以上の
放射線汚染が予測される場合、乳幼児、児童、妊婦だけでなく成人も、コンクリー
ト建屋の屋内に退避するか、退避しなければならないとしている。この一〇〇ミリ
シーベルトを超える範囲は、もんじゅから一四〇キロメートルの範囲である大阪市
や神戸市まで及ぶ。
 もんじゅの事故によりその炉内の一パーセントのプルトニウムが大気中へ放出さ
れ、それが南々西の風に運ばれ関西方面へその汚染が拡がるとすると、昭和五〇年
当時の人口統計でも千数百万人の京阪神地区に住む住民が退避しなければならない
ことになるのである。
(5) 集団被曝線量の計算値は、プルトニウムの影響だけで二〇〇万人シーベル
ト(二億人レム)に及び、その内部被曝の晩発性効果によって二〇万人ものガン死
をもたらすことになる。この二〇万人のガン死という数値は、DS八六による広
島、長崎の被曝線量の再評価など最近低線量域での放射線の危険性が明らかにされ
てきたことから、P13自身が放射線によるガン死リスク評価を、一万人シーベル
ト(一〇〇万人レム)あたり一〇〇〇人のガン死という認識のもとに算出したもの
であるが、ICRPの一九九〇年勧告の一万人シーベルト(一〇〇万人レム)あた
り五〇〇人というガン死リスク評価に従ったとしても、被曝した一六二九万人
のうちから一〇万人ものガン死をもたらすことになる。
3 敦賀市で二万三〇〇〇人の急性障害死―P14の事故想定
(一) もんじゅでの炉心崩壊事故の想定条件
(1) チェルノブイリ事故の大惨事の経験を踏まえ、P14はその著書「原発事
故‥‥その時、あなたは!」(甲ロ二〇)のなかで、もんじゅにおいて炉心崩壊事
故が起こった場合の災害評価を行っている。右災害評価の手法は、アメリカ原子力
委員会が一九七五年に公表した軽水炉における災害評価に関する「WASH―一四
〇〇」にならい、加圧水型原発で炉心冷却系が故障して炉心熔融を起こし、格納容
器内の圧力上昇を抑えることができず、耐圧限度を突破して破裂し、格納容器内に
充満していた大量の放射能が環境に噴き出すという事故と同じものが、もんじゅで
起こったことを想定し災害評価を行っている。
(2) 右被曝量の計算においては、P13の災害評価と異なり、プルトニウムだ
けでなく炉内のヨウ素、セシウム、キセノンなど全て放射性物質も大気中に放出さ
れるものとし、プルトニウムについては、炉内存在量一〇パーセントが放出され、
体内被曝については、汚染された水や食物からの経口摂取は無視し、呼吸によって
取り込んだものだけを考えると仮定している(甲ロ二〇)。
(二) 事故による甚大な被害予測
(1) 右事故想定をもとにP14は、①急性障害による死亡、②晩発性障害によ
るガン死、③長期避難をすべき領域の三点に関し、本件もんじゅの災害評価を行っ
ている(甲二〇・四八頁~五〇頁)。
(2) ①急性障害による死亡については、被曝した場合五〇パーセントの人が死
亡する半数致死線量につきICRPの四シーベルト(四〇〇レム)という基準を採
用し死者の数を算定しているが、それによると図①に図示するように、本件もんじ
ゅから南々東約一一キロメートルの距離付近にある敦賀市では人口の約五〇パーセ
ントに該当する二万三一二二人が、北東一二~三キロメートルの距離にある河野村
では人口の約三〇パーセントに該当する九三六人が、南々東約一五キロメートルの
距離にある美浜町で人口の約七パーセントに該当する七三二人が急性障害で死亡す
る結果となる。
(3) ②被曝による晩発性の影響であるガン死亡の数は、集団被曝線量を計算し
その結果から京都、大阪など人口が密集する関西方面へ南々西方向の風が吹いてい
た場合は約三〇〇万人、岐阜県や静岡県方向へ東南東
の風が吹いていた場合は約一五〇万人、東京方面へ東風が吹いていた場合は約一四
〇万人、福井市、金沢市方面へ北々東の風が吹いていた場合は約八〇万人というも
のとなる(図②)。
(4) 右数値は、集団被曝線量に対し、一万人シーベルト(一〇〇万人レム)あ
たり四〇〇〇人が被曝の影響によるガン死するというゴフマンのガン死リスク評価
にしたがって計算された数値であるが、関西方面のガン死は、P13のガン死リス
ク評価(一万人シーベルトあたり一〇〇〇人)では約七五万人、ICRPのガン死
リスク評価(一万人シーベルトあたり五〇〇人)でも約三七・五万人となる。
(5) ③長期避難をすべき領域とは、原発事故によってセシウム一三七のような
半減期の長い放射能が地面を汚染するので、何十年にわたり居住不可能となる領域
である。チェルノブイリ事故の際、旧ソ連は避難基準の目安の一つとして、セシウ
ム一三七の地面汚染度濃度につき、一平方メートルあたり一四八万ベクレル(一平
方キロメートルあたり四〇キュリー)、ロシア共和国は旧ソ連よりも約三倍厳しい
一平方キロメートルあたり一五キュリーという避難基準を示した。右基準に従うと
長期避難をすべき領域は、図③のように、旧ソ連の緩い基準でも京都市、大阪市、
名古屋市も及び、ロシア共和国の厳しい基準では、鳥取県、岡山県、和歌山県、静
岡県、長野県のそれぞれ一部まで含むきわめて広い領域となる。
四 放射能被害を過小に評価した本件安全審査の誤り
 もんじゅはその炉心特性から、出力暴走し炉心崩壊事故を起こす危険性が軽水炉
と比較し桁違いに高いにもかかわらず、被告国は動燃が申請した原子炉格納容器の
健全性を前提とした仮想事故の事象選定及び右仮想事故に基づき、炉内から大気中
へのプルトニウム等の放出量を過小に評価した災害評価を妥当であるものと判断し
ているが、もんじゅにおいてひとたび炉心崩壊事故が起こってしまえば、原子炉及
び原子炉格納容器が破壊され、プルトニウムを含む原子炉内の大量の放射能が大気
中に放出され、被曝による急性あるいは晩発性の取り返しのつかない甚大な被害が
もたらされることは、P13やP14の災害評価から見ても明らかである。
 もんじゅで現実に起こり得る原子炉格納容器そのものが破壊されるような炉心崩
壊事故を想定し、その事故により環境へ放出される放射能による原告ら周辺住民に
対する甚大かつ深刻な災害を正当に評価
すれば、本件もんじゅが、「原子炉による災害の防止上支障がないものである」と
は到底言いえないことは明らかであり、被告国の本件安全審査は原子炉等規制法二
四条一項四号に違反する明白かつ重大な違法が存在する。
第六章 安全審査の過程に過誤・欠落があること
第一 ナトリウム漏洩火災事故はもんじゅの安全性を揺るがせた
一 問題の所在―何が問われているか。
1 もんじゅの安全確保の根幹に関わる重大事故
 一九九五年一二月八日に発生したもんじゅのナトリウム漏洩火災事故は連日のよ
うに新聞紙上を賑わせ、社会を大きく震憾させただけではなく、技術的に重大かつ
困難な問題を投げかけた(甲イ第二五〇号~甲イニ七二号証)。福井県、福島県、
新潟県の県知事は合同して国に対し、本件事故を「核燃料リサイクルの中核とされ
ている高速増殖炉の安全確保の根幹に関わる重大事故」ととらえ、事故の徹底究明
と情報公開を求めた異例の提言を行った。被告動燃も本件事故を「もんじゅの安全
確保の根本に関わる重大な事故」と受け止めざるを得なかった(検討結果報告書第
一回一―一)。
2 安全審査の誤りを示した事故
 本件ナトリウム漏洩火災事故は、安全確保の根幹に関わる重大事故であったとい
うにとどまらず、安全審査の誤りを明確にした事故でもあった。
 すなわち、安全審査で審査された二次系ナトリウム漏洩事故の事故解析におい
て、一五〇トンのナトリウムが漏洩してもナトリウムとコンクリートの反応を食い
止める機能を持つ床ライナの最高温度は四六〇度で、設計温度である五三〇度には
余裕があり、床ライナの損傷、ナトリウム・コンクリートー反応による損傷や破壊
などは起こり得ないとされてきた。
 しかし、実際には想定された漏洩量の約二〇〇分の一足らずの漏洩で、床ライナ
の温度は設計温度を二〇〇度以上も上回り、腐食反応により床に窪みが生じたので
ある。さらに、その後のナトリウム燃焼実験では、条件によってはもんじゅにおい
ても床ライナに大きな穴があき、コンクリートとナトリウムが直接接触し、ナトリ
ウム・コンクリート反応によって床が崩壊し、機器の破壊、放射能の大量漏洩につ
ながる大規模な事故が発生する可能性も明らかとなった。この事実を、原子力安全
委員会は乙イ第一二号証の報告書(一四頁、二六頁、二七頁)において認めてい
る。即ち、
(一) 事故の直接の原因となったナトリウム温度計の破損は設計ミスを見逃し
たためであることを認め、同じ様な欠陥がもんじゅのほかの部分にも潜んでいる可
能性があることを指摘している。
(二) もんじゅの安全審査で二次系ナトリウムの漏洩事故について、大規模事故
を想定すれば、これよりも小規模な事故による危険性は全て包括されるという「大
は小を兼ねる」という誤った認識に立っていたことを認めた。
(三) 床ライナが高温でナトリウム酸化物によって腐食されるということについ
て、本件事故発生まで、「知見も問題意識もなかった」ことを、安全委員会が自ら
認めた。
 このように原子力安全委員会自身が自ら、本件安全審査及び安全審査システム自
体に過誤があったことを認めている。
3 証明された動燃の技術的能力の欠如
 また、ナトリウム漏洩火災事故にとどまらず、被告動燃の技術的能力を疑わせる
事実が二年間で次々と明らかとされた。
 すなわち、本件事故及びその際の虚偽報告とビデオテープの改纂、九七年三月の
被告動燃の東海再処理工場の事故とその後の悪質な隠蔽工作、被告動燃のふげん発
電所による度重なる放射能漏れ事故とその秘匿、放射性廃棄物の杜撰極まりない保
管、被告動燃による予算の不正流用などがそれである。被告動燃が原子力技術を取
り扱う技術的能力も倫理的誠実さも持ち合わせない集団であることが明確となった
のである。
4 許可は無効であり、もんじゅの運転は許されない。
 本章においては、ナトリウム漏洩事故の問題点を解明し、被告動燃にもんじゅを
安全に設置し、適格に運転する技術的能力がないことを指摘するとともに、本件安
全審査に明白かつ重大な誤りがあるため無効であることを論ずる。
 結論的には、本件事故によって本件安全審査は安全確認に重大な過誤があるため
無効であり、被告動燃によるもんじゅの運転は絶対に許されてはならないことを明
らかにする。
二 ナトリウム漏洩火災事故で明らかになったこと
1 火災検知器の発報から漏洩終了まで
(一) 漏洩発生前の状況
 もんじゅでは原子炉等規制法に基づく使用前検査の一環として、電気出力四〇%
でのプラント・トリップ試験(緊急停止試験)を行うため、一九九五年一二月六日
原子炉を起動し、一二月八日午後四時三〇分、発電機を併入(発電を開始)して、
熱出力四五%への出力上昇操作が実施されていた。
(二) 火災検知器発報
 一二月八日午後七時四七分一三秒、原子炉熱出力四三%(電気出力四〇%)で運
転中のもんじゅ
で突然、「Cループ中間熱交換器二次側出口Na温度高」の警報が発せられた。続
いて四七分一九秒及び四六秒、Cループ二次主冷却系配管室(以下配管室)の二箇
所で煙感知式火災検知器が警報を発した。煙の発生原因としては、まず、ナトリウ
ムの漏洩が考えられるが、この時点でナトリウム漏洩警報は出ていない。警報を発
した温度計の指示値は、図六―一―二―二に見られるように、一旦二〇〇度あたり
まで下がったあと、急激に上昇して振り切れるという異常な挙動を示していた。こ
れに対し当直長がどのような指示を出し運転員がどのように振舞ったか、被告動燃
及び被告国のいずれの報告書にも触れられていない。
(三) ナトリウム漏洩警報
 火災検知器警報から一分以上後の午後七時四八分二五秒及び五五秒、「Cループ
二次主冷却系Na漏洩」警報が、配管室Cの二箇所で発報している。ナトリウム漏
洩の事態がこの時からはっきりしたことになる。Na漏洩検出器はLBBの考え方
に基づき、漏洩を微少な段階で発見し、それによって火災にいたる事態を未然に防
ぐ手段であった。当然、火災検知器が警報を発する前にNa漏洩警報の発報がある
ものと期待されていたが、今回の事故では、その期待は裏切られ火災警報が先行し
た。これは火災防止設計の基本に抵触する重大事であるが、この点に注意を払った
報告書はない。
(四) 第一回現場確認
 マニュアル(異常時運転手順書)に従って運転員二名が現場(配管室C)へ行
き、うち一名が扉を少し開けて『煙の発生を確認』した。
 この表現は被告動燃第一次報告書(四六頁)によるが、科学技術庁第一次報告書
では、『雰囲気がもやっている』という暖昧な表現に変わっている(二―三頁)。
一方、被告動燃から福井県原子力安全対策課に当日午後八時四〇分に入った第一報
は、『現場からは煙が出ている模様』という表現であり、『もやっている』ではな
かった(高速増殖炉もんじゅの二次系ナトリウム漏洩事故について」平成七年一二
月二五日原子力安全対策課記者発表七―一一八)。煙の発生が認められた場合、手
順書は原子炉手動トリップの操作をすることを求めている。後に言い替えられた暖
昧な表現は、右記録をつきあわせてみると、原子炉トリップ不履行に対する手順書
違反の追求を逃れるための虚言の疑いを拭いされない。
(五) 誤った通常停止操作
 当直長はCループ二次冷却系の蒸発器及びオーバーフロータンクの
Na液位に変化が見られなかったところがら、ナトリウムの漏洩規模は小さいと判
断、小規模漏洩時の手順書に従い、通常停止の操作に入ることを決めた。しかし手
順書に定められているプラント第一課長へ連絡し、通常停止の了解を取るための時
間に要した結果、午後八時〇分に通常停止の操作をすることになった。
 通常停止とは一時間あたり一五度ずつ温度を下げていく極めてゆっくりした停止
モードである。自動車に例えればそれまで踏んでいたアクセルから足を離した程度
の意味しか認められず、通常停止とは言ってもそれは運転の継続と殆ど変わること
がなく、冷却系のポンプは停止操作以前と全く同じように回し続けなければならな
いためナトリウムの漏洩量に変化はない。
 結局、通常停止の選択は、緊急に迫られている漏洩防止対策を放棄したことを意
味し、右対策がとられたのは通常停止操作から一時間二〇分後の原子炉停止後のこ
とである。
(六) 大幅に遅れた原子炉トリップ
 午後八時五〇分、二回目の現場確認が行われた。第一回の確認から実に一時間を
経過しての現場確認であった。
 確認は、被告動燃第一次報告書(四七頁)の表現では「配管室の扉を少し開け白
煙の増加を確認」とあり、科学技術庁第一次報告書(二―二九頁)では「配讐室の
扉をゆるめたところ白煙が扉の隙間から出てきた」とされており、両報告書のニュ
アンスは若干異なっている。その頃までに火災検知器の発報が相次いだこともあっ
て、当直長、プラント第一課長、炉主任技術者の三者で火災が拡大していると判断
を下し、午後九時一〇分原子炉手動トリップを決定した。しかし原子炉トリップ操
作前にタービントリップを先行させたため、実際のトリップ操作は決定から一〇分
後の午後九時二〇分に実施された。このようにして事故発生から一時間三三分後に
ようやく原子炉が停止されたのである。
(七) ナトリウム緊急ドレン
 ナトリウム漏洩を停止させるためには、原子炉トリップ後、早急に冷却材主循環
ポンプの低流量駆動用ポニーモーターを停止させ、引き続いて漏洩ループ内のナト
リウムを緊急にドレンすることが必要である。しかし、今回ポニーモーターは原子
炉トリップ後も一時間三四分遅れて開始された。またCループにナトリウムを補給
し続けていたオーバーフロータンク汲み上げも、原子炉トリップ後一時間二六分た
ってから停止された。その間漏洩ループ内のナトリウムは補給され
続け、ポンプは漏洩を加速し、緊急ドレンの遅れによりナトリウム漏洩とその火災
はさらに長引くこととなった。
(八) 空調設備の運転
 ナトリウムが漏洩燃焼した配管室Cの換気空調系は、午後一一時一三分、ナトリ
ウムドレンに伴う「蒸気発生器液位低低」信号の発報によって自動的に停止するま
で動かされ続けてきた。
 このように換気空調系が事故発生の三時間二六分後まで運転されていたことによ
って火災の拡大、長期化をもたらしたと考えられ、空調ダクトの溶融破損という事
態も重なって、後述のとおり酸化ナトリウムなど燃焼生成物が原子炉補助建屋内及
び屋外に拡散する事態に至った。
(九) 火災事故
 二次系主冷却系配管室から漏洩したナトリウムは約七五〇キログラムと言われて
いる。漏洩したナトリウムは直ちに白煙を上げながら高温で炎上して配管の直下に
あった空調ダクトに直径一メートルの穴、グレーチングー(工事用足場の金網)に
直径三〇センチメートルの穴をそれぞれあけたうえ、床ライナーを溶融変形させ
た。また、ナトリウムの燃焼でできた酸化ナトリウム化合物が、運転を続けていた
空調ダクトを通じて補助建屋の延床面積の二〇パーセント以上にあたる五、五八〇
平方メートルに拡散し、機器、盤類、ケーブルなどに付着しただけでなく、前述の
とおり空調ダクトを通じて屋外にも拡散した。このナトリウム化合物はやがて空気
中の水分を吸収して苛性ソーダとなり金属類を腐食させ種々のトラブルや事故の原
因となる可能性を秘めている。
2 ビデオ隠しと虚偽報告
(一) 通報の遅れ
 本件事故は一二月八日午後七時四七分に発生したが、被告動燃から福井県への連
絡は午後八時三五分、敦賀市へは午後八時四八分と、いずれも事故発生から一時間
余り遅れている。
 原子炉設置者が行う事故後の関係自治体への通報連絡は、事故発生時に自治体が
住民の安全を図るための措置を講ずるために迅速になされる必要一があり、これが
守られていないばかりか、後述のとおり虚偽報告をするに至っては原子炉設置者と
しての適性を疑われる重大な問題である。
(二) 事故隠し
(1) ビデオ隠しの事実経過
 本件事故直後、事故現場を撮影したビデオは一二月九日午前二時に撮影されたも
の一本と同日午後四時のもの二本の合計三本が存在したが、被告動燃はこのうち一
本を事故を過小なものに見せかけるため編集を行なって公表し、オリジナルテープ
の存在を隠匿し
た。しかし、福井県やマスコミによる追求によって被告動燃は右テープ三本の存在
を明らかにせざるを得なくなった。
 右ビデオ隠しの事実経過の概要をまとめると次の通りとなる。
① 一二月八日午後七時四七分
 本件事故発生。
② 一二月九日午前二時五分
 作業員五名が配管室に入室、環境調査を行うとともに一〇分間のビデオ撮影及び
写真撮影を行った。
 所長の部屋でビデオを再生したうえ、三本のビデオテープにダビングし本社と所
内に一本ずつ置き、一本は消去した。事故直後の一二月九日午前二時の段階で撮影
されたこのビデオは一二月二二日まで存在が隠され続けた。
③ 一二月九日午前一二時
 もんじゅ建設所次長が被告動燃本社、科技庁に「午前一〇時に配管室へ入室」
た」と虚偽の報告をし、記者会見もした。その時、ビデオは撮っていないと記者に
明言している。
④ 一二月九日午後四時
 もんじゅに出張中の本社主幹が午前二時のビデオを被告動燃本社に一持ち帰っ
た。このビデオは被告動燃本社で再生されていたが、一般に対しては一二月二二日
に発覚するまで秘匿していた。
⑤ 一二月九日午後四時一〇分
 九名の作業員が配管室に入室、ここで四分と一一分の二本のビデオ撮影がなされ
た。
⑥一二月九日午後四時三〇分
 右ビデオを所長、副所長の前で再生した。その場で一一分のビデオを一分間のビ
デオに編集することが指示され、漏洩箇所の温度計や大きく穴が開いた空調ダクト
など生々しい映像部分がカットされた一分間ビデオが作られ、科技庁運転管理専門
官(運専管)、福井県担当者に見せて報告し同時に、記者にも発表された。しかし
運専官や福井県担当者からもっと長いオリジナルテープがあるのではないかと追求
され、同日午後七時すぎ一一分ビデオを四分間のものに編集して、これが全てであ
ると嘘をついて、オリジナルテープの存在をあくまでも隠し通した。
 被告動燃が右一一分と四分のビデオ二本が存在し、ビデオ隠しをしていた事実を
認めたのは一二月二〇日になってからのことである。
(2) 虚偽報告
 被告動燃は一二月一九日原子炉等規制法六七条に基づいて科技庁長官に右事故を
報告するにあたり、配管室への初期入域調査が一二月九日午前二時であるにも拘ら
ず右事実をことさら秘匿したうえ、同日午前一〇時に行ったと明らかに虚偽の事実
を報告した。火災直後のビデオを隠し、オリジナルテープから事故を過小なものに
仮装するためダビング
テープの編集を行なうなど一連の「事故隠し」の経緯から見ると、右虚偽報告は個
人的な些細なミスではなく、被告動燃の組織的な行為であると認められる。
3 床ライナ等の損傷―事故が明らかにしたこと
 本件事故は、二次主冷却系配管に取り付けられた温度計のさや管が折損し、右配
管内のナトリウムがさや管を伝わって配管外に約七五〇キログラム漏洩したもので
ある。
 漏洩したナトリウムは、漏洩と同時に白煙を上げながら高温で炎上し、落下して
次のとおり各設備機器を損傷した。
(一) 空調ダクト、グレーチング
 二次冷却系配管の直下に通っていた空調ダクトはナトリウム火災によって損傷し
直径一メートルの大きな穴が空いた。
 また、同配管の真下にグレーチング(工事用足場の金鋼)が通っていたが、グレ
ーチングにも直径三〇センチメートルも穴が空いた。
 これらは、本件の事故以前には、設置許可申請書及び安全審査書において全く予
想すらされていなかった損傷であり、ナトリウムが果たして、いかなる温度で燃焼
したかが大きな問題となった。
 被告動燃は、動燃第四報(乙イ第九号証)において、グレーチングについては加
熱温度は一、〇〇〇~一、〇五〇度と推定し、空調ダクトの加熱温度は八〇〇度以
下と推定している。
 これに対し、金属材料研究所はグレーチングの欠損部の調査で最高温度を一、〇
五〇度と推定したデータを発表し、被告動燃の報告と開きを見せている。被告動燃
の報告はグレーチング欠損部に着目するものではなく、残留したグレーチング片を
重視するものである。しかし、残留したグレーチング片の金属組織形態から評価さ
れる温度は、あくまで残留したその部分の温度である。グレーチングの最高温度点
は残留部にではなく、損傷中央部の溶けて無くなった部分にあったと考えるのが自
然である。したがって欠損した部分の温度も八五〇~一、一五〇度であったとする
議論は相当ではなく、到達最高温度は一、一五〇度以上あったということしか言え
ないはずである。いずれにしても被告動燃の言う「一、〇〇〇~一、〇五〇度」あ
るいは金属材料技術研究所のいう「一、〇五〇~一、一五〇度」という温度は、
「再現実験」でのグレーチング部の測定値と比べてかなり高いものになっている。
 かかる温度がどのように推定されるかという問題は、床ライナ、コンタリート、
リッドが、如何なる温度にさらされたという問題に大きく影響するもの
である。
(二) 床ライナ
 床ライナは厚さ六ミリメートルの鋼板でありナトリウム漏洩にナトリウムとコン
クリートとの接触を防止するために設けられた設備である。しかももんじゅの二次
系においては、ナトリウム漏洩時の事故の拡大を防止す}る設備としては、これが
唯一のものである。本件事故時、漏洩のあった温度計真下の床ライナには穴が空く
という最悪の事態こそ回避されたものの、床ライナに波打つように大きく変形し、
コンクリート壁との隙間の覆いとして取り付けられたリッドを持ち上げ破損させ
た。床ライナは局所的に〇、五~一、五ミリメートルの板厚減少(乙イ第九号証、
動燃第四報四―八)が観察されており、まさに首の皮一枚のところで事故の拡大が
さけられたと言える。したがって、事故調査にあっては、火災現場の具体的調査を
床ライナだけに「ナトリウムとコンクリートとの接触を防止する」機能を期待す
る、現在の設計に関わる考え方にまでさかのぼった検討に役立てようとする姿勢こ
そが必要であるが、推積したナトリウム化合物のまともな調査は遂に行われなかっ
た。即ち、床ライナ上に推積したナトリウム化合物は重量にして約三〇〇キログラ
ムもあったとされているが、そこから直接採取された分析用試料はわずか三個しか
なく、しかも三個の試料は元々推積物の除去作業方針を立案する為に採取させたも
のであって、影響調査を目的として採取されたものではない。被告動燃第四報には
これら以外に四燗の試料を分析した結果が報告されているが、それらは「床推積物
回収後のドラム缶、ペール缶より試料をサンプリング」したものすぎず、(動燃第
四報四―八七)採取位置が全く確定されていない。
 そのため、床ライナに直に接していた化合物についての情報が全く得られないま
まになっており、床ライナの減肉調査にとって致命的な損失を与えている。
 被告動燃は、遠方部の床ライナから切り取った試料を利用して「熱履歴試験」を
行い、「漏洩近傍の床ライナ金属組織と比較し」金属組織形態の類似性から床ライ
ナの最高到達温度は六五〇~七〇〇度より若干低めの値となっているだけでなく、
右推定には重大な疑問がある。
 例えば被告動燃の言う「最高到達温度」を指しているのか、あるいは再現実験で
も測定されたような瞬間的な温度変化も考慮にいれたものであるかは不明である。
組織比較のための「熱履歴試験」が等温加熱試験であるところがらす
れば、そこから求められるのは平均的な温度であると考えられる。
 また、床ライナの金属組織は一例しか示されていない。そして比較に用いる「熱
履歴試験」の組織についても数例が示されるに止まっており、その加熱条件も温度
以外は明らかにされていない。被告動燃による「推定」の妥当性を確認するには金
属組織調査の全体についての試料が示されるべきである。(検討結果報告書第三回
六八、六九頁)
(三) リッド
 リッドは、厚さ二ミリメートルの鋼板であり、床ライナとコンクリート壁との隙
間を覆いナトリウムとコンクリートとの接触を防止するために取り付けられた設備
である。
 本件事故で後述のコンクリート壁が黒く変色した部分に近いリッドの接合部は、
リッド接合カバーの左側が浮き上がり、カバーとリツド接合用ビス三本が外れてお
り、カバーはリッドに対し三〇センチメートル浮き上がっていた。
 リッド下面には、補強板が取り付けられているが、補強板は床ライナ立ち上がり
部と接触しており、リッド及びカバーの浮き上がりは床ライナ立ち上がり部が、補
強板を強く押し上げた結果と考えられる。被告動燃はリッドの到達温度六〇〇度以
下と推定している。
(四) コンクリート壁
 本件事故の発生箇所は、一次系と壁一枚で接する原子炉補助建屋の壁コンクリー
ト壁に近接し、コンクリート壁には大きく深さ一ミリメートルの黒灰色への変色が
みられた。
 そもそも、コンクリートはセメント、石、水の混合物であり、ナトリウムは水や
酸素と激しく反応する。そのために高速増殖炉の設計にあたってはナトリウムがコ
ンクリートと反応しないようにすることが基本原則であったが、これがもろくも崩
壊したのである。即ち、コンクリート変色部のナトリウム化合物の含有量は、該当
部の深さ一センチメートルまでの試料において高い数値を示している。(動燃第四
報四―一三)のであって、右事実からナトリウムが直接コンクリートと接触した事
が明白だからである。
 高速増殖炉で先行するスーパーフェニックスでは壁のコンクリートをナトリウム
から保護するため、床だけではなく壁にも鉄製ライナが施されたのであるが、被告
動燃は右事実を知りながら、右対策を講ずることなく、本件事故を招いたのであ
る。そのうえ度重なる指摘にも拘わらず、被告動燃は右対策を講ずることがないま
ま現在に至っている。
 また、被告動燃第四報は、コンクリート壁、コンクリート
床及びリッド下のコンクリート壁の受熱温度をそれぞれ四〇〇度、五一〇度、五七
〇度と推定している。(四―一三)
 ナトリウムとコンクリートの反応に関しては、米国のサンディア研究所などで大
がかりに実験がなされ、温度が四〇〇~五〇〇度以上になると爆発的な反応が発生
することが判明されている。今回のコンクリート床の推定温度は五一〇度で破局的
な反応が始まる温度であり、さらにリッド下コンクリート壁ではその推定温度は五
七〇度で既に破局的反応が始まる温度領域に入っていた。もしリッドやライナに破
損が起きていればこれらのコンクリートはナトリウムと一気に反応をおこした可能
性が強い(検討結果報告書、第三回)。
 再現実験でその度に状況が変わったように、事故時の状況はほんのわずかのこと
で著しく変わってくるのであって、本件事故においても条件次第でナトリウムとコ
ンクリートの反応が第二段階に進み、一気に制御できない状況になるおそれは十分
にあったのであり、本件事故の結果を軽視することはできない。
(五) ナトリウム化合物
 本件事故ではナトリウム漏洩を知りながら、原子炉停止と二次系ナトリウムの緊
急ドレンを長時間にわたって遅らせた。更に、空調設備の運転を停止させなかった
ために火災の拡大とナトリウムエアロゾルによる汚染を拡大してしまった。ナトリ
ウムエアロゾルによる汚染範囲は漏洩したC系列だけでなく、B系列や共通領域ま
でに及び、その延床面積は合計で五五八〇平方メートルにも達している。
 ナトリウムは水に接触すると激しく反応して水素を発生し、また、空気に触れれ
ば、燃焼すると言う性質も有する。その結果、水酸化ナトリウム、酸化ナトリウ
ム、過酸化ナトリウムなどが生成されるが、それらはいずれも激しい腐食性を有す
る。時間の経過とともに腐食性は低減されるが、電気系統に入ったものは接触不良
をおこすし、水分があれば再び腐食性を帯びるので、結局、これら化合物を完全に
除去しない限り、システムの安全を保てないことになる。
4 事故の拡大を防止できなかった原因
(一) 本件事故は一九九五年一二月八日午後七時四七分に発生したが、
(1) 原子炉の手動トリップの実施は、事故発生から一時間三三分を経過した午
後九時二〇分であり、
(2) 本件はナトリウム漏洩事故であるから事故発生箇所の配管から緊急にナト
リウムをドレン(抜き取り操作)する必要があったにもかかわら
ず、これが実施されたのは事故発生から約三時間も経過した後の午後一〇時四六分
であり(しかも、右ドレン操作の完了までに約一時間二〇分を要している)、
(3) 火災の拡大防止に必要不可欠な換気空調システムの停止は、事故発生から
約三時間二六分後に実施されたこと(しかも、右停止操作は運転員の判断によるも
のではなく、右②のナトリウムドレンによる「蒸気発生器液位低低信号」の発報に
伴う自動停止である)、
 などによれば、被告動燃は本件事故の拡大を防止し、これを終息させるための措
置を何ら自覚的には講じなかったものと言わざるをえない。
(二) そして右のとおり本件事故の拡大を防止できなかったことは、本件「もん
じゅ」の設計および構造上、
(1) 本件事故の発生を迅速かつ正確に認知する機能がなく、
(2) 本件事故の規模を正確に把握する機能もなく、
(3) 従って、本件事故の拡大を防止するための機能が不備であった、
という「もんじゅ」の根本的な欠陥を露呈させたものである。
以下、その要点を指摘する。
(三) 本件事故の発生を認知する機能の不備
(1) 火災検知システムの不備
① 本件事故の発生現場である配管室(C)には、煙感知型の火災検知器が設置さ
れており、これはナトリウム漏洩の検出器の機能も有している。この火災検知器の
発報は中央制御室の火災報知器で確認できることとなっているが、この火災報知器
は中央制御室からは二・六メートル離れた別の場所に設置してあり運転員はこれに
近づいて目視しなければ表示内容を確認することができない構造となっている。即
ち、火災検知器の発報は中央監視盤の画像表示装置によって即時、一目で認知する
ことはできないのである。
② 右に加え、火災報知盤の音響停止スイッチを入れると火災検知器の発報が停止
し、この停止スイッチが入っている間は新たな発報信号が入っても警報が鳴らない
設計となっていた。
③ このような設計および機能の不備から、本件事故発生後の午後八時三〇分頃か
ら火災検知器が再度発報を始め、午後八時四〇分頃以降には発報箇所が急増したに
もかかわらず、中央制御室内ではこれらを何ら認知できなかったのである。
(2) ナトリウム漏洩検出システムの不備
① 二次主冷却系配管には、配管表面と内装板の空隙部の気体を吸引サンプリング
する方法によるナトリウム漏洩検出器が設備されている。
 警報しか発せられず、中央制御室の中央監
視盤で発報した個々の検出器を特定できる設計となっている。しかし、右検出器に
よる具体的な計測値は中央制御室で確認することはできず、中央制御室の外の現場
制御盤のチャートで確認しなければならない構造となっている(注本件では原子炉
補助建屋五階の、A―五一二室にある現場制御盤まで運転員が出向いて計測値を確
認している)。
② このようなナトリウム漏洩検出システムは、ナトリウムの漏洩状況を迅速、正
確、連続的に把握するものとしては極めて不備である。
(3) ナトリウム漏洩検出器の機能上の問題
① 本件ナトリウム漏洩検出器においては、サンプリングノズルから検出器までサ
ンプリングされた気体が移動するのに要する時間およびデータ処理時間のため平均
で約一~二分の検出遅れがありうるとされる(甲イ・二四三・二―一二頁)。この
点、P8証人は漏洩規模が小さい場合には、検出遅れは一時間単位にもなりうると
証言する(第一七回弁論・七二丁表)。
② ナトリウム漏洩検出器がナトリウムの漏洩状況を迅速、正確、連続的に把握す
るための重要な機器であることは前記のとおりである上、漏洩規模(量)の大小に
かかわらずナトリウム漏洩事故は極めて重大な結果をもたらすことが本件事故によ
って明らかになった以上、本件ナトリウム漏洩検出器の右の検出遅れ(タイムラ
グ)は、検出器の機能の不備と言わざるをえない。
(四) 本件事故の規模を把握する機能の不備
(1) オーバーフロータンクのナトリウム液位計の設計上(機能上)の不備
① ナトリウムドレンのための設備としてオーバーフロータンクがあり、この液位
はナトリウム漏洩の規模(漏洩ナトリウム量)を把握するための指標とされてい
る。本件事故においても運転員は、右の理解に即してオーバーフロータンクのナト
リウム液位計の表示を注視し、これに変化が認められないことから、本件事故によ
るナトリウム漏洩規模は小さいと判断し、その旨の措置を講じたとされる(甲イ・
二四三・五頁)。
② しかしながら、そもそもオーバーフロータンクのナトリウム液位計によって漏
洩したナトリウムの量を詳細にわたり測定しようとする設計思想自体に疑問があ
る。なぜならオーバーフロータンクの設備の規模からして、さほど容易に詳細な測
定が可能とは思われないからである。現に本件のオーバーフロータンクナトリウム
液位計は、チャート一目盛りがナトリウム量に換算して〇・七~〇・
八トンと感度が低く(注本件事故による漏洩ナトリウム量は約〇・七トンと推測さ
れている)、しかも液位計自体に約三%の誤差がふくまれているのである。
③ ナトリウム漏洩事故の拡大防止策を講じるために、漏洩ナトリウム量を正確に
把握する必要があることはいうまでもない。そのために例えばオーバーフロータン
クの構造をナトリウム液位の変化がより詳細に計測できるよう、使用範囲部分の径
を細くし、波立ち防止対策を施した構造にすることなどが必要だったのである。ま
た仮にそのような構造が困難であれば、全く別の漏洩ナトリウム量の計測設備を設
けるべきである。
④ いずれにせよ現実のオーバーフロータンクのナトリウム液位計は前記のとおり
低感度のものであり、運転員はこれに依存して本件事故を小規模なものと判断し、
原子炉のトリップ操作もせず漫然と事故を拡大させたものである。この原因と責任
は第一に右ナトリウム液位計の設計上(機能上)の不備に求められるべきである。
(五) 本件事故の拡大防止のための設計上の不備等
(1) 緊急ドレン機能の不備
① 本件事故を認知した後、直ちにナトリウムの緊急ドレンを実施すれば(少なく
とも事故発生から二〇分後にドレンを実行すれば)、ナトリウム漏洩量は三分の一
以下に止まったと評価されている(甲イ三〇一号証二三頁)。右評価によれば、本
件事故による重大な結果の発生は、ナトリウムの緊急ドレンの遅れが一因となった
と理解される。
② 本件でナトリウムの緊急ドレンが遅れた原因は、後述の「異常時運転手順書」
の各記載内容の不備も一因だが、設計上の問題としては次の点が留意されるべきで
ある。
 ナトリウムの緊急ドレンは、定格運転温度(本件事故発生当時は中間熱交換器出
口で約四八〇度)の二次系ナトリウムを直ちに低温度(定格運転時に二三〇度、あ
るいは予熱温度二〇〇度)のドレン関連機器(オーバーフロータンク、ダンプタン
ク、ドレン配管その他の機器)に移送するものであり、その際には右の温度差に伴
う熱衝撃によるドレン関連機器の健全性が問題となる。
 そして本件事故において運転員は、右の認識に基づき本件「もんじゅ」の「設備
別運転要領書」に従って、ナトリウム温度が四〇〇度に低下するのを待ってドレン
を実施したとされている(注本件事故発生から約三時間も経過した午後一〇時四六
分ころからドレン開始)。
 なおドレン関連機器の熱衝撃への耐用性につい
て、本件設備はその供用期間を通じて約一〇回の緊急ドレン(=温度低下を待たな
いドレンの実施)の範囲内で健全性を確保できるだけであることが判明している。
(甲イ三〇一号証二三頁、参―一三頁)。
③ 以上によれば、本件のナトリウム漏洩事故においては、ナトリウムの緊急ドレ
ンが事故拡大の防止策として有効ではあるが、この防止策の実施は本件設備の健全
性の確保との関係で限界があり(右により約一〇回)、本件事故ではこれを実施し
なかったこと、換言すれば本件事故の規模では、事故の拡大防止に有効なナトリウ
ムの緊急ドレンを実施することができなかったことが明らかとなったのである。そ
して、本件事故において緊急ドレンが実施できなかったことは、右のとおり関連機
器の耐用性の欠如によるものだから、これは緊急ドレンの機能ないし設備の不備で
ある。
(2) 換気空調システムの停止の遅れ
① 二次系でのナトリウム漏洩事故の場合、ナトリウム火災の拡大防止および火災
によって生じるナトリウム・エアロゾルの環境等への拡散を防止するため換気空調
システムの早期停止が必要である。
② この点、本件許可申請書の添付書類(乙イ第六号証・甲イ第四二〇号証、一〇
―三―三四)には、「火災検知器の信号で空調ダクトを全閉とする」とされている
にもかかわらず、本件事故においてはこれが実施されず、ナトリウムドレン操作に
よる「蒸気発生器液位低低信号」に基づく気空調システムの自動停止(同日午後一
一時一二分五三秒)まで換気が継続された。これにより、本件事故による火災は長
時間継続し、周辺環境にナトリウム・エアロゾルを放散したのみならず、排気設備
と吸気設備の位置関係から一旦排気されたナトリウム・エアロゾルが再度吸気さ
れ、本件施設内にも広範囲にナトリウム・エアロゾルが拡散することとなった。
③ 換気空調システムの停止が右のとおり遅れた原因の一は、後述の「異常時運転
手順書」の記載の不備にある。
 即ち、右「手順書」の「フローチャート」(注「異常時運転手順書」の種別と、
その内容の問題点は後述のとおり)では、原子炉停止操作の後、換気空調システム
の停止操作は緊急ドレン操作と並行して行うべきものと記載されているが、右「手
順書」の「細目」には右停止操作を緊急ドレン操作の後に行うべきものと記載され
ている。そして運転員は右「細目」に従って運転操作したことにより換気空調シス
テムの停止の遅
れが生じたとされる。
④ 換気空調システムの停止の遅れが右のとおり「手順書」の不備にあるとして
も、ナトリウム漏洩事故の拡大防止策として右停止操作の早期実施は前記のとおり
本来的に必要不可欠のものであり、これを運転員が理解していなかったこと自体、
被告動燃の責任がある。
(3) 「異常時運転手順書」の問題原子炉のトリップの遅れ
① 本件事故を想定して、被告動燃は二次主冷却系のナトリウム漏洩に関して「異
常時運転手順書」(以下、「手順書」という)を作成している。
 しかしながら、「手順書」の内容が本件事故への対処にあたり甚だ混乱と不明確
の原因となったことは周知のとおりである。
② 即ち、
 第一に、「手順書」は一のものではなく、「概要」と「フローチャート」を「細
目」の三つの種類があり、その内のどれを手順の基本とするのか明らかではなかっ
たこと。
 第二に、本件事故においては火災検知器とナトリウム漏洩検出器の発報があった
がオーバーフロータンクナトリウム液位計に変化がなく、かつ事故発生現場付近で
炎が見えないことから運転員は小規模のナトリウム漏洩と判断したこと。
 第三に、火災検知器の発報について「手順書」の、
(イ) 「フローチャート」では、これを原子炉の手動トリップ(停止)の事由と
していたが、
(ロ) 「概要」および「細目」ではこの点について全く記載がなく、
(ハ) 右(1)と(2)について、運転員も責任者(当直長)も認識がなく、従
って「細目」に従って運転していた運転員は原子炉の手動トリップを全く考慮しな
かったことが明らかである。
③ 要するに、本件事故の拡大防止について被告動燃は人的対応態勢(運転手順の
周知方)も全く欠落させていたのである。
(四) まとめ
 本件は約〇・七トンのナトリウム漏洩事故とされる。この規模のナトリウム漏洩
に対して被告らが予定していた(はずの)事故拡大防止対策が有効、適切なもので
あったか否かにつき、被告らはこれを積極的に論証することができない。
 他方、被告らは本件許可申請書では、一五〇トンのナトリウム漏洩を想定し、そ
の場合でも本件原子炉の健全性は確保されるから本件事故は許可申請書が想定した
範囲内である(「大事故は小事故を兼ねる」との論理か?)と強弁するようであ
る。
 しかし、本件事故において以上のようにその拡大防止ができなかったこと、さら
に本件事故の規模においても本件許可申請書の想定
事象を超える事象が現に生じたこと(床ライナーの温度上昇など)について、被告
らは何ら合理的な説明をすることができないのである。
 以上の厳然たる事実によれば、ナトリウム漏洩事故は、その規模の大小に関わら
ず本件許可処分が机上(計算上)で想定した態様および規模とは全く異なる挙動を
示すものであり、従って右許可処分そしてこれに基づく被告動燃による「もんじ
ゅ」の運転は何ら原告らの安全を確保するものではないことが明らかである。
5 温度計の設計ミスは見逃された
(一) 温度計の構造
 本件破損した温度計の構造は、甲イ第三〇一号証参考に付された参図に記載され
た2次系の温度計の図のとおりであった。この温度計の際立った特徴は、その根本
の部分が段付き構造となっていることと、細管部が、長く配管内に突き出している
ことにある。
 この段付き部の曲率は、設計時には指定されておらず、曲率半径は加工時に使用
されたバイトの刃先の丸みによって決められることになり、現実に出来上がった物
の曲率は、〇・一ミリメートルであった。
(二) 温度計さや破損のメカニズム
(1) 科学技術庁平成八年五月二三日付報告書(甲イ第三〇一号証)の記載
 右報告書は、光学顕微鏡や走査型電子顕微鏡(SEM)による破断面観察の結果
として、温度計さやが破損した原因について、対称渦放出を伴う抗力方向の流力振
動による高サイクル疲労により破損したとした。
 また、SEMによる観察によって、最初に少なくとも一五個にき裂の進展が早ま
ったとされ、運転履歴に基づくき裂進展解析により、初期の一〇〇パーセント流量
運転で最終破断に至ったとされた。このき裂は、同報告書添付の図面(参―3)に
よれば、一九九五年四月以前には細管の内径に達し、その全周の半分以上にき裂が
及んでいたことが窺われる。
(三) 破損の原因(設計ミス)
① 甲イ第三〇一号証の報告書は、この破損が、ナトリウムの流れに伴う温度計さ
やの振動に起因し、曲率半径の小さい断付部での応力集中から高サイクル疲労によ
ってき裂が発生したと結論付けている。
 そもそも、このような断付き構造部分に応力が集中することは、機械工学の常識
に属する事柄である。だから、
 応力集中が起こりやすい断付き部に曲率を取るということは、機械設計の基本的
配慮事項である。たとえ何らかの基準によって振動が生じないと判断されても、応
力が集中しやすい断付き部に曲率を
取らない構造を是認することにはならないし、理由のいかんにかかわらず、機械設
計の基本的な配慮事項に欠けた設計が製造者の公式な設計となったことは重視すべ
き問題である。
 これらのことから、温度計さやは明らかに設計ミスであったと言わざるをえな
い。」
 (乙イ第一二号証一二ページ平成八年九月一九日付原子力安全委員会原子炉安全
専門審査会研究開発用炉部会高速増殖原型炉もんじゅナトリウム漏洩ワーキンググ
ループ報告書)のである。
② 甲イ第三〇一号証(一四ページ)によれば、以下のとおりとされている。
 「ナトリウムの流れに関して、メーカーはカルマン渦の影響を受けな艇{いこと
の解析を、米国機械学会(ASME)の基準(1974年制定の基準‥ASME―
PTC19・3)を参考にして行ったとしている。」
 カルマン渦の振動数と温度計の固有振動数を解析した上、「メーカーは、ASM
Eの基準では振動発生防止のためには渦の振動数と温度計の固有振動数の比が〇・
八位下であることとされており、一方、解析で得た渦の振動数と温度計の固有振動
数との比が〇・五であることから、この温度計では流体に起因する振動は生じない
ものと評価した。」
 「温度計の設計評価においてメーカーが参考にしたとするASMEの基準は、テ
ーパ状(段差がつくことなく徐々に細くなっている形状)の温度計さやについての
評価法を定めたものであり、振動発生防止のために定められた上記〇・八という値
も、テーパ状の形状のものについて与5えられているものであった。従って、AS
MEの記載を正確に理解せず、段付き構造であるものにこの数値をそのまま適用す
るという判断にはミスがあった。」
 「このASMEの基準は、PTC(性能試験規約)のうち、温度計測についての
基準であるが、一方一九九一年に、PTCとは別のB〇iler&Pressur
e VesselC〇de SEC―・、Div・APPendix N1300
(ボイラー及び圧力容器規格のうちの第三編である原子カプラント機器の構造に関
する規格の付録)に、円管や管群の流力振動に関してその可能性と回避あるいは抑
止についての条件が、ASME同基準では、流れから円管に働く力のうち、197
4年のPTC19・3で回避の条件が定められていた流れの方向に対して垂直方向
に働く力によって揚力方向に生じる振動のほかに、今回の破損の原因と考えられる
流れの方向に作
用する力(抗力方向)による振動の回避の条件が示されている。
 メーカーは、社内にASMEの基準を入手、管理する部局を持ち、この資料を入
手していたものの、抗力方向の振動の記載があることを、温度計設定の関係者が認
識したのは、漏洩事故後の調査においてであった。」
を、そのままこの段付き構造の温度計ウェルに適用して、その基準に合致するから
良しとの結論を導いた。メーカーには、段付き部を設けてはならないという機械設
計における基本的な常識も、このASME基準に対する理解も欠けていたのであ
る。
 一方、被告動燃は、温度計の応答時間についてはメーカーに仕様を示し、熱応力
を緩和する観点から、温度計さやの配管への直接溶接方式についてコメントを出し
たものの(これを受けて、メーカーは、管台方式に変更している)、流動振動につ
いての配慮が欠けていた。そもそも被告動燃には、段付き構造の可否やASME基
準の適用の可否を判断するだけの機械工学の専門家がいなかった可能性すらある。
 被告動燃に、仮に機械工学の専門家がいたとしても、この温度計設計の可否につ
いての判断に関与していなかったか、あるいは関与したものの、安易にその問題点
を見過ごしたことは明らかである。いずれにせよ被告動燃には、これをチェックす
るだけの能力が全く備わっていなかった。
(3) 固有振動数の推定について見ても、同報告書によれば、設計時の評価で
は、主に温度計さや細管部が振動する二次モードについて二三〇ヘルツ、温度計全
体が振動する一次モードでは二〇〇ヘルツと評価されていたが、今回の解析では、
温度計さや細管部が振動する二次モードについて二六〇ヘルツ、温度計全体が振動
する一次モードでは一六五ヘルツとされた。当初の評価は、著しく誤っていたとい
うことにならざるをえない。しかも、この固有振動数の評価も、メーカーが行った
とされているのみで、被告動燃が行なった様子は窺えない。固有振動数を、被告動
燃自身が再評価してチェックするということもなかったのか、あるいは安易にメー
カーの評価を鵜呑みにしたのかであり、いずれにせよ被告動燃の能力の欠如が窺わ
れる。
(四) 設計全体の信頼性の欠如
 「もんじゅ」の設計には、多重的な審査がなさることとなっているはずである。
ところが、この多重的な審査が全く機能せずに、杜撰な評価のままに設計が通り、
事故に至っている。
 この温度計さやの設計では
、被告動燃は設計をメーカーに任せ切りで、被告動燃自身は、前記のとおり、温度
計さやを配管に直接溶接することについて設計変更を求めたことがあったにせよ、
ほとんど審査らしい審査をしていなかった。あるいは、被告動燃には、その審査を
行なうだけの組織体制も能力もなかった可能性が高い。
 もともと、「もんじゅ」の設置者である被告動燃自身が、みずから設置者として
責任をもって設計しなければならないところ、被告動燃自身は単なる設計の審査者
に堕し、その設計のほとんどをメーカーに任せたことに問題があると思われる。し
かも、被告動燃によるメーカーへの審査は、右のとおり杜撰としか言いようのない
ものであった。
 このようなメーカーによる杜撰な設計と被告動燃による杜撰な設計審査とは、他
の設計についても、同様に存在する可能性が否定できない。前記ワーキンググルー
プ報告書(乙イ第一二号証一四ページ)も、次のとおり言う。
 「被告動燃および製造者の品質保証活動の体制は形式的には整っていたが、温度
計の設計ミスが見過ごされていたということから、もんじゅの他の機器について問
題が潜んでいないとは言い切れない。行政庁は安全性総点検によりもんじゅの安全
性を再確認することとしており、品質保証活動を含めた安全性総点検が実施される
ことが必要である。」
 しかし、この安全性確保の体制の中には、本来、科学技術庁や原子力安全委員会
自身も組み込まれていることを忘れてはならない。これらの多重審査の中で、この
基本的な設計ミスやひいてはワーキンググループが指摘するような被告動燃および
製造者の品質保証活動の体制の問題点は、完全に見過ごされてしまったのである。
 「もんじゅ」の設計には、全体として信頼性が欠如しているのであり、全ての機
器についての安全性の総点検のみならず、安全審査の体制を含めた全てについて、
詳細な再評価が必要なのである。
三 燃焼実験Ⅰ及びⅡで明らかになったこと
1 被告動燃は何故「再現実験」という名の燃焼実験を行ったか。
(一) 被告動燃は、本件ナトリウム漏洩火災事故を追試・模擬することを目的と
して、一九九六年四月八日(第一回)及び同年六月七日(第二回)にナトリウム漏
洩燃焼実験を実施した(動燃第四報・乙イ第九号証添四・一以下)。
 この実験は、巷間、ナトリウム漏洩火災事故の「再現実験」と喧伝されていた。
被告動燃はこの実験で、ナトリウム漏洩火災
事故がいつでも「再現」できる程度のものに過ぎず、事故の過程を管理・把握でき
ていた(従ってナトリウム漏洩火災事故は「もんじゅ」の安全性に対する信頼を疑
わせるものではない)ことを明らかにしたかったものと推測される。
(二) 本来「再現実験」というのは、推定した事故の経過を実験によって確かめ
る目的で行われる。しかし、現実におきたナトリウム漏洩火災事故の場合は、事故
の経過を推定するのに役立つ大事な証拠資料(特に床ライナ上にこんもりと積み上
がっていたナトリウム化合物の山)が、事故現場の取り片づけを優先して行ったた
めに、十分に保存されていないので、事故経過の推定が困難であり、その為「再現
実験」との触れ込みで始められた実験だが、実は、事故がどのように進み、どのよ
うにして施設や機器が破損していったかを推定するためのものでしかなくなってい
た。
 原告は、「再現実験」のこのような限界を予めかつ再三にわたって指摘してきた
(甲イ第三三〇号証三六頁等)。そして第二回目の「再現実験」については、その
内容を確認するために原告は検証申立を行い、裁判所も強い関心を示した。しか
し、現場が茨城県大洗であって遠いこと、機器の配置などの準備段階から終了後の
現場確認までの全てを検証すると最低三日はかかることから、被告動燃が原告に対
して、実験中にさまざまな角度から撮影したビデオテープの全てを原告に渡し、原
告がそれを裁判所に証拠として提出することを条件に、原告は検証申立を取り下げ
た。
2 燃焼実験Ⅱでは床ライナに穴があいた
(一) 第一回(一九九六年四月八日)被告動燃は最初に、鋼鉄製の実験装置を使
って「燃焼実験Ⅰ」を実施した(科学技術庁第二報・乙イ一三号証二四~二五
頁)。実験装置の中で、二次主冷却系の配管に見立てた配管から高温のナトリウム
が、ナトリウム漏洩火災事故時と同じような状態で、漏れて燃えながら落下するよ
うにし、獅ナトリウム漏洩火災事故と同様に約三時間続ける予定だったが、実験開
始後約一時間三〇分程度で、生成したナトリウムエアロゾルによって換気系が目詰
まりして使えなくなったため、実験を中止した。
 しかし、それまでの実験装置内の様子は、ナトリウム漏洩火災事故の現場のそれ
に近いものと思われたため、科学技術庁の「タスクフォース」は実験を「成功」と
判断し、予定されていた二回目の実験で、「再現実験」を終わると発表していた。
(二
) 第二回(一九九六年六月七日)
 二回目の「燃焼実験Ⅱ」は、コンクリート製の実験装置(一七〇立方メートル)
内で、「燃焼実験Ⅰ」の場合と同様に、ナトリウム漏洩火災事故時と同じような状
態でナトリウムを漏らし、燃焼させた。燃焼実験Ⅰのような不具合は起こらず、予
定通り、約三時間半実験を続けて終了した。しかし、実験終了前後に、装置内では
全く予想外の出来事が起こっていたのである。まず実験装置の下部では結露水とナ
トリウムを含んだ黒い滴下物が認められ、床ライナを模擬した鉄板の五カ所に大小
の穴(最大約二八センチメートル×約二二センチメートル、最小直径約一・五セン
チメートル)があいていた。その上に、実験中もとり続けていたビデオに、それら
の穴に落下したナトリウムが、むき出しになったコンクリート床と反応し、発生し
た水素が爆発的に激しく燃え上がる様子がはっきりと記録されていた(検甲「ナト
リウム漏洩燃焼実験Ⅱ」)。ナトリウムが漏洩した場合に予想される最悪の事故と
されるナトリウム・コンクリート反応が起こり、発生した水素の爆発乃至爆燃が起
きたのである(甲第三〇四号証)。
(三) 動燃の意図と大きく反した「床ライナの穴あき」
 燃焼実験Ⅱの結果は、動燃及び科学技術庁の意図と全く相反するものであった。
原告は燃焼実験は「再現実験」にはならないと主張し実験を疑問視してきたが、現
実に発生する事故は、事故時の条件や事故原因及び事故経過によって千差万別であ
り、予想の範囲内には決して収まるものではないことを明らかにした点で、「燃焼
実験Ⅱ」には大きな意味があった。すなわち、燃焼案験の意義は、逆説的だが高速
増殖炉における事故予測が困難乃至不可能であること、従って高速増殖炉では何が
起こるかわからず危険であることを社会的に周知させた点にある。
四 「新たに判明した知見」―高温腐食の危険性
1 床ライナの役割―危険なナトリウム・コンクリート反応の防止
(一) もんじゅにおいては、ナトリウム配管室や機器室の部屋の床面に鋼製ライ
ナが施工されており、それによって「ナトリウム漏洩に対しても床コンクリートと
ナトリウムの接触を防止している」とされている。
 コンクリートとナトリウムの接触を防止しなければならない理由は、ナトリウム
がコンクリートと触れると激しい反応を起こし、コンクリートを破壊すると共に、
爆発しやすくて危険な水素を発生することにある。
コンクリートは固く乾いているようでもその五〇%以上は水であり、しかもコンク
リートを加熱すると一〇〇℃前後から自由水が外部に出てくるようになり、二六〇
℃からは結晶水(結合水)の脱水が始まって、コンクリートからは大量の水が出て
くる。特に温度が五〇〇℃を越えると水酸化カルシウムの脱水分解が始まり、コン
クリートの強度は急激に低下する。ナトリウムは空気中に出てきた水蒸気とも反応
し、又、コンクリートの内部に入って内部の水とも激しく反応する。コンクリート
内で発生した水素は逃げ場がないために、内部に大きな応力を生む。応力が限界を
越えるとコンクリートは激しく砕け、その破片はミサイルのように四方に飛び散
る。それと同時に未燃焼のナトリウムも四方に飛び散り、新たな火の手が上がるこ
とになる。そのすさまじさは「一旦始まると人為的にコントロール出来なかった」
(動燃技報一九八三年、甲イ第二七八号証)とされている程である。又、コンクリ
ートの塊の上に鋼鉄製の衝立(肉厚五ミリメートル)をおいてその中でナトリウム
をプール燃焼させた実験では鋼鉄製衝立は完全に破壊され、燃焼ナトリウム温度が
ある一定の温度以上になると加熱しなくてもナトリウムコンクリート反応は自己触
媒的に持続してコンクリート塊が破壊されることも判明している(甲イ第三五〇号
証)。
(二) 原子炉格納容器も配管室の仕切り壁もコンクリート製であるので、ナトリ
ウムが配管等から漏洩した発生した場合、そのナトリウムがコンクリートと接触す
ることは絶対に避けなくてはならない。そのために、動燃は、一次冷却系では床の
みならず壁も天井も鋼製ライナを張り巡らし、ナトリウムの燃焼を抑える窒素雰囲
気としたが、二次冷却系では、「ナトリウムは放射化されていない」としてナトリ
ウム燃焼の危険性を軽視し、床にライナを張るだけで壁と天井はコンクリートのま
まとし、燃焼を抑制する窒素雰囲気とはしなかった。
2 五七〇℃でも鉄が溶ける1溶融塩腐食のメカニズム
(一) 鉄そのものの融点は約一五〇〇℃であるから、それよりも温度が低ければ
固体のままである。しかし、高温で燃焼しているナトリウムと接触すると、酸素の
存在下では、鉄は約一五〇〇℃よりもずっと低い温度で溶けてしまう。ナトリウム
漏洩火災事故で六ミリメートルの鋼製床ライナが一・五ミリメートル減肉し、燃焼
実験Ⅱで大小五カ所の貫通孔が生じたのは、このよう
な「鉄とナトリウムと酸素が高温下で共存した場合に、鉄が腐食して溶融する」現
象が発生したためである。鉄が純粋のナトリウム(金属ナトリウム)と接触しただ
けで酸素が存在しない場合にはほとんど溶けないのと比較して、極めて重要な特筆
すべき性質だと言える。
(二) ところで、例えば氷の上に食塩を撒くと氷が溶けるのは、水(融点○℃)
と食塩を混ぜたものの融点は水の融点よりも低くなるからであると説明されてい
る。鉄の酸化物とナトリウムの酸化物が混合して、融点がそれぞれの融点よりもず
っと低くなることについて、P1証人は、「(通常は、それぞれ単体だと融点が高
いけれども、混合して来ると、どこか非常に極端に低くなるというような点ができ
るかという質問に対して)これは共晶点という名前で呼ばれます。これはこういう
酸化鉄と酸化ナトリウムの体系だけでなくて、いろいろなところで見られます」と
述べ、原子力安全委員会第二報告書が掲げた「鉄・ナトリウム・酸素三元系状態図
Feo―Na2O擬二元系状態図」(乙イ第四一号証 参―三頁)」に関しては、
「これは俗に状態図と呼ばれる図でございます。この特定の図で申しますと、この
横軸左下にFeO、これは酸化鉄でございますね。右の端のほうにNa2O、これ
は酸化ナトリウムでございます。これがどのくらいの比率で混じっているかという
のが横軸の数字でございます。つまり左のほう、○・一というのは、酸化鉄が一〇
%、酸化ナトリウムが九〇%ありますよという意味です。縦軸は温度でございまし
て、そういう混合物が、温度が変化したときにどういうふうに状態が変化していく
かということを示したものでございます」(P1証人二七回五八~六二頁)と述べ
ている。この状態図によれば、融点は、酸化鉄だけの場合だと約一三七〇℃、酸化
ナトリウムだけの場合だと約一一五〇℃と高いのに、混合割合によっては、融点が
約五九〇℃と極端に低くなる点があることがわかる。つまり、混合割合が適当であ
れば、約五九〇℃で鉄は溶けてしまうのである。
(三) 更に、①水酸化ナトリウムは三二三℃で溶ける、②過酸化ナトリウムは六
七五℃で溶ける、③鉄とナトリウムと酸素の複合酸化物(Na4FeO3)は六三
一℃で分解することを考えると、五七〇℃以上の温度になればこれらが混合した液
体が存在しうる(原子力安全委員会第二報告書、乙イ四一号証参―六~七頁)。ナ
トリウム漏洩
火災事故の時には床ライナ温度は七〇〇~七五〇℃に達していたと推定されている
から、床ライナの表面では、ナトリウムの酸化物と複合酸化物の混合溶液が存在し
て鉄を腐食させたと推定できるし、燃焼実験Ⅱの場合には、床ライナ温度は八○○
~八五〇℃で推移したのであるから同様なメカニズムで鉄を腐食したと推定できる
(同参―八~九頁)。
(四) このような「溶融塩腐食」が問題となるのには、固体(鉄)と液体(溶融
塩)が接触したほうが、固体と固体が接触した場合よりも腐食速度(反応速度)が
桁違いに大きくなる(固体と固体では点で接触するのに、固体と液体では面で接触
する)からである(同参―六頁)。しかも、一旦液体が形成されれば、腐食して出
来た生成物は容易に他に移動して新しい鉄の面が現れて混合溶液が接触して更に腐
食するので、腐食が一気に進行する。
3 もんじゅでも燃焼実験Ⅱと同じような腐食が起きる―動燃・科学技術庁批判
(一) ところが被告動燃及び科学技術庁は、「ナトリウム漏洩火災事故と燃焼実
験ⅠではNaFe複合酸化型腐食が起こり、燃焼実験Ⅱでは溶融塩腐食が起こった
のであって、腐食機構が異なる」と主張し、「もんじゅでは、燃焼実験Ⅱとは環境
が違うから床ライナに穴は開かない」と強調する。
 この理由として被告動燃及び科学技術庁は、「ナトリウム漏洩火災事故では①ナ
トリウム酸化物の堆積物の上に燃えなかったナトリウムが落下したので過酸化ナト
リウムが酸化ナトリウムに還元された、②ナトリウムは堆積物の上で燃えたので酸
素は堆積物の中にはほとんど取り込まれなかった、③鉄は主として酸化ナトリウム
と反応して複合酸化物を作って腐食した(NaFe複合酸化型腐食)が、燃焼実験
Ⅱでは①コンクリートから放出された水のためにナトリウム酸化物が水酸化ナトリ
ウムに変わった、②水酸化ナトリウムは液体となって酸化ナトリウムや過酸化ナト
リウムを溶かし込んだ、③鉄は主として過酸化ナトリウムから生ずる過酸化イオン
により腐食した(溶融塩型腐食)」とする。つまり、水酸化ナトリウムの存在の有
無が両者を分けるとするのである。
(二) この点につき、被告動燃のP11証人は「(溶融塩型腐食が生ずるには)
高温で安定な水酸化ナトリウムのような状態といいますか、液体状のようなもの、
これがライナの上に液状にたまりまして、そこに過酸化ナトリウムというものが充
分溶け込んで維持され
ると言う、そういうことが必要」「水酸化ナトリウムが大量に存在することが必要
でございます」と述べた上で、「燃焼実験Ⅱでは、燃焼が始まってから一時間強く
らいで、コンクリートの温度が一〇〇度くらいに上がったと思われまして、その時
期から大量の水分が放出されまして、それで水酸化ナトリウムの生成が促進され
た」とし、燃焼実験Ⅱが特別に、装置そのものが総コンクリート製で空間容積が狭
く、燃焼部と壁の距離が短いことを強調し、「(もんじゅで溶融塩型腐食が起こる
条件のそろう可能性は)極めて低いというふうに思っています」と断言する(P1
1証人五〇回三九~四三頁)。たしかに、動燃第五報の「漏洩部近傍の床ライナ上
堆積物の分析結果の比較」によれば、もんじゅナトリウム漏洩火災事故では二.六
%であるのに燃焼実験Ⅱでは三五・一%も存在する(乙イ一〇号証Ⅱ―二―三一
頁)と記載されており、P11証人の証言を裏付けているように見える。
 ところが、動燃第六報(乙イ四八号証)の燃焼実験Ⅱにおける「堆積物プール内
の化合物濃度」のグラフ(三・一・参―一〇八頁)によれば、水酸化ナトリウムの
濃度は、当初の○%から直線的に上昇していくが、床ライナに穴があいたと推定さ
れる三時間二〇分やナトリウムの漏洩が終了した三時間四二分後頃でも一〇%に達
したに過ぎない。その後の四時間経過後頃から上昇するが、五時間経過後でも二〇
%である。P11は「(水酸化ナトリウムの量について)三〇%というか、分析で
はそういうふうになっているんじゃないかと思います。実験が終わってから分析し
たものではなかったでしょうか。私は実験で、実際の測定から、そう(三〇%)で
あったというふうに思いますけど」といいながら、原告代理人の質問「穴があいた
時点では、このデータで言うと、一〇%くらいになるんですけど、最後に測定した
とき三割だったとしても、穴があいた時点ではもっと低かった可能性もあります
ね。少なくともこの解析データを使用するんであれば」に対しては「そうですね、
これが、それを表しているんだとすれば、確かにこのグラフからはそういうふうに
読めますね」としぶしぶ、燃焼実験Ⅱでもナトリウム漏洩中には水酸化ナトリウム
の濃度が低かったことを認めている。
 ところで、動燃は後述するASSCOPSコードを使って、もんじゅの配管室と
過熱器室で、堆積物中の水酸化ナトリウム濃度の解析を行って
いる。その結果、ナトリウム漏洩中の最高値としては、配管室では、小規模漏洩
(毎時○・〇一トンの漏洩)では三〇%を越え、中規模漏洩(毎時○・一トンの漏
洩)でも三〇%程度(三・一・参―九二頁の図5)であり、過熱器室では、小規模
漏洩(毎時○・〇一トンの漏洩)では三〇%程度、中規模漏洩(毎時○・一トンの
漏洩)では二五~二七%程度(三・一・参―九四頁の図12)の値を得ている。P
11はこのデータがでていることについて、「そうですね。中身、ちょっと見ない
とわかりませんが、確かにそのデータはそうですね」と、もんじゅで水酸化ナトリ
ウムの比率が三〇%前後となることをしぶしぶ認めている。
 被告動燃と科学技術庁は、水酸化ナトリウムが大量にあることが溶融塩腐食の最
大の原因であるとして、もんじゅで起こったナトリウム漏洩火災事故と燃焼実験Ⅱ
の違いを強調しているが、もんじゅでも堆積物中の水酸化ナトリウムの濃度が燃焼
実験Ⅱでの濃度を越えることは被告動燃の計算によっても明らかになっており、溶
融塩腐食が起こることを否定できないことになる。
(三) この腐食メカニズムに関しては、P1証人が「溶融塩腐食説を打ち出した
のはワーキンググループ(原子力安全委員会)でございますから、ワーキンググル
ープは、当然、こっちのほうが正しいと内心思っていらっしゃると思うんです。こ
れはもう当たり前のことではないでしょうか。しかしながら、相手(動燃・科学技
術庁)の推論も必ずしも否定はできないと、こちらの推定も、まだ残念ながら絶対
的に正しいという証拠がないと、そういう段階でということだと思います」「まだ
まだ解明すべき点が多々ある、そのように承っております」と述べているように、
未解明な部分が非常に多いのである。
4 高温腐食実験は極めて難しい
(一) 床ライナに穴があくかどうかを検討する上で最も困難であるのは腐食の反
応速度をどのように見るかである。ナトリウム漏洩火災事故に関し、原子力安全委
員会は第二報告書(乙イ第四一号証参―七頁)において「一~一・五ミリメートル
の減肉がいかなる速度でどの時期に起こったかを正確に知ることは出来ない」と述
べているとおり、「七〇〇~七五〇℃の温度で漏洩時間の三時間四〇分の間に定常
的に進行した」のか、「燃焼初期又は中期に、ナトリウムが高温で燃焼しながら落
下しナトリウム酸化物とナトリウムが豊富に存在している時に腐食が
一気に進行した」のかは不明である。なぜなら、実験はわずかになされているが、
高温状態で腐食機構を調べることは、実験的制約が多く過ぎて正確なデータが得ら
れないからである。
 大きな理由は次のようなものである。
① 試験容器および試験片が小さい。
 動燃が第五報で報告している「金属材料高温化学反応試験」(乙イ第一〇号)に
よれば、実験装置のうち実際に溶液を入れる部分は直径一五センチメートル、高さ
数センチメートルであり、試験片は厚さ一センチメートル、縦横一・五センチメー
トルに切り抜いた切片の真ん中に直径○・七センチメートルの穴をあけたものであ
る。まず、水酸化ナトリウム+過酸化ナトリウムの液体の中に小さな試験片をひた
し、溶液を撹拌し、試験終了後に試験片を引き上げて表面を観察するのである。小
さい容器であり、上部が薄くて下部が濃いといった濃度勾配ができる。
② 試験片は新品であり、かつ試験時間が一〇~三〇分と短い。
 反応速度は、減肉した量を表面積と時間で割って算出する。ところが減肉が進む
と残った固体の部分が小さくなり、表面積も変わってくる。しかも、金属表面が凸
凹になると表面積は更に変わってくる。反応速度を計算するためには、表面積がか
わらない範囲で実験を行うので、まず表面がなめらかな新品の金属を使用し、しか
も表面に凸凹が生じないうちに短時間で終わらせるのである。しかし、新しい試験
片よりも腐食が進んだものの方が、表面が凸凹して来ると考えられる(Ⅱ―二―二
一頁では、表層の細かい選択腐食痕が認められるとする)。その場合には、液体と
試験片の接触面積は表面がなめらかな場合よりも当然に大きくなり、腐食は進行し
易くなる。従って、実験で算出した反応速度よりも早い速度で腐食が進行すること
が充分に予測できる。
 特に孔食が生じた時は問題である。「孔食というのは、ちょうどきりで突いたよ
うに非常に鋭い小さな、まるできりで穴をあけたような形で腐食がどんどん先に進
行していくようなものを申します。で、こういう形の腐食は、自己加速の傾向がご
ざいます。自分でどんどん腐食のスピードをあげていくような傾向もございます。
英語ではピッティングと申します」(P1証人二七回六七~六八頁)というもので
ある。また、選択的腐食といって、合金の一つの成分だけ溶かして表面が凸凹にな
る腐食も存在するので、短時間の実験から計算して反応速度よりももっと早
く反応が進むことも考えなくてはならないが、定量的な実験はなされていない。
③ 高温では試験片のみならず試験容器自体が腐食する。
 八○○℃という温度では溶液として使用した過酸化ナトリウムは、試験片を腐食
するのみならず、試験ポットとして使用されていたニッケルそれ自体を腐食するの
で正確なデータがとれない。P1証人も「非常に高い温度での実験というのは、そ
れでなくても、そういう温度に上昇してその温度にきちんと保たなくてはいけない
とか、それから、もちろん実験装置そのものがその温度にちゃんと耐えるようなも
のでないといけないとか、その他もろもろ、いろいろやっぱりそれは、普通の温度
の実験よりもはるかに難しいんだろうなと思います」と述べているとおりである
(P1証人二七回六六~六七頁)。
 こう言った理由から、動燃の実験では、実際に得られた試験片データ五七のうち
三八を有効とし、他は適切ではないとして採用されなかった。動燃はその理由とし
て、試験ポットも腐食したことと溶液の濃度勾配を挙げている。
(二) このような技術的に困難な腐食実験から得られたものとして、動燃第五報
は減肉速度の図をかかげ(乙イ一〇号証Ⅱ―二―七一頁)、科学技術庁第二報(乙
イ一三号証参―三三頁)も原子力安全委員会第三次報告書(乙イ四二―二号証一六
頁)も引用している。P1証人は「実験のその道のプロがやった結果でございま
す」と述べて、専門家がやったのだから信用できるとするようであるが、やはり、
高温付近では誤差が大きく信頼性が低いと言わざるを得ない。
五 ナトリウム漏洩火災事故の熱的影響解析-計算と現実の大きな食い違い
1 安全審査における熱的影響解析の変遷
(一) 二次系ナトリウム漏洩事故における、漏洩したナトリウムが燃焼すること
による熱的影響解析は、当初の一九八○年(昭和五五年)一二月一〇日付許可申請
書(甲イ第四二〇号証)においては、真剣にあるいは定量的に検討されてはいなか
った。つまり、「漏洩したナトリウムの顕熱及び燃焼熱によって、部屋の雰囲気温
度あるいはライナ又はナトリウム受け皿の温度が上昇し、ナトリウムとコンクリー
トの接触防止機能に悪影響を与える可能性がある」としながらも、「ナトリウム漏
洩によりナトリウム火災が発生するが、二次主冷却系の各ループはそれぞれループ
毎に独立な部屋に設置し、コンクリート壁で仕切る等の防火上の隔離が行われてい
る」とした上で、「部屋の床面には、鋼製ライナ又はナトリウム受皿が施工され、
万一のナトリウム漏洩に対しても床コンクリートとナトリウムの接触を防止してい
る」とされているのみである。
 そこには床ライナは何度の温度上昇まで耐えられるのか、漏洩したナトリウムは
床ライナ上でどのような燃焼の挙動を示すのか、その結果温度は何度になるのかな
どの具体的な熱的影響の評価は一言も記載されていない。現実に起きたナトリウム
漏洩火災事故と対比するとき、右許可申請の非科学性と杜撰さはあきらかである。
(二) 一九八一(昭和五六)年一二月二八日に提出された「許可申請書の一部補
正について」(甲イ第四二一号証、乙一六号証)において、ようやく熱的影響の解
析が行われた。
 漏洩ナトリウムに関する熱的影響解析として考えられたのは、二次系配管からナ
トリウムが漏洩して床ライナ上に溜まり、床ライナ上を流れて連通管に達し、連通
管を通って階下にあるオーバフロータンク又はダンプタンク部屋の燃焼抑制板の下
部に行き、そこで貯留して窒息消火するという仮定をおいた場合である。もんじゅ
の二次主冷却系配管は三つのループに分離されているが、同じループの機器配管を
収納する部屋は相互に開口部でつながっている。熱的影響は、漏洩発生場所によっ
て異なるので、燃焼に伴う雰囲気圧力の上昇を最も抑制しにくく、燃焼反応に寄与
する酸素量が最も大きい最大の容積の配管室(本件ナトリウム漏洩火災事故が発生
した配管室)と、熱の影響が顕著に現れる関係から容積が最も小さい過熱器室のニ
カ所について、解析がなされている。
 結果が最も厳しくなるようにとしておかれたモデルが、①ホットレグから配管室
では一五〇立方メートル、過熱器室では六〇立方メートルが、配管にあいた一五平
方センチメートルの円孔から漏洩する、②ナトリウムはスプレイ燃焼して漏洩室内
の圧力を高める(但し、床ライナにまで降り注ぐとは考えていない)、③燃焼しな
いで床ライナ上に溜まったナトリウムは床ライナを加熱する、である。使用された
コードは、スプレイ燃焼を扱うSPRAY―Ⅱコードのみであり、床上に溜まった
ナトリウムの燃焼を扱うSOFIRE―MⅡコードは使用されていない。
 火災検知器の信号によって空調ダクトは全閉になるとの仮定の下では、配管室の
床ライナ最高温度は約四一〇℃、過熱器室の床ライナ最高温度は約四五〇℃であっ
て、「設
計温度五〇〇℃以下にとどまる」とされ、「漏洩ナトリウムによる熱的影響につい
ては、十分に厳しい条件を仮定しても、部屋の内圧および床ライナの温度はいずれ
も設計値以下であり、その健全性が損なわれることはない」と結論づけられた。
(三) 一九八五年(昭和六〇年)には変更許可申請がなされ、八月九日付「変更
許可申請書の一部補正について」(甲イ第四二二号証)においては、過熱器室での
漏洩量を九五立方メートルに変えた他は仮定は同じであるが、SPRAY―Ⅱコー
ド以外に、床上に溜まったナトリウムのプール燃焼を取り扱うSOFIRE―MⅡ
コードを使用した。そのために結果の数値が変わり、配管室の床ライナ最高温度は
約四六〇℃、過熱器室の床ライナ最高温度は約五二〇℃となった。これは一旦「設
計温度」として記載された五〇〇℃を越えている。ところが不思議なことに設計温
度は突然「五〇〇℃」から「五三〇℃」に上昇させられた。そして、「設計温度五
三〇℃以下にとどまる」とされ、「床ライナの健全性は損なわれることはない」と
の結論が導かれたのである。
2 「設計温度」は越えてはならない最高値だが、現実の事故では大きく上回った
(一) 設計温度は、前述したように、「明示せず」から「五〇〇℃」へ、更に
「五三〇℃」へと大きく変遷した。その理由については許可申請書にも補正書にも
一切記載されておらず、従って不明である。推測するに、右の設計温度の上昇は事
故解析に使用した計算コードの差異によるものと思われるが、新たに計算コードを
用いる度に「設計温度が上昇する」ということは原告にとっては「手品」を見せつ
けられているような思いである。構造上何の変更もないのに床ライナの設計温度が
変化することは常識では理解できない。
(二) 一般的に安全審査においては、安全性を判断する「基準」として具体的な
数値が定められている。例えば、「燃料被覆管がプレナムガスの内圧により破損し
ないよう、被覆管肉厚中心温度は八三〇℃以下であること」「冷却材が沸騰しない
よう、炉心ナトリウム温度は沸点(注・約八八〇℃)未満であること」「燃料被覆
管が燃料溶融により破損しないよう、燃料温度は融点未満であること」「原子炉冷
却材バウンダリの温度は、六〇〇℃と最高使用温度(℃)の一・四倍をいずれをも
超えないこと」とされている(乙イ第六号証一〇―一―一頁)のである。これを比
較すると「設計温度
」は安全評価の際の一応の「基準」であり、この数値を超えないことで安全である
と評価されている。
 この点につき、原子力安全委員会は第一次報告書(乙イ第一二号証)において、
「スライド構造により壁コンクリートと干渉しないとした床ライナの温度」とし、
P1証人は「設計温度を何を基準として決めたのかは、これは私ども(原子力安全
委員会)は承知いたしません。そういう温度で設計すると言うことを申請者が申し
出たということでございます。で、最高温度がそれを超えてしまっては、これは設
計温度の意味というものが、多少失われてしまいますから、そういう設計温度で設
計して機能が維持できるということを示すために、その最高温度がそこに記載され
たものと理解しました」と証言する(P1証人二七回二九~三六頁)。つまり「設
計温度」は設置者である動燃が、床ライナの温度をその一定の温度以下になるよう
に設計すると約束した温度、その温度以下でなら床ライナの機能が維持できると約
束した温度ということのようである。
 許可申請書や補正書、変更許可申請書や補正書に自ら記載した「五三〇℃」とい
う温度は、右に述べた意味で被告動燃にとっては遵守すべき「最高値」であり、被
告国にとっては被告動燃に遵守させるべき「最高値」である。
(三) ところが、現実に発生したナトリウム漏洩火災事故においては、床ライナ
の最高温度は七〇〇~七五〇℃に達したと推定され、一部で一~一・五ミリメート
ル減肉するという床ライナの損傷が起こり、燃焼実験Ⅱにおいては、床ライナの温
度は八○〇~八五〇℃で推移し、貫通孔が発生した付近では実験開始後三時間二〇
分頃に一〇〇〇℃を超える値が記録された(乙イ第四一号証四~五頁)。
 これらの値は設計温度を大幅に超過するものである。いやしくも被告動燃が自ら
遵守を約束し、被告国も安全審査において是とした「設計温度」を超える事故が現
実に起こった以上、被告らが依拠する設計の妥当性は破れたと言うべきである。
3 ナトリウムの燃え方・・・スプレイ燃焼の軽視
(一) ナトリウムが漏洩した場合どのように燃焼するかについての実験は、一九
六〇年代から、アメリカのハンフォード研究所や旧西ドイツのカールスルーエ原子
力研究所等で行われるようになり、漏洩形態によって、①配管等から漏洩するナト
リウムが細かい液滴となって飛散し、落下するときに液滴の表面でナトリウムと酸
素が反
応するスプレイ燃焼、②漏洩ナトリウムが棒状に落下し、さらに床に衝突して飛散
する状態においてナトリウムと酸素が反応するコラム燃焼、③漏洩したナトリウム
が床にプール状に広がりその表面で酸素と反応するプール燃焼に大別されることが
判明した。
 動燃は、配管の回りを内装板が取り囲み、それを保温材でくるみ、その上を外装
板が覆うので、配管から漏洩したナトリウムは外装板の隙間から柱状になって真っ
直ぐに落下し床面に当たって液滴状に跳ね返ったところで燃焼するという比較的穏
やかな「コラム燃焼」を考えた。この場合、床では溜まったナトリウムが「プール
燃焼」すると考えたのである。
(二) しかし、現実に起こったナトリウム漏洩火災事故では、温度計の隙間から
空気中に直接にでたナトリウムが漏洩口で激しく燃焼し、落下しながら更に空調ダ
クトやグレーチング等に当たって跳ね返り飛散して燃焼した。コラム燃焼と違っ
て、スプレイ燃焼は、細かい液滴となって空間的に広がって燃焼するので、ナトリ
ウムと空気の接触面積がコラム燃焼の場合よりもけた違いに大きいので激しく燃
え、周囲を高温にする。スペインのアルメリア太陽光発電所においては、太陽光に
よって集積された熱を水に伝達する媒体物質として、高速増殖炉と同様にナトリウ
ムが大量に使用されているところ、一九八六年八月、ナトリウム配管からナトリウ
ムが上向きにスプレイ状に噴出し、直ちに発火して機械室の天井を破壊して隣接す
るコンピューター室に燃え移り、更に制御室へと燃え広がるナトリウム漏洩火災事
故が発生した。ケーブルが損傷したためにバルブやポンプの操作が不可能となり、
発電所の建物の重要部分は破壊された。このとき、ナトリウム燃焼のために周辺で
は一〇〇〇℃をはるかに越える高温に達していたと推定されている。予想を大きく
越える高温を出すに至ったスプレイ燃焼のメカニズムは必ずしも解明されてはいな
い。スーパーフェニックス高速増殖炉実証炉の運転再開にかかわる原子力施設安全
局(DSIN)の審査において、二次冷却系配管のギロチン破断時の建屋健全性評
価の見直しが行われたのも、このスペインの火災事故が大きな衝撃を与えたからで
ある(スーパーフェニックス発電所に関するラヴエリー報告・甲イ第一八二号証の
一、一七頁)。
 ナトリウム漏洩火災事故でも、スプレイ燃焼の影響によって空調ダクトもグレー
チングも床ライナも、動燃の予
想をはるかに越え、大きな損傷を受けた。
4 動燃はナトリウム燃焼実験の結果を隠していた。
(一) スプレイ実験では八八○℃が記録されていた
 動燃は、スプレイ燃焼に関しては、一九七七年頃からナトリウムを上向きに噴出
する実験を行った。容積一・九立方メートルの小さな密閉容器で、最大でも一三秒
間に四〇〇グラムのナトリウムを上向きに噴出させるような小さな実験であって、
ガス圧力を測定することを目的としており、床に受皿は設置されなかった。コラム
燃焼とプール燃焼に関しては、容積二一立方メートルの容器の下部に受皿をおい
て、コラム状に落下させたナトリウムを受け止めて燃焼する際の受皿の側壁外面の
温度を測定したところ、最高温度は四七五℃だと報告されている(甲イ第四二七号
証)。
 許可申請書及び補正書を提出した後の一九八二年になって、動燃は三菱重工業株
式会社高砂研究所に委託研究(甲イ第四二四号証)を行わせた。その実験は二一立
方メートルの密閉容器で天井からナトリウムをコーン状に約一分間スプレイ噴射
し、床に並べた受皿でそれを受けるものである。ナトリウムスプレイ燃焼実験を窒
素雰囲気で行ったり、空気中で行ったりしたところ、空気中の実験では、受皿ナト
リウム最高温度として「八八○℃」という数値が記載されている(一六二頁)。と
ころでこの八八○℃との数値であるが、一一七頁の図を見ると、キャッチパンの計
測温度は八八○℃以上の値を示しているのに、オーバースケールであるとして数値
が打ち切られている。従って、八八○℃が最高温度と言うことではなく、「八八○
℃以上になった」と考えるべきである。
 さらに、もんじゅ第一次安全審査(行政庁審査)において、宿題として指摘され
た五三項目のうちの二九項目で「ナトリウム漏洩時におけるエアゾルの挙動、ナト
リウムと水分との反応現象について実験的に確認する、また火災解析コードの検証
を行う」とされたため、動燃は更に実験を行った(甲イ第七号証「詳細設計段階等
で検討すべき事項」)。
 一九八三年には、容積二・七立方メートルの装置でナトリウムを漏洩させたとこ
ろ、床最高温度は五五〇℃となった。容積二七立方メートルの装置の実験では漏洩
を終了させた後になって最高温度六四〇℃や六五〇℃のケースが現れている。一九
八五年に変更申請した頃のプール燃焼実験では最高温度六六〇℃、五七〇℃のケー
スもあり、又、配管からのナトリ
ウム漏洩形態確認試験では約六四〇℃、大規模総合試験では六八○℃が観測されて
いる。
 一九八八年からは容積一〇〇立方メートルの密閉容器で数百キログラムのナトリ
ウムをコラム状に漏洩させた八回の実験を行い、そこでは、受皿最高温度は最高で
七〇〇℃、コラム流衝突板の局所最高温度は最高で八三〇℃にもなっている。容積
一〇〇立方メートルの密閉容器での二五〇℃のナトリウムをスプレイ燃焼させた実
験でも床温度は七六〇℃にも達している。
 動燃は、このように様々な実験を行い(甲イ第四二七号証)、床ライナ最高温度
が設計温度五三〇℃(当初は五〇〇℃)を越える場合もあることを十分に知悉して
いた。
(二) 動燃は燃焼実験経過を全く報告せず、対応策もとっていなかった
 だが、こうした実験データについては、動燃から科技庁又は原子力安全委員会に
あてて示されてはおらず、ましてや一般に公開されたものではなかった。
 原子力安全委員会第一次報告書(乙イ第一二号証、平成八年九月二〇日)の二七
頁には、「ワーキンググループは、動燃におけるナトリウムの燃焼実験に関して時
に床ライナ温度に関して詳細な説明を受けた」と、初めて動燃から説明をうけたこ
とを驚きをもって記載している。動燃は原子力安全委員会に対して「原子炉設置許
可の申請以前において空気中のプール燃焼実験を三例行い、受皿に設置した熱電対
の測定値は五〇〇℃以下」であり、「原子炉設置許可の申請後に実施した空気中に
おけるスプレイ燃焼実験及びコラム燃焼実験において受け皿に設置した熱電対の測
定値は五〇〇℃~八八○℃を観察している」と説明した模様である。
 しかも、動燃は「このような結果が得られていたが、動燃は床ライナの設計温度
あるいは健全性評価の見直しは行っていない」(原子力安全委員会第二次報告書
(乙イ第四一号証一八頁)。ここには動燃の隠蔽体質、閉鎖体質、一旦決めてしま
えばその後にどのような実験情報や事故情報を得ても反省して見直すことをしない
という体質が良く現れている。
(三) 原子力安全委員会は安全解析の結果を鵜呑みにしていた
 一方、原子力安全委員会にも、安全審査に当たって実験データを求め、計算の詳
細を求めようとせず、申請書だけを鵜呑みにして実質的な審査をしなかったという
問題があることをナトリウム漏洩火災事故は明らかにした。つまり、原子力安全委
員会は、一九九五年にナトリウム漏洩火災事故が
発生し、ワーキンググループを組織してその調査を行うまでは、燃焼実験に関する
報告は受けておらず、当然にも床ライナの温度が設計値を超えるケースが多数回存
在し、その最高は八八○℃以上という高温に達していることについての認識は全く
なかったのである。
 事故想定においては、大規模漏洩による床全面加熱が最も厳しい条件であるとさ
れていたが、八八○℃という高温の実験データが得られていたら、モデルの見直
し、計算コードの見直しをするべきであるのにそれをしていなかった。もし、安全
審査の時にデータが提出されていたとしたら、事故解析は当然異なっていたはずで
ある。P1証人は「そういう観測値があったということになりますと、これは推測
でございますが、当然、この観測をされた非常に高い温度と設計温度、あるいは計
算された最高温度との関係はどうなっておりますかという、この質問は当然でたと
思われます」と述べており、データを隠した動燃に対して「なぜださなかったかと
いうのは私どもは存じません。これは動燃の判断でございましょう。ただ、そうい
う技術情報等については、できる限りこれを開示していくというのが極めて望まし
いことだというのは、これはもう明らかなことでございます」と穏やかではあるが
厳しい批判を行っている。
 いずれにせよ、安全審査に提出されていた安全解析の結果をはるかに上回る実験
結果が得られていたにもかかわらず、そのことを不問にしたまま行われた本件安全
審査には重大な瑕疵がある。
5 使用されたSPRAYコードとSOFIREコードの計算は実験とあわない。
(一) 安全解析に使用された計算コードの変遷
 安全解析に使用されたコードは、当初の許可申請補正においては、スプレイ燃焼
を扱うSPRAY―Ⅱコードのみであり、配管室の床ライナ最高温度は約四一〇
℃、過熱器室の床ライナ最高温度は約四五〇℃であって、「設計温度五〇〇℃以下
にとどまる」とされた。一九八五年(昭和六〇年)八月九日付「変更許可申請書の
一部補正について」(甲イ第四二二号証)においては、過熱器室での漏洩量を九五
立方メートルに変えた他は仮定は同じであるが、SPRAY―Ⅱコード以外に、床
上に溜まったナトリウムのプール燃焼を取り扱うSOFIREIM―Ⅱコードを使
用した。そのために結果の数値が変わり、配管室の床ライナ最高温度は約四六〇
℃、過熱器室の床ライナ最高温度は約五二〇℃と
なったが、設計温度を上昇させて、「設計温度五三〇℃以下にとどまる」とされ
た。
 つまり、数値が変わった理由は、単に使用した計算コードが違ったためである。
(二) SPRAYコードによる解析は過小評価になる
 噴出したナトリウムが天井に衝突して液滴化し、空中を燃焼しながら落下し、燃
え残ったナトリウムはプールを形成する。しかしプール状に溜まったナトリウムは
燃焼しないというのがモデルである。
 一九八二年に三菱重工が委託研究したスプレイ燃焼の実験(甲イ第四二四号証)
の結果を用いて、動燃が一九八三年七月にまとめた「ナトリウム・スプレー燃焼の
解析(Ⅱ)」(甲イ第四二五号証)によれば、ナトリウム燃焼実験の解析結果は、
実験値とはあわなかった。壁の温度変化は実験の半分程度(四五~五三%)であ
り、プールの平均温度は、かなりの過小評価であった。これは動燃自身が「検証結
果は、スプレイ燃焼については、特に空気雰囲気条件において、同時に起こるプー
ル燃焼の効果をSOFIREコードで取り扱うことができないために、解析が過小
評価傾向になり、非保守側の評価をするような解釈をうけざるを得ない状況にあっ
た」(乙イ第五〇号証)と認めているところである。つまり、安全解析の結果が実
験値を下回り、安全解析用の計算コードとしては失格であるということであり、原
子力安全委員会が一九八三年四月二五日に内閣総理大臣宛に答申した際に記載され
ている「使用計算コードの妥当性についても、実験結果との比較等により検証され
ていることを確認した」ことが虚偽であることが判明した。
(三) SOFIREコードがあうのは低温度のみ
 SOFIREコードは、床一面にナトリウムがプール状に存在し、その表面で燃
焼し、熱を対流や輻射を通じて天井や壁に伝え、同時に、床上に存在するナトリウ
ムを通じて熱を床ライナに伝えるモデルを採用している。プール状になったナトリ
ウムを薄くスライスし、それぞれのスライスの温度は一点で近似する。床ライナ
も、スライスしてそれぞれの温度を一点で近似する。つまり、床ライナの温度は、
全面にナトリウムが溜まり、温度を一点で近似して計算するために、いかに部屋の
面積が広くても、漏洩直下でも、そこから遠く離れていても同じ温度であるとされ
る。従って、小さな容器でプール燃焼実験を行った場合には、実験結果を計算で表
すことが出来ても、今回事故がおきたような広
い配管室の場合に全ての床面が同一温度であるという仮定で計算した場合には、低
い値が出ることは容易に想像しうる。
 しかも、ナトリウムの燃焼面と床ライナの間は、いつでもナトリウムの層が存在
しているのであるから、床ライナの温度は沸点である八八○℃を越えることはな
い。越えるとナトリウムは気体となり、プール燃焼の仮定自体が崩れるからであ
る。
 動燃は、乙イ第五〇号証一頁で、「プール燃焼実験については一九七六年に行わ
れた委託研究の結果を解析して検証した結果、良好な結果が得られている」とする
が、右実験は三菱重工に委託したものであって、同社は容積二一立方メートルの密
閉容器の床にステンレス製受皿をおいて底板の下面と側壁の外面に熱電対を設置し
て計測し、その結果、ナトリウム温度四〇〇℃で七回実験して床温度二九〇~三五
〇℃、ナトリウム温度五三〇℃で四回実験して床温度四〇
~四六〇℃となっている(甲イ第四二七号証)。温度が低い理由としては、密閉容
器であるために酸素がすぐになくなり、床の上のナトリウムプール表面での燃焼が
止まったために、ナトリウムからは床に熱が逃げる一方になり、ナトリウムの温度
が低下したためである。動燃はこの実験データをコードであわせられるとするだけ
であって、その後に、プール燃焼実験で、五五〇℃、六六〇℃、ナトリウム流動性
実験で六四〇℃、六五〇℃、六八○℃等の値が出ている(甲イ第四二七号証)こと
について計算コードで合わせたのかどうかについては何も発表されていない。これ
は、コードが実験値を再現出来なかったため公表していないのではないかと思われ
る。いずれにせよ、床ライナ温度が低いケースだけについて言及し、「良好な結果
が得られている」と言うだけであって、全く信用できない。
6 ASSCOPSコードは信頼できるコードではない
(一) 公開されたコードではない
 ところで、許可処分が出された後、動燃は計算コードの開発を行い、「今回改め
て、床ライナ温度に着目した解析を行うために、漏洩した室内でスプレイ燃焼とプ
ール燃焼を同時に解析できるコードを用いた」(乙イ第四一号証(安全委員会第二
次報告書)とされる。動燃はASSCOPSコードを使用して種々の計算を行って
いるが、まずこのASSCOPSコードは、現在のところ、一切内容が公開されて
いないことを強調したい。
 動燃広報室は、公開しない理由について、「欧州国際機
関(OECD/NEA)に英語版のコードマニュアルを送付し、いくつかのベンチ
マーク解析により性能確認が行われる。また計算機プログラムの知的財産権及び著
作権を保護するために、公開に先立ちオリジナリティーを財団法人ソフトウェア情
報センターにプログラム登録する。これらに数年かかる」としている。ASSCO
PSコードは性能の良いパソコンで動く程度の規模の小さなコードであるため、動
燃広報室は「パソコン版による利用も検討している」とする(甲イ第四一五号証)
が、これは計算のための初期値を与えると結果が出るものだが、ブラックボックス
であってどのようなモデルを採用し、どのような仮定を置いたコードかはわからな
い。
 一般に科学技術の分野における計算コードは、それを様々な研究者が様々な条件
を入れて使用し、コードのエラーや特異な問題点を指摘して改良していくものであ
る。コードを公開し、批判的にコードを使用していくことこそがオープンな科学技
術の世界である。動燃は、炉心崩壊事故の計算コードであるSIMMERⅡについ
て、ドイツのブレーメン大学グループが新バージョンの使用許可を動燃に対して求
めた際に、同大学グループが過去に旧バージョンを使用した解析結果の解釈に誤り
があったことを理由にこの請求を拒否した(甲イ第四〇六号証)。科学的研究にあ
っては、自由な議論と批判が保証されなくてはならないし、それによって初めて進
歩があるといえる(甲イ第四〇七号証)。公表もしないで、又、使用も拒否して、
自己の計算結果のみを、モデルと仮定と計算方法を公表しないで提示して「信用し
ろ」といっても、それは信用に値しない。
(二) ナトリウム漏洩火災事故以前の燃焼実験とあわせられない
 まず、モデル全体としては、二つの部屋を考える。一つ(セル1)では、となり
の部屋(セル2)から漏洩してきたナトリウムが床一面に広がってプール状で燃焼
するものであり、SOFIREコードを使用する。問題は漏洩が起きるセル2であ
るが、スプレイ状に広がって燃焼するのでSPRAYコードは使用する。未燃焼で
落下したナトリウムは床の上に溜まることになるが、バージョン一・〇~一・一で
は床一面に広がっても燃焼しない仮定が置かれている(乙イ第五〇号証の図A―
2)。ナトリウムのプールからの熱輻射はとりいれているが、一つの部屋でプール
燃焼とスプレイ燃焼が同時に起きている現象を取り扱え
ない。動燃は、バージョン一・一を用いて三菱重工に委託した実験結果(甲イ第四
二四号証)を解析しているが、七六頁の図Ⅳ―3に明らかなように、ナトリウムプ
ール温度は、計算では実験開始後三〇秒で四四〇℃になり、その後若干上昇するが
四六〇℃程度が最高である。ところが実験結果は、実験開始後一五秒で、直下近傍
では六〇〇℃を越え、六〇秒後には直下で八八○℃になっているのであるから、全
く実験を再現出来ないコードであることが判明した。
 そこで、動燃はバージョン二・○を開発し、セル2でスプレイ燃焼とプール燃焼
を同時に取り扱えることができるとした。動燃第五報(乙イ第一○号証)三・一・
参―一〇三頁によれば、「バージョンニ・○は、もんじゅの建設段階に開発された
解析コードに対して中小規模の漏洩にも対応した解析を可能にするよう改良したも
のであり、ナトリウム燃焼に伴う床ライナ温度の推移など熱的影響に係わる挙動全
体を解析するコードである」とされている。
 動燃は、「もんじゅナトリウム燃焼事故以前に実施された燃焼実験の解析を行っ
た結果、計算の妥当性が示された」として、動燃第五報(乙イ第一〇号証)三・
一・参―一〇六の図三で、①一九八五年七月に実施したプール燃焼実験(右側)
と、②同年九月に実施したプール燃焼実験(左側)と計算結果の比較を図示してい
る。
 温度を比較してみると、①では、受皿最高温度六六〇℃を計算でだしているが、
②では、燃焼抑制板中心温度の実験値約七三〇℃を再現出来ていない。もっとも、
この実験装置は、漏洩したナトリウムが下部の燃焼抑制槽に導かれて燃焼しながら
窒息消火する状況を検証する実験装置であり、ASSCOPSコードはこのような
ケースを取り扱えないのであるから、そもそも比較することは出来ない。つまり、
ASSCOPSコードの実験による検証は失敗しているというべきである。
(三) ナトリウム漏洩火災事故も燃焼実験Ⅱもあわせられない
 次に、動燃は、燃焼実験Ⅰ、燃焼実験Ⅱの結果をASSCOPSコードで再現で
きるとするが、次のような基本的な問題が存在する。
① スプレイ燃焼を起こしている部屋で同時にプール燃焼を取り扱う方法につい
て、本来別々のコードをどのように接続したのかについては、何の説明も記載され
ていない。
② SOFIREコードはもともとナトリウムが床全面に一様に貯留して表面で燃
焼するモデルを取り扱っている
。ところが、「図1 燃焼実験Ⅱの解析モデル」によると、床ライナのうち七・○
平方メートルだけナトリウムが堆積し、その他の部分にはナトリウムは堆積してい
ない。当然にも、床ライナはナトリウムが堆積した部分とその他の部分の二領域に
分割され、その温度は異なってくる。ところが、床ライナを二領域に分割した場合
に、どのようにコード上取り扱うかについては何の記載もない。
③ 床に落下したナトリウムが燃焼する際の面積について三・一・参―一〇五頁
に、プール燃焼面積Ⅱナトリウム漏洩率×(一―スプレイ燃焼割合)÷面積広がり
の相関という式が示されているが、実験が全くなされていない上に、ナトリウム漏
洩火災事故と燃焼実験Ⅰでは堆積物は漏洩口直下に存在したが、燃焼実験Ⅱではほ
とんど堆積していなかったのであるから、この式が成立する根拠は存在しないとい
っていい。「燃焼実験Ⅱはプール広がり状況の推定が困難である」ことは、動燃自
身が認めている(三・一・参―一〇三頁)のである。
④ コーン状の液滴状燃焼領域の中で漏洩口と床ライナの間に、グレーチングの上
とおぼしきあたりにプールが存在している。動燃のP11が「このグレーチングで
のプール燃焼というのは、ないと思うんですね。それは下におちるだけですから、
すかすかのものですから、そこでプール状にたまるということはあり得ないんで
す。」と証言する(P11証人五〇回一二八頁)とおり、このモデルはおかしい。
又、燃焼実験Ⅱでは一・七平方メートルとされているが、このプール状に溜まった
ナトリウムが燃焼するのか燃焼しないのかも判然としない。もし燃焼するとの仮定
をおいているならば、これもSOFIREコードで取り扱うことになるであろう
が、この場合、他のコードといかに接続するかは何も記載されていない。
⑤ 事故解析であるから、最も厳しい結果が発生するようなモデルと初期条件を与
えるべきであるのに、計算で得られた数値は実験でえられた数値を下回っている。
たとえば、燃焼実験Ⅱの解析結果(添―Ⅱ―二―一一)のうち、模擬漏洩部直下の
周囲五〇センチメートルの領域における床ライナ温度を見ると、実験では開始後一
〇分程度で約八○○℃になり、約一時間三〇分経過後から八六〇度を越えて、九〇
〇℃に迫っている。この床温度の測定方法は、熱電対を床ライナの下側につけて測
定するので、落下するナトリウムの燃焼部分が直接に接触するこ
とはない。このグラフを見ると横軸は時間単位であるので分単位に引き延ばすと、
九〇〇℃近い温度や時には九一〇℃近い数値も数分あるいは十分程度継続している
ことが判明する。ところが、解析結果は、開始後一五分程度で八二〇℃に至るとそ
の後は徐々に温度を下げていく。直下の実験データについては平均値程度しか計算
できないことになっている。安全側にたつならば、計算コードの計算結果はより高
温を示すものでなくてはならないのに、そうなっていない。前述したように、高温
状態においては、短時間で腐食が進行することがわかっているから、この高温状態
を計算できないASSCOPSコードは致命的な欠陥を持っている。
7 腐食を考慮するともんじゅでも穴が開く
(一) 動燃の計算でも「首の皮一枚」残るだけ
 動燃は、溶融塩型腐食を仮定して、ナトリウム漏洩が八○分間継続した場合に、
床ライナがどの程度減肉するかを、ASSCOPSコードを使用して計算した(乙
イ四八号証三・一・参―九〇頁、甲イ三五七号証三九頁)。その結果は左記の通り
であった(漏洩率の単位・トン/毎時、減肉量の単位・ミリメートル)。
漏洩室 燃焼解析条件 ライナ腐食減肉量(ミリメートル)
漏洩率 換気の継続 中央値 下限値~上限値
配管室  一・○ 有 三・三 二・O~五・四
配管室  ○・五 無 三・二 二・〇~五・三
配管室  ○・五 有 三・三 二・〇~五・五
配管室  ○・一 無 三・三 二・O~五・四
配管室  ○・一 有 三・三 二・〇~五・四
配管室  ○・〇一 無 三・三 二・〇~五・四
配管室  ○・〇一 有 三・三 二・O~五・五
過熱器室 ○・一 無 三・三 二・〇~五・四
過熱器室 ○・一 有 三・四 二・〇~五・五
過熱器室 ○・〇一 無 三・三 二・〇~五・四
過熱器室 ○・〇一 有 三・三 二・〇~五・四
 これによれば、ナトリウム漏洩火災事故が発生した配管室でも、それより狭い過
熱器室でも、また、ナトリウム漏洩火災事故時の漏洩率約○・一七トン/毎時より
大きな大漏洩時でも、小さな漏洩時でも、腐食速度を九五%信頼値でとると、全て
の場合に、五・四~五・五ミリメートル減肉し、○・六~〇・五ミリメートルとい
う、まさに「首の皮一枚」しか、床ライナは残らないという結果になっている。八
○分漏洩するという仮定は、「火災報知器の発報までに五分、手動停止をすると判
断するまでに一〇
分、原子炉停止操作に一分、停止確認に六分、ドレン準備に八分、ドレン完了まで
に五〇分」の合計八○分をとったものであるが、現実の事故の際にそのように手際
よくいく保証はない。現実のナトリウム漏洩火災事故では三時間四〇分であったか
ら、このままだと貫通孔が開くのは必然的となる。
(二) ナトリウム漏洩火災事故は冬季に発生したので床ライナに穴があかなかっ

 ところで、現実に起こったナトリウム漏洩火災事故では床ライナは一~一.五ミ
リメートルの減肉は生じたが、床ライナには穴はあかなかった。
 被告動燃の前記解析においては、室内の湿分が床ライナの穴あきの決定的な要因
となっている。であるとすると、仮にナトリウム漏洩火災事故が湿分の少ない冬季
(事故は一二月八日発生)ではなくて春から秋にかけての湿分の多い外気条件の下
が起きれば、その外気が換気ダクトを通じて室内に引き込まれ、ナトリウムが漏洩
した配管室でも充分な湿分によって床ライナに大きな穴があき、水素の爆発・燃焼
が起こったはずである(甲イ第三三三号証)。動燃の広井博もんじゅ建設所技術課
長も「夏場でかつ事故後も換気していたら、指摘される反応(穴あき及び水素爆
発)が起こった可能性は否定できない」と認めている(甲イ三三五号証)。
 現に、被告動燃の右解析においては、いずれの場合にも、室内での湿分は高く想
定されているために、ナトリウム漏洩火災事故が発生した配管室においても、八○
分の漏洩では「首の皮一枚」の状態となり、ナトリウム漏洩火災事故時のように漏
洩が三時間四〇分も続けば、床ライナに確実に穴があく、という結果が得られてい
る。
(三) 穴が開くとナトリウムと床のコンクリートとの間の反応が深刻な問題とな

 漏洩時間が長くなったときについて、P1証人は、「(仮定として同じように減
肉していけば)そのままのばしていけばそうなるでしょうね」「漏洩時間、つまり
はナトリウムが燃焼している時間と考えてよろしいかと思いますが、時間が延びれ
ば延びるほど事態は深刻になるのは、これは明らかでございます」「(ライナに穴
が開いてしまうことになると床コンクリートとナトリウムの接触を防止する機能は
失われること)それはそのとおりでございます。そういう状態になるということに
なれば、しかも、それを防ぐ方法がないということになれば、その設計方針は実現
しないということになります」と延べ、基本設計な
いし基本的設計方針が破れることを認めている。P1証人は一般にナトリウム・コ
ンクリート反応と呼ばれる反応が起こりまして、コンクリートがかなり侵されると
いうことはだいたいわかっております」「(ライナの腐食が更に進むことも推定で
きないことではございません)と述べるが、その反応がもっと進むとコンクリート
は崩れさり、発生した水素が酸素と混合して爆発し、最悪の場合には配管室は崩壊
する。
六 高温腐食を考慮しなかった誤り―「問題意識があれば知り得た知見」とは何の
ことか
1 高温腐食に関する被告等の主張
(一) 動燃の主張
 被告動燃は、加熱温度に関しては「床ライナの健全性は確保される」とするが、
腐食もあわせて考慮した場合にも、「燃焼実験Ⅱで起きた溶融塩型腐食がもんじゅ
で起こる条件のそろう可能性は極めて低い」としながらも、溶融塩型腐食が起こり
漏洩時間が、現在の設備のもとでは最短八○分続いたケースの計算をしたところ、
二次系配管関係のどの部屋でナトリウム漏洩が発生しても、床ライナの厚みが○・
五ミリメートルしか残らないことがわかったため、「改善策」を主張してそれに逃
げ込もうとしている。
 被告動燃のいう高温腐食に対する「改善策」なるものは、①ナトリウムドレンの
機能を強化すること、②壁・天井に断熱材を設置すること、③事故時に窒素を注入
できる設備を付けること、である。しかし、これらは安全審査の誤りを認めた「基
本設計の変更」に該当するのに、被告動燃は「変更許可申請」さえ一つも提出して
いない。もんじゅ原子炉の設置・運転は、言うまでもなく許認可事業であるから被
告動燃だけで右「改善策」を実施できないことは当然である。
 しかも、被告動燃のいう改善策は対症療法に過ぎない。すなわち、高温腐食に対
する抜本的な改善策は、①一次系と同様に二次系の各部屋を全部窒素雰囲気にして
燃焼を抑制する、②漏洩ナトリウムが床ライナ上を流れて連通管を通って階下に行
って窒息する設計ではなく、配管に沿って部屋を細分化し、漏洩が起きたらその一
室に窒素を注入して窒息消火する、③そのうえで床ライナを鋼製ではなくセラミッ
クなどナトリウムと反応しない材質のものにするなどであるのに、相変わらず鋼製
の床ライナで漏洩ナトリウムを受けるとの発想を変えていない。
 更に、被告動燃が改善策で良いとする根拠は、ASSCOPSコードに「腐食速
度」を考慮して計算した結果で
ある。ASSCOPSコードが信頼できないコードであり、実験から求めた「腐食
速度」も高温の場合には信用できないものであることは前述したとおりである。鋼
製の床ライナは一旦穴があけば腐食により急速に穴は拡大する。この危険を封じ込
めることができない
 被告動燃の改善策は、法的にも無効であるばかりか、技術的にも「砂上の楼閣」
である(甲イ四〇九号証八~一二頁)。
(二) 被告国の主張
 被告国は、準備書面(七)において、「本件事故を契機とする事故原因の調査過
程において、本件安全審査当時は認識されていなかった二つの知見が得られた」と
する。一つは、「推定される本件事故時の床ライナの温度及び最新のナトリウム燃
焼解析コードを用いて解析した床ライナの温度は、いずれも設計温度を上回るとい
う知見」であり「鋼材の熱膨張という点からすると、温度が上昇し、ライナが熱膨
張して壁面と干渉し、又は局所的なひずみが発生することになれば、これが原因で
ライナに損傷が生ずる可能性がある」としている。更に「空気の供給状況等の条件
いかんによっては、ナトリウムと鉄と酸素が関与する界面反応による腐食により、
床ライナ等の鋼材が損傷するという知見は、安全審査当時には得られていなかった
が、新たに知見として得られた」とする。そのうえで、「実験Ⅱで生じたような界
面反応による腐食を仮定したナトリウム燃焼解析の結果((一)で述べた計算)に
よれば、板厚約六ミリメートルのライナに対する肉厚は残存しており、貫通孔が生
じるには至ってはいないものの、残存肉厚は上限値で見る限り○・五ないし○・八
ミリメートルとなり、安全裕度が充分あるとまではいいがたい」とし、又「現時点
において、ナトリウム燃焼による鋼材の腐食機構の動的な過程、及びそれに及ぼす
温度、物質の移動等の因子については、かならずしも十分に解明されているとはい
えない状況にあり、本件原子炉施設において、どのような条件下であれば、燃焼実
験Ⅱのような界面反応による腐食が発生するのかについては、充分あきらかではな
い」と認めている。
(三) 原子力安全委員会の言う「問題意識があれば知り得た知見」とは
 ところが、原子力安全委員会は、温度計の振動に関するアメリカ機械学会(AS
ME)の規格については「知っているべき知見」としたのに対して、界面反応によ
る腐食という知見を「問題意識があれば知り得た知見」と位置づけた。こ
れは、安全審査の当時に誰にも知られていなかった知識というものではなく、高速
増殖炉の開発関係者(動燃)と審査関係者(科学技術庁及び原子力安全委員会)が
「問題意識をもっていなかったために知らなかった知見」という意味である。伊方
原発最高裁判所判決が「現在の科学技術水準に照らして審査されるべきである」と
言っている場合の「現在の科学技術水準」とは、安全審査時には全く判明していな
かった科学技術、つまり「問題意識をもって調査研究しても知り得なかった知見」
であっても含むが、原子力安全委員会はそこまで強弁するのではなく、ただ「問題
意識をいかに持つかが課題である」として、問題をそらしてしまっている(乙イ四
一号証九~一一頁)。
 この点に関し、P1証人は、もんじゅ許可申請時に安全審査を担当した原子力安
全委員会原子炉安全専門審査会一六部会のメンバーで金属材料研究所のP15も知
見をもっておらず、問題意識もないので何処にも問い合わせしなかったと述べてい
る。しかし、以下のべるように、高速増殖炉の分野でも腐食は問題になっていたの
であり、「問題意識がなかった、だからしょうがなかったのだ」といって、設置者
も審査者も免責される話では絶対にない。
2 腐食は安全審査当時でもある程度は考慮されていた
(一) 許可申請書提出当時、問題とされていた腐食は、①配管・機器が常時ナト
リウムに接触していることにより発生する腐食と②蒸気発生器の伝熱管破損事故に
おける腐食である。
 まず、①配管・機器における腐食としては、「減肉」(一般腐食であり、全面腐
食だが、Na2O,NaOHがあると粒界腐食が見られる)、「表面変質」、「脱
炭および浸炭」(高い温度の所では炭が鋼からナトリウムに移行し、低いところで
ナトリウムから鋼に沈着する現象)である。実験としては、ナトリウムが配管の中
を流れる温度が考慮されて、五〇〇℃~六〇〇℃のところで行われ、腐食速度は年
当たり数マイクロメートル程度と考えられていた。酸素濃度が高いと腐食が激しい
ことはわかっていたが、考慮されていた腐食の範囲は正常運転時に酸素濃度が低い
配管の中で進行する腐食だけであった。
(二) 次に、②蒸気発生器の伝熱管破損事故(伝熱管の肉厚は蒸発器で三・八ミ
リメートル、過熱器で三・五ミリメートル)においては、まずナトリウム・水反応
により圧力上昇が生じ、それが伝播していくが、その破損伝播として
は、圧力以外に腐食が考慮されていた。古川和男「原子炉工学講座・液体ナトリウ
ム技術」七一年一一月(甲イ第二七七号証)には、「蒸気発生器を単一壁にしたこ
とで発生する問題(二重管壁にして中にHe,Nakを介在させた時には生じなか
った問題)の一つとして[小規模水漏れによる材料損耗(wastage)]があ
る。極めて微小な穴から水が小漏洩すると、噴出水とナトリウムの接触面はトーチ
状になって非常に高温となる。また、その付近にはNaOH,Na2Oなどが形成
され、溶融塩腐食およびエロージョンが激しく起きる」と記載されており、蒸気発
生器に関しては、溶融塩腐食までも考慮されていたことが判明する。また、一九六
二年にはフェルミ炉の蒸気発生器においては、運転開始後二週間でナトリウム・水
反応が起こり、四五本の伝熱管に漏洩が起こったとされている。組立作業中に用い
た洗浄液(1/3NaOH,2/3NaO3)が原因で応力腐食割れを起こしたと
されており(甲イ第五三号証)、この事故の後、アメリカとイギリスが中心となっ
て機構究明がなされ、孔の大きさと隣接配管の位置などが適当であれば、数秒間で
穴があき、大漏洩・爆発に発展してしまうことが示された(甲イ第二七七号証)。
 更に蒸気発生器では、ナトリウム・水反応で水酸化ナトリウムと酸化ナトリウム
が発生することは判明しており、「反応ジェットはエロージョンとコロージョンの
相乗効果を持った浸食性のジェット流となり、隣接する伝熱管に当たるとウェステ
ージ(wastage損耗の意味)と呼ばれる管壁の損耗を引き起こす」とされて
おり(甲イ第一二三号証)、甲イ第三〇二号証には「水がナトリウム側にリークす
る。孔の表面でナトリウム側に滞留する反応生成物が伝熱管表面のコロージョンを
引き起こす」ことが記載されている。このように、特に蒸気発生器に置いては、1
/3NaOH,2/3NaOH3の存在などによって、伝熱管が溶ける溶融塩腐食
が起こることはわかっていたのである。
(三) 一方、前述したように、コンクリートの温度が高くなると、水分は大量に
放出されるので、大気中の水分とあわせると、ナトリウムが空中で燃焼した場合に
も、蒸気発生器において発生した溶融塩腐食と同様の反応に必要な、十分な水分が
あるといえる。
3 「ハンフォードの実験」は一九七五年に報告されていた
 アメリカのハンフォード工学開発研究所では一九
七五年までに、「ナトリウム・コンクリート反応、ライナの役割及びナトリウム火
災の消火」の研究の一環として、ナトリウムを受皿に漏洩させる実験の他に、垂直
のコンクリート面とナトリウムプールとの間を予め傷をつけたライナで遮い、ナト
リウムを七五〇℃又は八八○℃に加熱した場合のライナの挙動を見る実験も行われ
た。ライナにあけた直径約七・一ミリメートルの穴は四四ミリメートル×三九ミリ
メートルに拡大し、ライナ自体は傷をつけた近くの局所的な領域で激しく腐食して
いたのである(甲イ四一〇―二号証三~四頁)。この論文は平成一〇年に衆議院科
学技術委員会でもとりあげられ、動燃の職員が七五年にアメリカで報告された会議
に出席していたことが判明した。しかし、この職員は「腐食が問題となった記憶は
ない」、つまり問題意識は全くなかったと述べているようである(甲イ四一二号証
一五~一六頁)。
4 「フーバーの実験」は一九七五年に報告されていた
 ドイツのカールスルーエ原子力工学センターでは、一九七五年、フーバーが「ナ
トリウム表面火災の研究と防護システムの試験」結果を発表し、このなかで一九〇
キログラムで六六〇℃のナトリウムが受皿中で燃焼したときに、一一〇〇℃を記録
した他、受皿として使用したフェライト鋼が、酸化ナトリウム、過酸化ナトリウ
ム、鉄などの混合によって腐食磨耗し、金属製の熱電対も急速に腐食が進行したと
報告されている(甲イ四三参―二号証五頁)。
 P1証人はこの論文について「実は、電気化学会からご指摘を受けまして読んだ
ことがございます」「こういう論文があったということを、実は私ども知りません
でしたのですが、こういう論文があったということで、これはワーキンググループ
でも大変重視していろいろ調査したところでございます」「空気中にナトリウムが
漏れたときに燃焼をいかに抑制するかというのが論文の主題であったというふうに
私は理解しました。その際に実験装置等を後でよく調べてみたらということで、こ
ういうことが発見されたというのが、割と短い記述なんでございますが、それが確
かに記載されておりました」「(それが非常に重要な知見だったという認識は)今
にして思えばということでございます」と述べて、非常に重要な知見であったこと
を証言する(P1証人二七回九二~九四頁)。ところが、論文の趣旨が燃焼抑制で
あったためか、問題として意識されるに至らず、素通りされてしまったのである。
5 電気化学会=「設計審査時点でも問い合わせがあれば適切な提案・助言が可
能」
(一) ワーキンググループは、腐食に関する知見が、設置許可当時どのようなも
のであったかについて重大な関心を持ち、電気化学会に対して、「ナトリウム漏洩
事故に伴い発生した鉄・ナトリウム・酸素系での鉄鋼の腐食に関し、燃焼ナトリウ
ムと接触した鉄が酸素の存在のもとに鉄の融点以下で損傷し得るという知見が、も
んじゅの設計・審査時点で一般的に存在したか、あるいは予測可能であったか」調
査を依頼した。電気化学会は「結論から言って、損傷の発生する可能性を予測する
ことは可能であったと判断される」とし、「必要な情報開示の下に本会の専門家に
問い合わせ・調査依頼があれば、他分野の専門家(今回の例では鉄鋼精錬分野)と
の協力により、適切な提案又は助言が可能な知見を本会は有していたといえる」と
結論づけている。
(二) 同時に、電気化学会は、これらの情報は高速増殖炉の分野以外の分野の専
門家がもっていただけではなく、一九七九年の段階でイギリス原子力局は、ナトリ
ウムが燃焼して酸化ナトリウムや過酸化ナトリウムになり、水と接触してできた水
酸化ナトリウムが共存する場合には鉄がかなりの腐食速度を示すことを詳細に報告
しており、それは高速増殖炉設計の分野では入手可能であったと述べている(乙イ
四一号証参―一四~一八頁)が、これは極めて重要な指摘である。つまり、動燃、
科学技術庁及び原子力安全委員会は、国内における他分野への問い合わせをしなか
っただけではなく、同じ高速増殖炉の分野でも外国には問い合わせをしなかったこ
とが他分野の研究者から鋭く指摘されたのである。
6 「問題意識がなかった」ことが大問題である
 以上述べた事実は、高速増殖炉関係者が、閉鎖的で独善的で、必要な情報を開示
せず、又必要な情報を集めず、情報に接しても問題意識を持たなかったために重要
なポイントを見落としてきたことを示している。「問題意識がなかった」というこ
とは、もんじゅの床ライナの健全性を判断するにあたって、床ライナに漏洩落下す
るナトリウムの量の多寡にだけ心を奪われ、一五〇立方メトトルものナトリウムが
漏洩しても、そのほとんどは燃焼することもなく、床ライナ上を速やかな流れ去る
ことで安全に事故は終息する、との思い込みに、被告動燃はもちろん、原子力安全
委員会も取り
付かれていたことを意味する。
 したがって、「問題意識がなかったから知れなかった知見」が腐食だけに限られ
る保証は全く存在しない。あそこにもここにもどこにも、もんじゅには様々に危険
が潜んでいることを「高温腐食」は教えてくれたのである。
七 「基本設計」は破綻した・・・・・ナトリウム・コンクリート反応が現実に起
った
1 ナトリウム・コンクリート反応の防止は「基本設計」の内容である
 被告動燃は第一次の許可申請書でも抽象的に記載されたとおり(乙二三・一O―
参―三四)、ナトリウムと床コンクリートの接触を防止すること、従ってナトリウ
ムと床コンクリートの間に鋼製のライナを設けることは、「もんじゅ」の安全性を
確保するための根幹である(被告らの主張によれば「基本設計」の内容)としてい
る。
 この点、原子力安全委員会委員長のP1も、
 「当時も、現在も、ナトリウムとコンクリートが接触したときに何がどういうふ
うに起こるということが、完全に解明されていたわけではないと理解しておりま
す。ただ、非常に様々なことが起こるであろうことは、当然予測されたわけでござ
いまして、そういうものを未然に防いでおくにしくはないという、そういう設計方
針であったというふうに理解しております。」(P1証人・二七回・一三頁~一四
頁)
と証言する。ここでのコンクリートは、被告動燃同様に、床コンクリートを指して
いることは明らかである。
 しかし、二次冷却系のナトリウム配管が設置されている部屋は、いずれも壁や天
井もコンクリートが剥き出しのままである。したがって、床ライナによってナトリ
ウムと床コンクリートの直接接触を防止すれば足りるとする被告らの「基本設計」
は、二次系配管からのナトリウム漏洩事故が発生したとしても、壁や天井ではナト
リウムとコンクリートの直接接触は、絶対に起こらないということを前提にしてい
る。本件ナトリウム火災事故は、この「基本設計」が破綻したことを、現にナトリ
ウム・コンクリート反応が発生したことによって明らかにした。
2 ナトリウム・コンクリート反応の危険性
(一) ナトリウムは水と接触すると爆発的に反応し、水酸化ナトリウムと水素が
生成、発生する。
2Na+2H2O→2NaOH+H2
 コンクリートは水とセメントと砂利の混合物であり、水が重量にして約半分を占
める。従ってナトリウムはコンクリートと接触すると、その中に含まれている水分

反応するが、反応時にコンクリート内部で水素ガスが発生する。そのため場合によ
ってはコンクリートが破壊されたり、大量のナトリウムとコンクリートが反応すれ
ば発生した水素が空気中の酸素と化合して爆発を起こす可能性もある。
(二) 「もんじゅ」においては、二次系のナトリウム配管室や機器室の部屋の床
面に鋼製ライナが施工されており、それによってナトリウム漏洩に対しても床コン
クリートとナトリウムの接触を防止しているとされている。
 コンクリートとナトリウムの接触を防止しなければならない理由は、右のとおり
ナトリウムがコンクリートと触れると激しい反応を起こし、コンクリートを破壊す
ると共に危険な爆発しやすい水素が発生することにある。コンクリートは固く乾い
ているようでもその五〇パーセント以上は水であり、しかもコンクリートを加熱す
ると一〇〇度前後から自由水が外部に出てくるようになり、二六〇度からは結晶水
(結合水)の脱水が始まって、コンクリートからは大量の水が出てくる。特に温度
が五〇〇度を越えると水酸化カルシウムの脱水分解が始まり、コンクリートの強度
は急激に低下する。ナトリウムは空気中に出てきた水蒸気とも反応し、又、コンク
リートの内部に入って内部の水とも激しく反応する。コンクリート内で発生した水
素は逃げ場がないために、内部に大きな応力を生む。やがて限界を越え、コンクリ
ートは激しく砕け、その破片はミサイルのように四方に飛び散る。それと同時に未
燃焼のナトリウムも四方に飛び散り、新たな火の手が上がることになる。そのすさ
まじさは「一旦始まると人為的にコントロール出来なかった」とされている。又、
コンクリートの塊の上に鋼鉄製の衝立(肉厚五ミリメートル)をおいてその中でナ
トリウムをプール燃焼させた実験では鋼鉄製衝立は完全に破壊され、燃焼ナトリウ
ム温度がある一定の温度以上になると加熱しなくてもナトリウム・コンクリート反
応は自己触媒的に持続してコンクリート塊が破壊されることも判明している(甲
イ・三五〇)。
(三) ところで原子炉格納容器も配管室も、その仕切り壁はコンクリート製であ
るので、ナトリウムが配管等から漏洩した場合であっても、ナトリウムがコンクリ
ートと接触することは絶対に避けなくてはならない。そのために、動燃は、一次冷
却系では床のみならず壁も天井も鋼製ライナを張り巡らし、かつ室内をナトリウム
の燃焼を抑える窒素雰
囲気(即ち、室内の酸素量を大気中よりも低下減少させる)としたが、二次冷却系
では「配管内のナトリウムは放射能を帯びていないので、漏洩しても危険はない」
としてナトリウム燃焼の危険性を軽視し、床にライナを張るだけで壁と天井はコン
クリートのままとし、室内は燃焼を抑制する窒素雰囲気とはせず、通常の状態(空
気雰囲気)とした。
(四) 本件ナトリウム火災事故は右の二次冷却系で発生した事故である。そして
少なくとも壁との間では、絶対に避けなければならないナトリウム・コンクリート
反応が事実として発生したのである。
3 本件ナトリウム火災事故におけるナトリウム・コンクリート反応
(一) 本件ナトリウム火災事故後の初期に撮影された写真には、ナトリウム堆積
物に最も近い部所に、著しい段差と変形が生じたリッドがあり、その真上のコンク
リート壁には明らかな変色と変質の跡が見られる(動燃第一報、甲イ・二三九・九
八頁~一〇〇頁)。
 動燃第二報(甲イ・二四〇)によれば、「ナトリウム漏洩の発生したA―四四六
室のコンクリート壁にはナトリウム化合物が付着し、変色が認められる」、「当該
部のコンクリート表面については、健全部と比較し塗れ色を呈していることが確認
されている。また表面にはヘアクラックが認められており発生原因を調査中であ
る。打診検査においては、当該箇所中央部(黄色部)の一部について異音のする箇
所が確認されている。これについては浮きの発生等が考えられるため、現在原因を
解明中である」とされている。
 以上の諸現象について科学技術庁第二次報告書では次のとおり説明されている
(乙イ・九・三一頁)。
「コンクリート壁部表面に付着したナトリウム化合物除去後のコンクリートには、
深さ一mm程度まで黒灰色を呈している部分(面積約四㎡)が認められた。上記試
料のX線回析分析によるセメントや骨材中の鉱物の状態、及び熱分析による質量変
化からみて、表面から一㎝までの平均的な受熱温度は四〇〇℃以下と推定した。
 黒灰色部及びその周辺の壁表面にはひびが認められるが、ひびは健全部の表面に
も存在している。ひびの数や方向性は、両者の間で大差ないが、黒灰色部及びその
周辺のひびの幅は多少大きい傾向があった(健全部では一般的に、○・四mm以下
であるが、○・五~0・九mmになっていた)。ひびの発生した主要な原因は、コ
ンクリート打設時の乾燥収縮と考えられるが、黒灰色
部及びその周辺では、ナトリウム漏洩に伴う受熱による乾燥促進のため、ひびの幅
が拡大した可能性がある。
 また、黒灰色部の一部に表層が浮いていると思われる部分が四箇所(合計面積約
○・五m2)存在した。コンクリートサンプリング後の孔内部の目視観察で、表面
より深さ二cm程度の位置に浮き剥離面とみられるひびが認められた」。
(二) 以上のとおり、事実としてコンクリート(壁)と高温のナトリウムが接触
し、相互の反応が発生した。この点はコンクリート表面にナトリウム化合物が付着
していることからも明らかである。そしてナトリウムの接触経路については、ナト
リウム漏洩部.(温度計検出部)直下のダクトやグレトチングの著しい損傷から見
て、右漏洩部から直下にコラム状に落下したのではなく、溶断したフレキシブル管
(チューブ)に接触して周辺に撒き散らされ、その後は右漏洩部から大小さまざま
な液滴や霧状のミストとなって飛散したものとも推定される。この飛散したナトリ
ウムの一部がコンクリート壁を直撃した可能性もあるし、また一度ダクトにふりか
かったナトリウムが溶け落ちる前のダクト表面で跳ね返ってコンクリート壁に接触
した可能性もある。
 この点、燃焼実験Ⅱでは「実験開始後二分一秒に漏洩ナトリウムのグレーチング
とライナヘの最初の落下が認められた。また初期漏洩時にはリッドに落下するナト
リウム液滴や側壁コンクリートヘのナトリウムの飛散が認められた」(動燃第四
報、乙イ・九・添四-一〇)とされており、この実験結果からも本件ナトリウム火
災事故においてナトリウムとコンクリートの直接接触即ち、ナトリウム・コンクリ
ート反応が起こったことは疑いの余地がない。
(三) 以上のとおり本件ナトリウム火災事故では、絶対に起こってはならないと
されるナトリウム・コンクリート反応が少なくともコンクリート壁との間では現に
発生したのである。
 この点、動燃は「漏洩部近傍のコンクリートは、表面部分がある程度の熱的影響
を受けたが、ナトリウムとコンクリートの反応生成物は検出されず、また、構造耐
力、遮蔽性能への影響はないものと判断された」(動燃第四報、乙イ・九・四―一
四)と述べ、科学技術庁も「ナトリウム漏洩に伴い影響を受けた部分は、一部の表
層部(深さニセンチメートル程度)であり、鉄筋コンクリート壁の構造強度上、耐
久性能上および遮蔽性能上、問題となる影響はなかったと判断さ
れた」(科学技術庁第二報、乙イ・九・三〇頁)などと述べる。
 しかし被告らの右の主張は詭弁以外の何物でもない。前記のとおり、「もんじ
ゅ」においては、仮に「事故」が起こったとしてもナトリウムとコンクリートは、
床であれ、壁や天井であれ、絶対に接触することがない、というのが「基本設計」
の内容だったのである。そこでは「構造耐力」や「構造強度」あるいは「遮蔽性
能」に影響を及ぼさない限度でのナトリウムとコンクリートとの接触(反応)は許
容されるなどということは、およそ想定されていなかったのである。
4 壁にもライナを・・・スーパーフェニックスの教訓
 一九九六年三月八日に行われた「科学技術庁原子力安全局とフランス原子力施設
安全局とによる第九回原子力安全に関する情報交換会合」においては、フランス側
から、高速増殖炉「フェニックス」、「スーパーフェニックス」で発生した火災
と、それに対して採られた対策が説明された。その説明によれば、スーパーフェニ
ックスでは、一九九二年から九四年にかけて、床ライナに加えてコンクリート壁に
もライナが設げられている(甲イ・四四八)。そして以上、詳述したとおり、「も
んじゅ-の壁にはライナが存在しない。スーパーフェニックスの右の教訓(知見)
を得ていたにもかかわらず「もんじゅ」の壁はライナで防護されなかった。
5 水素爆発の危険性
(一) ナトリウム・コンクリート反応の危険性の一に水素爆発があることは前記
のとおりである。そして燃焼実験Ⅱでは、床ライナに穴があき、ナトリウムがその
穴から床のコンクリートを襲った。その結果、床ライナと床コンクリートとの間に
水素が蓄積した。実験を撮影したビデオの映像には、その水素が爆発的に燃焼する
姿が捉えられていた。
 この点について、動燃第四報は次のように述べる。
 「実験終了後のビデオ映像では、ナトリウム供給配管等の残留ナトリウムを追い
出す操作をした際、ナトリウムがライナ上に落下し、ライナの開口部にほぼ相当す
る位置で白色(周囲はオレンジ色)で半球状あるいは球状の発光が断続的に観察さ
れた。この発光が水素の燃焼によるものとすると、開口部からライナ下に侵入した
ナトリウムと床コンクリート等とが反応して局所的に水素が発生し、直ちに水素燃
焼を起こしたことが推定される。
 但し、○・一七%は水素の燃焼下限濃度四%と比較して十分低い濃度であり、水
素が蓄積して燃焼や爆発
を起こすような状況ではなかったと考えられる。」(乙イ・九・添四-二〇)。
(二) しかしこれは苦し紛れの言い逃れである。燃焼の下限濃度が四パーセント
で、実際の水素濃度が○・一七パーセントだったのだとすれば、どうやって水素が
燃焼できるのか? 右ビデオ映像から明らかなとおり、事実として水素燃焼は起こ
ったのである。
 水素は軽い気体であり、空間に一様な濃度で分布することはない。動燃がここで
引いてきた○・一七パーセントという水素濃度は、燃焼実験Ⅱの実験セル内の床か
ら六メートルの点からサンプリングされた空気中の濃度であり、水素燃焼が起こっ
た床ライナ破損部あるいは床ライナと床コンクリートに挟まれた空間の水素濃度で
はない。実際には、その部分の空間には、燃焼下限濃度を上回る水素の蓄積があっ
たからこそ、水素が白色の光をあげて燃焼したのである。もちろん水素が蓄積した
空間の容積が小さければ、燃焼によって放出されるエネルギー量も小さいものとな
る。しかし、それが床ライナを破損する程度のものであれば、水素燃焼と床ライナ
の破損は相互拡大的に進展することになり、事態は一気に破局に向かうのである。
6 まとめ
 本件ナトリウム火災事故および燃焼実験Ⅱによって、
 第一に、「もんじゅ」の設計思想および「基本設計」、従って安全審査そのもの
が崩壊したこと(被告らは、ナトリウムがコンクリート壁に降りかかるような事故
形態を全く想定していなかったし、そもそも右のとおり、ナトリウムとコンクリー
トとの接触をありえないものと考えていた)。
 第二に、現在の「もんじゅ」の施設、設備の構造からはナトリウム・コンクリー
ト反応が現実の事故として起こり得ること。
が明らかとなった。ナトリウム・コンクリート反応の重大な危険性に鑑みれば、こ
の危険性が現実化した「もんじゅ」の本件許可処分には重大かつ明白な違法があ
り、その運転は差し止められなければならない。
八 「設計基準事故」の安全解析の破綻……国と動燃は二次系のナトリウム漏洩事
故を過小評価し、本件ナトリウム火災事故を想定もしていなかった
1 はじめに……被告らの設計思想の破綻
(一) 被告らはナトリウムの漏洩・火災事故、とりわけ二次系での右事故の発生
を軽視ないし過小評価してきた。その前提にはLBBという安全設計思想があり本
件ナトリウム火災事故はこの思想の破綻をも明らかにした
(二) 「もんじゅ」につい
てLBBの思想は概略次のようなものである。
 即ち、「もんじゅ」のナトリウム配管内部の圧力は数気圧であり、軽水炉と比較
して格段に低い。また配管はステンレス鋼でできており、延性も大きいから、突然
ギロチン破断したり折れ曲がったりすることは考えにくい。従って、仮に配管の溶
接部分に亀裂が発生しそれが次第に大きくなって穴があき、ナトリウムが漏れるよ
うになってもいきなり多量に漏れることはない。大きな漏れの前には必ず微少な漏
れが先行すると考えられた。これが、LBB(Leak Before Brea
k)の思想である。動燃訴訟対策室長であったP9協証人が「もし漏洩が起こると
すれば、非常に微少な漏洩から進展するということでして、漏洩検出に力をいれま
して、それによって安全性を確保するということが基本の考え方でして、漏洩検出
によって配管の健全性を確保していくということにしています」と強調した(P9
証人・二三回・一七丁裏)のはこの考えによる。
 しかし「もんじゅ」では、配管の周囲には内側から順に、内装板、二七センチメ
ートル程度の厚さの保温材、外装板が巻かれており、配管と内装板の間には約二セ
ンチメートルの隙間がある。ナトリウム検出器はこの隙間の空気を吸引するシステ
ムとなっている。これでは、本件ナトリウム火災事故のように、温度計が外部から
外装板・保温材・内装板を貫通して配管内に差し込まれる構造を持ち、その温度計
の内部を通ってナトリウムが外部に漏れだして火災になった場合には、設置したナ
トリウム漏洩検出器は役に立たないことになる。
 しかし、よく考えて見れば、主配管からはサンプリングなどのために多くの枝管
がでており、温度測定のために温度計が差し込まれてもいる。軽水炉でも主配管か
らの漏洩よりも枝管からの漏洩の方が多く起こっているのだから、微少な漏洩の段
階で検出ができないことがある。これはLBB思想が破綻したことを示している。
 そして現実に、本件ナトリウム火災事故が突発した。
(三) この事態に対して被告らは「LBBの思想は細い管には適用されない」な
どと主張するに至った。即ち、証人P8は、
 「LBBの概念というのは、一B配管、一Bというのは、一インチ(二五・四ミ
リメートル)と考えていただければいいわけでございます。要するに一B配管より
も小さいものに対しては適用しないと言うことでございまして、おのずと今回のも
のに
ついては、私どももLBBの概念を適用するなんて気は毛頭ございませんで、この
管がいわゆるギロチン破断しても、その出てくるナトリウムの量は、事故想定をし
ている範囲内に充分収まっているので、安全上も問題ないとという判断をしたわけ
であります」などど証言する(P8証人・一七回・.四三丁表)。
 つまり一インチ以下の管(温度計の保護管も含まれる)についてはそこからナト
リウムが漏洩してもたいした漏洩ではないから、安全上無視してもいいということ
である。
 動燃や科学技術庁はこれまでLBBがあるからナトリウムが漏れても安全だとい
い続け、原告ら一般の人々はそれを信じてきた。LBBが主配管からでている径の
細い配管(今回の温度計もその一つである)には適用されないなどということは考
えてもいなかったし、その旨の説明もなかった。なぜなら動燃や科学技術庁が「L
BBの適用には限界がある」とは言ってこなかったからである。だが、関係者の内
部では、一インチ以上の管について微少な漏れを検出できればLBBは成り立つと
考えていたようである。要するにLBBは狭い範囲内だけで適用があるいい加減な
安全思想であり、P9証人が証言するような万全の安全思想ではなかったのであ
る。本件ナトリウム火災事故はこれを実証し、動燃(P9証人)の主張の欺瞞性を
明らかにした。
2 本件ナトリウム火災事故は二次系を軽視した結果である
(一) 本件ナトリウム火災事故は二次系の軽視に起因するものである。
 即ち、本件ナトリウム火災事故からニケ月後にP22「もんじゅ」所長は、
 「事故は核分裂生成物がない二次系で起きました。一次系に比べ、これまでの力
の入れ具合という点で甘かったのかな、と今にして思います。原子力技術者は核分
裂生成物をどう閉じ込めるかに全力を注ぎます。その努力を一〇〇とすると、ナト
リウムを閉じ込める努力は一〇分の一ぐらいでしょうか」(甲イ・三三四、中日新
聞、一九九六・二・一〇)と述べている。また
「もんじゅ事故は、二次主冷却系からのナトリウムの漏えいであり、放射性物質に
よる環境への影響はなく、炉心冷却能力への影響等もなかった。この意味で、原子
炉等規制法が要求する災害防止上の観点からは、もんじゅの安全性は確保されてい
た。」(原子力安全委員会第3報、乙イ・四二の二・一頁)などの被告側の見解が
示されている。しかしこれらは誤っている。
(二) 「もんじゅ」
の二次系は原子炉の通常および緊急停止後には、二次系に接続した空気冷却器とと
もに、炉心の核燃料から出る崩壊熱を除去するための補助冷却システムの一環とし
て機能するのであり、「もんじゅ」の安全確保上、重要・不可欠な部分である。
 即ち[もんじゅ]の崩壊熱除去系は二次系に依存しており、仮に複数の系統
(「もんじゅ」ではA、B、Cの三つのルートの二次系があり、本件ナトリウム火
災事故はC系統で発生した)で本件のような破断が発生すれば炉心の除熱・冷却能
力は著しく損われる。その場合炉心の冷却を維持・継続するために、ナトリウム漏
洩=火災をあえて放置しなければならない(即ち、炉心の除熱・冷却能力を確保す
る必要からナトリウムをドレンすることができず、ナトリウムの漏洩・火災を放置
し、受忍すること)事態も予想される。
 また本件ナトリウム火災事故(壁コンクリートとナトリウムの反応、および床ラ
イナと一体の機能を有すると推測されるリッドの変形)および燃焼実験Ⅱ(床ライ
ナの貫通・損傷)により、「もんじゅ」でナトリウム.コンクリート反応が起こる
ことが明らかになった以上、この反応の拡大により他の崩壊熱除去系(AおよびB
系統)の機能に支障が生じることも予測される(例えば最悪の想定として、ナトリ
ウム・コンクリート反応による水素爆発の発生と、これによるA・B・C各系統の
隔壁の破損による他系統の機能停止)。この点被告らはナトリウムの大規模漏洩
(一五〇立方メートル)による漏洩室内での燃焼とこれによる内圧の上昇しか考慮
しておらず、コンクリート(床または壁)の破損と、これによる他の崩壊熱除去系
の機能不備の可能性を全く想定していない。
 二次系ナトリウム漏洩事故は、右のとおり「もんじゅ」の高速増殖炉としての危
険性を顕現する可能性を有するものである。
(三) 本件ナトリウム火災事故の右のような本質的危険性を理解すれば、二次系
だったから『もんじゅ』の基本設計による安全性は確保された」などという弁解が
成立する余地はない。
3 大規模漏洩しか想定しなかったことの誤り
(一) 原子力安全委員会は、その第一回報告書(第一報、乙イ・一二)で、
 「当時の安全審査においては、室の床全面にナトリウムが溜まって床ライナが全
面加熱されることが最も厳しい条件と考えられており、局所的な燃焼については議
論が行われていなかった」(二六頁)
と述べ、本件ナトリウム火
災事故を全く想定していなかったことを認めている。
 また、「今回の事故及び燃焼実験Ⅱの結果から鉄、ナトリウム及び酸素が関与す
る界面反応が問題となっている。一般に酸化物の反応の研究は、熱力学的研究や状
態図研究に関しては様々な分野において古くから行われてきたものの、鉄、ナトリ
ウム及び酸素が関与する界面反応に関しては十分な知見の蓄積はなく、高速炉分野
においてナトリウム漏洩燃焼時に、燃焼ナトリウムと接触した鉄が酸素の存在のも
とに、鉄の融点以下で損傷し得るという知見と問題意識はなかった。」(二七頁)
とも述べている。
 このように安全審査で考慮されていたのは床ライナの全面一様な加熱であり、破
損の形態も床ライナが熱膨張によって壁にぶつかり、その反力によって壁が破損す
ることを回避するというモデルだった。
(二) しかし漏洩ナトリウムによる床ライナの全面加熱が本当に「最も厳しい」
条件であったか否かは疑わしい。例えば原子力安全委員会第一報(乙イ・一二)に
は動燃が「原子炉設置許可の申請以前において空気中のプール燃焼実験を三例行
い」、申請後には「空気中におけるスプレイ燃焼実験及びコラム燃焼実験」(二七
頁)を行ったとされている。そしてこれらの実験の目的は「安全審査」における
「解析モデルの検証」にあったとされている。何度も何度も実験を繰り返したと思
われるが、そこからは局所加熱についても化学反応についても何ら知見が引き出世
なかったのだろうか。また動燃第四報(乙イ・九)の添付資料に空気雰囲気でのナ
トリウム漏洩燃焼試験について」(添四―二)の簡単な紹介があるが、例えば「対
策設備実証」としながらも、漏洩高さがニメートルしか無いなど、それらの実験条
件は「もんじゅ」の設備様式と異なり、首を傾げたくなるものばかりである。これ
までに長い年月をかけて行われてきた一連の実験が、結果として現実の本件ナトリ
ウム火災事故、あるいは燃焼実験Ⅱにおいて床ライナに現れた現象を予測する上で
役に立たなかったこと、それどころか、むしろ結果的にナトリウム火災の威力を過
少に評価する根拠になってしまったことは深刻である。現在のところ動燃以外にこ
のような規模の大きいナトリウム燃焼試験を行える専門の機関は国内には存在して
いないのであり、そうであれば動燃の「技術的能力」を論ずるまでもなくこのよう
な未知・未解明の技術分野に属する事項が原子炉の技術とし
て採用されるべき
ではないからである。
(三) また、鉄とナトリウムと酸素が関与する界面反応の知見の有無については
別途論述するが、少なくともナトリウムが流れる配管内の腐食については、酸素の
混入があると複合酸化物が形成され腐食が促進されることは一九七〇年代には知見
が得られており、動燃や原子力安全委員会は当然にこれを認識していたはずであ
る。そのような知見が何故、漏洩時の問題事項として検討されなかったのか重大な
疑問がある。従ってこの点に関する原子力安全委員会の前記の「言い訳」をそのま
ま認めることはできない。
(四) いずれにせよ技術(者)レベルでの弁解や釈明はともかくとして、原子炉
設置許可処分の当否を争う訴訟のレベルでは原子力安全委員会の前記の主張が法的
に許容される余地はない。なぜなら、伊方原発最高裁判決が示したとおり、
 「許可処分当時の科学的知識によれば、当該基本設計が講じている事故防止対策
で十分安全であると判断された場合であっても、現在の通説的な科学的知識によれ
ば、右事故防止対策は不十分であり、その基本設計どおりの原子炉を設置し、将
来、これを稼働させた場合には、重大な事故が起こる可能性が高いというような時
には、当該原子炉の安全性を肯定した設置許可処分は違法であるとして、取り消す
べきものであろう。」(ジュリスト一〇一七号五七頁、高橋利文調査官の解説)
とされているからである。従って本件ナトリウム火災事故の原因解明が進み動燃お
よび原子力安全委員会も、今日、「新知見」(?)を得たとする以上、「知ってい
るべき知見」(温度計サヤ管の設計ミスについて)とか、「問題意識があれば知り
得た知見」(界面反応による腐食の機構)などの弁解が法的な主張として成り立つ
余地はない。「現在の通説的な科学的知識によれば」、本件ナトリウム火災事故は
まさに「(「もんじゅ」の)事故防止対策が不十分であり、その基本設計どおりの
原子炉を設置し、将来、これを稼働させた場合には重大な事故が起こる可能性が高
い」ことを事実をもって示したのである。
 因みに鉄とナトリウムと酸素が高温下で関与する界面反応が「新知見」ないし
「かつては知りえなかった知見」かと言えば、全くそうではない。即ち、原子力安
全委員会が今回、調査を依頼した電気化学会の報告書(乙イ・四一・参―一五以
下)によれば、
(1) 「燃焼ナトリウムと接触した鉄が酸素の存在のもと
に鉄の融点以下で損傷し得るかという知見が、『もんじゅ』の設計・審査時点で一
般的に存在したか、あるいは予測が可能であったか」との原子力安全委員会からの
質問に対して、電気化学会は、
(2) 「結論から言って、損傷の発生する可能性を予測することは可能であった
と判断される」(乙イ・四一・参―一七)、「さらに詳細な同様の報告が英国原子
力局から出されており、増殖炉の分野では入手可能な情報と考えられる」(乙イ・
四一・参―一八)と明確に回答している。
 即ち、本件ナトリウム火災事故の原因となった鉄とナトリウムと酸素の界面反応
については、既に「もんじゅ」の設計および安全審査の時点で高速増殖炉の分野で
は予測可能かつ入手可能な情報だったのである。これを伊方原発最高裁判決の論旨
に則して言えば、
 「許可処分当時の科学的知識によっても、(「もんじゅ」の)基本設計が講じて
いる事故防止対策は十分安全とは判断されなかった」・はずのものであり、この点に
関する被告らの無知(「知見がなかったこと」ないし「問題意識がなかったこ
と」)はそもそも本件許可処分がその当時において既に違法であり、「現在の通説
的な科学的知識によれば」これは重大かつ明白な違法があったことを意味する。
(五) この点に関連して原子力安全委員会委員長の証人P1は、・ 「だから、端
的な話、仮定の話じゃないですよ、現存してる許可処分というのは、今のもんじゅ
ですよ、腐食抑制対策も何も施してないもんじゅですよ。これが許可申請で上がっ
てきた場合、安全委員会として、妥当であるという結論を出せるんですか、現時点
で、現在の科学技術水準、知見で。
 これは、最新の知見に基づいて審査を行うというのが基本原則でございますか
ら、現在の知見に基づいてやれば、腐食について少なくとも何らかの説明を求める
と、どういう対策を採って、どこまで抑制できますかという説明は、当然求めるこ
とになろうと思います。
で、説明ができなければ、妥当性は欠くと、こういうことになりますね、当然。
 これは、十分な説明がなければ、いつまでたっても許可が下りないということに
なります。」(P1証言・一三三頁)
と証言し、現存の「もんじゅ」の設備と構造では原子炉設置許可処分を下すことが
できないこと、換言すれば現在の許可処分が違法・無効であることを端的に認めて
いる。
4 「もんじゅ」でも床ライナは貫通損傷する…………温度
と腐食の関係の無視
(一) 争いのない事実   本件許可処分の事故想定温度の大幅な超過
(1) 前記のとおり本件許可処分における設計基準事故としての二次系ナトリウ
ム漏洩事故(=本件ナトリウム火災事故)の想定値等は次のとおりである。
 「二次主冷却系配管室でのナトリウム漏洩の場合、床ライナの最高温度は約四六
〇度であり設計温度五三〇度以下にとどまる。
 過熱器室での漏洩の場合、床ライナの最高温度は約五二〇℃であり、設計温度五
三〇度以下にとどまる」(許可申請書・乙イ六・一〇―三
(2) これに対し科学技術庁第三次報告書(乙イ・一三)によれば、本件事故お
よび燃焼実験Ⅰ・Ⅱにおいて床ライナの温度は、それぞれ「七〇〇~七五〇度」、
「七四〇~七七〇度」、「八○〇~八五〇度、局所的に一〇〇〇度超」とされてい
る(報告書二一頁、二六頁)。そして燃焼実験Ⅱでは、床ライナに五ケ所の貫通孔
も生じた。
(3) いずれにせよ本件許可処分の床ライナ上での事故想定温度(約四六〇度)
と設計温度(五三〇度)は、「わずか」約○・七トンのナトリウム―漏洩という本
件事故によって、あっさりと破られてしまったという事実に争いはないし、燃焼実
験Ⅰ・Ⅱの結果によって、これは一層明らかとなった。
(4) ここにおいて、本件許可処分における「事故想定温度約四六〇度、設計温
度五三〇度」とは一体如何なる根拠と解析に基づくものだったのかという疑問が当
然に生ずる。本件許可処分の事故想定がナトリウム―の漏洩量を一五〇立方メート
ル、漏洩温度を五〇七度としている(即ち、定常時の大規模漏洩を想定している)
ことをふまえると、右の疑問は一層深まる。なぜなら本件は右のとおり「わずか」
○・七トンの漏洩事故であるからである。
 しかし科学技術庁第三次報告書などは右の疑問に対する回答を何ら提示していな
いのである。
(5) この点原子力安全委員会は、
 「(五三〇度という)設計温度の意味は、床ライナがこの温度まで全面一様に加
熱されても、熱膨張によって壁と干渉しないように設計するというもので、この温
度を超えれば直ちに床ライナが機能を喪失するということではない」(乙イ・四
一・一六頁)
などと弁明する。しかし右弁明は燃焼実験で提起された問題を全く理解しないもの
である。
 第一に、燃焼実験(とりわけ燃焼実験Ⅱ)で明らかとなった問題点は、「小規
模」のナトリウム―漏洩による床ライナでの
高温界面反応と床ライナの健全性の有無である。そしてこの形態の事故において床
ライナの健全性を確保できないことを本件ナトリウム―火災事故および燃焼実験Ⅱ
は明らかにしたのである。従って、被告らが「全面一様加熱を前提とした五三〇度
の設計温度の妥当性」を再三強調しても、それは自らの事故想定の誤りを「再三強
調」しているにすぎず、何ら燃焼実験の結果を教訓化しようとするものではない。
 問題は、本件ナトリウム―火災事故および燃焼実験Ⅱで現に床ライナが損傷した
という事実について、「もんじゅ」の「設計温度五三〇度」という数値は如何なる
意味ないし安全性の保証となるのかである。
 第二に、本件ナトリウム―火災事故において被告の言う床ライナの健全性が確保
されたということもできない。
 即ち、堆積物除去後の床ライナとリッドの状態は、動燃第二報(甲イ・二四〇)
によると「床ライナは、漏洩部直下近傍をほぼ中心に複雑な凸凹があり、凹み側は
最大一八ミリメートル程度、凸側が最大三四ミリメートル程度であった。堆積物除
去後のライナ面には白色のナトリウム―化合物が残存し、一部濃い茶色及び黒色部
位が存在していた。」、「C/V壁側のリッドは漏洩部直下に近い部分を中心に最
大高さ±一〇センチメートル、長さ二五〇センチメートルに渡って山形状に変形し
ていた。変形は、リッドの先端が跳ね上がった状態になっており、特に中央部はめ
くれ上がったようになっていた。また、リッドの重ね合わせの継ぎ目が離れ四セン
チメートル程度の段差ができていた。(右側が上になっていた。)リッドの変形が
大きい部位のC/V壁に、変色跡が認められた。」(一三頁)と記されている。
 前記の「リッド」とは床ライナの立上げ部とコンクリート壁との間の隙間を保護
するためのものである。本件ナトリウム―火災事故ではこのリッドが大きく変形し
たことを被告動燃は認めているのであり、この変形の状況如何によっては床ライナ
の機能が失われることは明らかである(リッドの損傷を通じてナトリウム―が右の
隙間から侵入してコンクリートと反応を起こすことがありうる)。従って本件ナト
リウム―火災事故にもかかわらず床ライナの健全性は確保されたとの被告らの主張
は誤っている。
 第三に、原子力安全委員会の主張は「設計温度」と「破損温度」を意図的に混同
させている。「(設計温度=五三〇度)を超えれば直ちに床ライナが機能を喪
失するということではない」(乙イ・四一・一六頁)との原子力安全委員会の主張
は、従来の「床ライナの全面加熱が最も厳しい条件」との主張をかなぐり捨てた言
い逃れの主張である「局所的な変形解析および実験の結果から、床ライナの温度が
九〇〇度~九五〇度までは機械的破損は生じないことが示された」(原子力安全委
員会第二報、乙イ・四一・一七頁)との主張と連動するものかと理解される。
 この点について原子力安全委員会委員長のP1は以下のとおり証言する。
 「例えば、ある材料である構造のものを作ると、これが何度までもつだろうかと
いうのがあるわけでございます。で、そういう温度になってしまっては困りますか
ら、設計温度というのを設定いたしまして、この温度以上にはしないようにしまし
ょうと。で、それを確実に担保するためには、運転中にこういう条件にはしないよ
うにしますと、これが制限値でございます。」(P1証人・二七回・三一頁~三二
頁)
 右証言によれば、「これが何度までもつだろうか」という温度が「破損温度」で
あり、それ以下の温度領域で「設計温度」と「制限値」が設定されていることが理
解される。また本件の床ライナの五三〇度という設計温度は、
 「(動燃が)そういう温度(=五三〇度)で設計するということを申し出たとい
うことでございます。で、最高温度がそれを超えてしまっては、設計温度の意味と
いうものが多少失われてしまいますから、設計温度で設計して機能が維持できると
いうことを示すために、その最高温度が(申請書に)記載された」
 「(五三〇度という設計温度は動燃が)約束したというふうに受け止めます。そ
ういうものを作るというふうに(動燃が)約束してある、約束されたというふうに
私どもは普通は理解します」(以上、P1証人・二七回・三〇頁)とされている。
 要するに、「もんじゅ」の床ライナの五三〇度という設計温度は、床ライナの破
損温度とは別に、床ライナの健全性を余裕をもって確保するために動燃が約束し、
原子力安全委員会がこれを了承した設計基準に関わる温度値である。即ち、右「設
計温度」は動燃の「約束」と原子力安全委員会の承認によって設計基準事故の指針
となる温度値(=審査基準としての温度値)であって、これを超過する事故(=本
件ナトリウム―火災事故)が発生すれば、設計基準事故の想定は破れ、ひいては審
査基準の不合理性と「基本設計」の誤りが明
らかとなるものである。被告らはこれを自覚するが故に、あえて「破損温度」と
「設計温度」を混同させ、「設計温度」をはるかに超過した本件ナトリウム―火災
事故についてその免責事由として「破損温度」(九〇〇度~九五〇度)を持ち出し
たものであり、このような被告らの主張は理論上も誤っており(「破損温度」と
「設計温度」の意図的な混同)、訴訟上も不公正なものと言わざるをえない。
(二) 燃焼実験Ⅱにおける床ライナの損傷・貫通について
(1) 被告らは燃焼実験Ⅱで床ライナが損傷(溶融)・貫通するという予想外の
結果が生じたことに驚き、その弁明に必死となっている。例えば科学技術庁第三次
報告書(乙イ・一三)は、
 「燃焼実験Ⅱについては、主配管等の配置、ナトリウム―漏えい量、漏えい時間
はもんじゅ事故と合わせたものの、もんじゅの配管室と比較すると、実験セルの容
積は約一三分の一であり、もんじゅの外部しゃへい壁と漏えい箇所の位置関係は模
擬したが、他の三つの壁はもんじゅと異なり漏えい部に近い位置になった。また、
実験セル内部の観察のために設置したカメラの冷却やレンズヘのエアロゾルの付着
を防止するためカメラ管台から実験セル内に空気を供給する構造としたこと、床ラ
イナ上に温度計の支持構造物や堆積物採取用の鋼製枠等が設置されていた等の条件
がもんじゅ事故の場合と相違していた」(報告書二四~二五頁)
などと弁解する。またP8証人は、
 「今度の実験(注.燃焼実験Ⅱ)の場合には非常に体系として小さいわけですか
ら、極めて近いところからどんどん空気を送って、言わば燃えろ、燃えろというよ
うな実験をやった。そういう意味で私は(燃焼実験Ⅱは)再現実験にはなっていな
いと思います」(P8証人・第一九回・一一丁裏)と証言する。
(2) 前記のとおり原告らは燃焼実験が、正確に本件事故の再現実験であるとは
考えていないし、その旨の主張をしたこともない。
 むしろ、事故発生の当事者責任を問われる被告らの方が、燃焼実験を再現実験と
印象づけようとしていたのである。ところが、意図・目的に反する結果(=床ライ
ナの損傷・貫通の発生)が出たため、俄に被告らは「燃焼実験は再現実験ではな
い」と陳弁しているのであり、その態度は滑稽と言うべきである。
(3) 問題は次の点にある。
 即ち、燃焼実験が本件事故の「再現実験」と言えるかどうかは別として、燃焼実
験の意図と目的が本件事
故状況を模擬し、その結果を追試しようとしたものであることは疑いがない。さも
なくば本件ナトリウム―火災事故直後に、あわてて燃焼「実験」を実施する意味は
ない。
 そして、右のような燃焼実験において、事実、床ライナが損傷・貫通するという
事態が生じた。この事態は本件許可処分が客観的に誤っていたことを明らかにする
ものである。
 従って右事態を直視すれば、第一次的に安全審査を担当する科学技術庁として
は、事故想定とその結果および安全審査基準の見直しを行ない、とりあえず直ちに
もんじゅの運転停止を命じることが必要とされたのである。
 しかるに科学技術庁は、前記のとおり本件事故と燃焼実験の条件の差異を奇貨と
して、あくまで本件許可処分の誤りを認めようとはしないのである。
(三) 燃焼実験の温度測定は信用できない
(1) 科学技術庁第三次報告書(乙イ・一三)によれば、燃焼実験ⅠおよびⅡで
換気ダクト、グレーチング、床ライナの温度はそれぞれ「六○○度~七〇〇度」、
「一〇〇〇度程度」、「七四〇~七七〇度(燃焼実験Ⅰ)八○〇~八五〇度、局所
的に一〇〇〇度超(燃焼実験Ⅱ)」とされている(乙イ・一三・二六頁)。
 前記(一)で述べたとおり、これらの温度はそれ自体本件許可処分における設計
温度を大幅に超過するものである。しかし本当に燃焼実験において温度が右の範囲
に止まっていたか否かについては重大な疑問がある(因みに、本件ナトリウム―火
災事故では床ライナ表面の温度を含めて室内温度の実測値すら存在しない)。
(2) 即ち燃焼実験Ⅱでは、合計四三本の温度計が配置されているが、そのうち
四一本はクロメル・アルメル型で測定範囲は〇~一〇〇〇度である。一本は白金・
ロジウム型で測定範囲は〇~一六〇〇度、最後の一本はタングステン・レニウム型
で測定範囲は四〇〇~二三〇〇度となっている(福井県原子力環境安全管理協議会
への資料)。鉄の融点は約一五〇〇度である。そして、鉄製のダクトやグレーチン
グが溶けてしまった原因を知ろうとしているのであるから、少なくともダクトやグ
レーチングに配置する温度計の場合、最高でも一〇〇〇度までしか計れない温度計
では意味がない。それにもかかわらず、グレーチングや漏えい直下のライナにもク
ロメル・アルメル型の温度計が設置されていたため、それらはいずれも実験途中で
破損してしまっている(動燃第五報、乙イ・一〇・Ⅱ―二―三八には
「熱電対の破損」との記載がある。また科学技術庁第三報、乙イ・一三・参-二二
では「燃焼実験Ⅱ、グレーチング上面温度」の約三〇分経過した時点で温度が二〇
〇〇度を超え、測定値が得られていない)。また、床ライナには、白金・ロジウム
型の温度計も設置されていたが、何故かそれは漏洩直下から七五〇ミリメートル離
れた場所に設置されていた。さらに、グレーチングには、二三〇〇度まで計測でき
るはずであったタングステン・レニウム型の温度計も設置されていたが、その温度
計は「実験初期の段階で計測不能になった」とのことで、そのデータは公表されて
いない。
(3) 要するに本件ナトリウム―火災事故および燃焼実験ⅠおよびⅡにおいて高
温領域の温度値は正確に測定も推定もされていない。従って本件ナトリウム―火災
事故の原因解明の基礎となる各部所の温度すら不明というのが現実なのである。
(四) 床ライナの損傷・貫通は「もんじゅ」でも起こりうる
(1) 科学技術庁第三次報告書は、燃焼実験Ⅱにおいて床ライナに穴があいてし
まった原因は、燃焼実験Ⅱの実験セル(容積約一七〇立方メートル)が、実際の
「もんじゅ」事故が起こった主配管室(容積約二三〇〇立方メートル)に比べて容
積が狭く、ナトリウム―燃焼による温度上昇が激しかった、そのため、壁のコンク
リートから多量の水分が放出され、それが水酸化ナトリウム―を生んで、床ライナ
を損傷させたという。しかし、「もんじゅ」の二次系ナトリウム―配管が設置され
ているのは主配管室だけでない。蒸発器室(容積約四七〇立方メートル)、過熱器
室をふくめて多くの部屋があり、それらの部屋は小さなコンパートメントに分けら
れていて、容積が狭い。そのような場所で、ナトリウム―漏えいが発生すれば、本
件事故に比べて室温が高くなることは避けられないし、必然的に壁のコンクリート
からの水分放出量も多くなってしまう。いずれにせよ室温と湿度(本件ナトリウム
―火災事故は一二月という低温環境下の条件で発生したため、低温と低湿度という
事故の拡大を防止する自然条件の下支えがあった)の条件によっては、本件ナトリ
ウム―火災事故以上の温度上昇とコンクリートからの水分放出も十分予想される
(甲イ・三三三)。
 従って科学技術庁第三次報告書の主張に従うかぎり、「もんじゅ」でも床ライナ
に穴があくという結論は必然である。
(2) 要するに本件事故そして燃焼実験を
受けてもっとも大切なことは、「もんじゅ」の床ライナでも穴があくのか、あかな
いのかということである。すでにテレビでも報道されているように、動燃ではその
点を現在解析中で、「もんじゅ」のP22所長は穴があきそうなら穴があかないよ
うな床ライナにすればいいと言っている(日本テレビ、一九九七・二・二二)が、
これは動燃自身、床ライナの破損が「もんじゅ」起こりうることを認めたものであ
る。
 そして原子力安全委員会委員長のP1も以下のとおり証言して「もんじゅ」で床
ライナが貫通する可能性を認めるに至ったのである。「端的にお伺いしますけれど
も、このもんじゅで同様の事態が起こってライナに穴が開くという可能性はあった
んでしょうか。
 この燃焼実験Ⅱが示したのは、条件によってはああいうことも起こるということ
を明確にしたわけでございます。ただ、現在のところ、どういう条件がどのような
組合せになったときに腐食がどれだけ進むのかというところまでは、まだ調べがつ
いてございません。しかしながら、燃焼実験Ⅱの状況を見ますと、実際のもんじゅ
のプラントで、そういう燃焼実験Ⅱとおなじような条件が現れる可能性は、私はそ
れほど高いものではないと思っておりまずけれども、これは先ほど申しましたよう
に、どういう条件がどういう組合せでそういうことになるかということがきちんと
解明されておりませんから、確かなことは申しあげられません。
 可能性としてはあるというふうにお伺いしてよろしいですか。
 可能性としては、少なくとも否定はできません。」
 (P1証人・二七回・七三~七四頁)
その「可能性」は、「それほど高いものではない」どころか、被告動燃は計算によ
って、現実に起こりうることを明らかにしている(第六章、五、7項参照)。
5 まとめ
(一) 燃焼実験Ⅱにおいては床ライナに穴があいたし、本件ナトリウム―火災事
故においても床ライナに減肉が生じた。これらの現象は、いずれも起こるまでは予
測されていなかった。しかし、実際に稼働する原子力施設では、起きてしまっては
じめてわかるということでは決定的に困るのである。そのためにこそ、安全審査を
行い、安全性に関する見落としがないように配慮していると国は言い続けてきた。
今回の事故とその後の一連の実験は、そうした国の主張が建前でしがなかったこと
を示した。
(二) 前記のとおり安全審査においては、一五〇トンものナトリウム
―が漏えいして、床ライナの温度は五三〇度にも達しないと評価されていたのであ
った。その評価に使われた仮定条件は、事故が起きた現在から見れば、まことに馬
鹿げたものでしかない。さらに、度重なるナトリウム―燃焼実験などを経ても、ナ
トリウム―が鉄と反応するという知見はまったく得られず、安全審査を含め事故が
起きてしまうまでは、まったく考慮すらされなかったのであった。しかし、実際に
は、わずか一トンに満たないナトリウム―が漏洩しただけで、科学技術庁第三次報
告書でも、床ライナ温度は、七〇〇~七五〇度(二一頁)になったと言われ、「予
期せぬ」化学反応によって、腐食、減肉していたのである。
 そして本件ナトリウム―火災事故および燃焼実験Ⅱを受けて、今日では原子力安
全委員会もナトリウム―漏洩による床ライナの貫通という事態の発生を否定するこ
とができなくなっている。
(三) 本件ナトリウム―火災事故が安全審査の段階で全く想定されなかったこと
について原子力安全委員会は次のように述べており(乙イ・一二)、自己の無知に
よる責任を、少なくとも否定はしないようである。
(1) 当時の安全審査においては、室の床全面にナトリウム―が溜まって床ライ
ナが全面加熱されることが最も厳しい条件と考えられており、局所的な燃焼につい
ては議論が行われていなかった。
(2) 燃焼実験Ⅱは、鉄が燃焼ナトリウム―によって損傷する場合があること、
ナトリウム―の燃焼状態に酸素の供給状況が強く影響することを示唆する結果とな
った。したがって、今回の事故の状況と燃焼実験Ⅱの状況との間にどれだけの隔た
りがあるかを知る必要がある。
(3) 今回の事故及び燃焼実験Ⅱの結果から鉄、ナトリウム―及び酸素が関与す
る界面反応が問題となっている。一般に酸化物の反応の研究は、熱力学的研究や状
態図研究に関しては様々な分野において古くから行われてきたものの、鉄、ナトリ
ウム―及び酸素が関与する界面反応に関しては十分な知見の蓄積はなく、高速炉分
野においてナトリウム―漏えい燃焼時に、燃焼ナトリウム―と接触した鉄が酸素の
存在のもとに、鉄の融点以下で損傷し得るという知見と問題意識はなかった。
(4) 原子力安全委員会が行った安全審査(ダブルチェック)では、二次系ナト
リウム―の漏えいが建屋等に及ぼす影響について、大漏えいの場合のナトリウム―
燃焼による内圧上昇がもっとも厳しい事象になると
して評価を行っている。一方、今回の事故のように空調ダクトを閉止しない局所的
なナトリウム―燃焼では、床ライナ温度が局所的に設計温度を上回る場合があり得
ることが示された。安全審査においては、局所的なナトリウム―燃焼について議論
が行われていなかった(原子力安全委員会第一報・乙イ・一二・三二頁)。
(四) しかし右の原子力安全委員会報告を額面どおり理解し、同委員会の免責の
弁明をそのまま許諾することはできない。なぜなら被告動燃の報告書(乙イ・一
〇)でも引用されているとおり(第五報・Ⅱ―二―二三)、ナトリウム―(水酸化
ナトリウム―、酸化ナトリウム―、過酸化ナトリウム―)と鉄との作用における減
肉速度評価線の温度依存性については、既に一九七〇年代に一応の知見が得られて
おり、仮に被告国がこれを知らずに本件安全審査を行なったのであればその無知は
重大かつ明白な違法事由である。また万一、右知見を得ていたにもかかわらず、こ
れを本件安全審査に反映しなかったのであれば(例えば、二次系の安全性の軽視あ
るいは経済的理由による右知見の無視)、被告国には故意の違法事由が生ずるもの
と言わざるをえない。
(五) 以上のとおり、本件許可申請で想定していた事故は本件ナトリウム―火災
事故と全く異なるし、原子力安全委員会は、
 「二次系ナトリウム―の漏洩防止および漏洩後の対策の基本設計ないし基本的設
計方針については安全審査の対象であり、従って原子力安全委員会の責務の範囲内
にある」(乙イ・一二・二四頁)
ことを認めている。そして本件ナトリウム―火災事故が右の意味で安全審査の対象
となる事故(=設計基準事故)であることに争いはなく、その事故の想定に誤りが
あり、かつ現に発生した本件ナトリウム―火災事故が安全審査を超える内容を持っ
ていたこと(換言すれば、本件の安全審査に包絡されず、想定もされなかったこ
と)からすれば、本件許可処分には重大かつ明白な違法があり、無効であるから、
「もんじゅ」の運転は差止められなければならない。
九 「設計基準事故」の安全解析は、想定していた大漏洩事故でも破綻した
1 フランスの高速増殖炉実証炉スーパーフェニックスの教訓
(一) フランスの産業貿易省・原子力施設安全局(以下、DSINという)は、
一九九二年六月一六日付けでスーパーフェニックスの安全性に関する審査結果につ
いての報告書を公表した(当時のDSINの局長で
あるミシェル・ラヴェリーの名前をとって、通称「ラヴェリー報告」と言われてい
る。甲イ・一八二の一および二)。そしてこのラヴェリー報告は同年八月二一日頃
までに、被告動燃の「もんじゅ建設所技術開発部」ほかによって日本語に訳出され
(甲イ・一八二の一・表紙参照)、被告らはこれを入手し、検討していた。
(二) ラヴェリー報告は、一九八六年一二月に定格運転を開始したスーパーフェ
ニックスが、その後、燃料貯蔵タンクの漏洩、補助系統でのナトリウム―汚染など
の一連の事故を起こしたこと、そしてアルメリアの太陽熱発電所がナトリウム―漏
洩事故によって破壊したことをふまえ、スーパーフェニックスの安全性の再審査を
行なった結果をまとめたものである。
 ラヴェリー報告の内容の内、本件ナトリウム―火災事故との関連で特に注目すべ
き点は、二次系の配管が破損しナトリウム―が漏洩した場合、当初の事故解析と異
なる重大な事態が発生すること、つまり事故解析が安易(Ⅱ非保守的)なものであ
ることが判明したことである(甲イ・一八二・一七頁以下)。
 即ち、
(1) スーパーフェニックスでは、「もんじゅ」と違って、二次系ナトリウム―
配管が完全破断する事故を「設計基準事故」として想定している。そして、「(ス
ーパーフェニックスの)安全報告書では、「深層防護」の項目に、二次冷却系配管
の完全破断の想定が検討され、その結果は安全上容認できるとされている。
 事業者の見直しの結果、原子炉建物内に配置される二次系部分で、採用された計
算の仮定を考慮すると、この厳格な要求を満たすことができなくなっていたことが
明らかにされた。
 実際、このような燃焼により放出されるエネルギーは、ナトリウム―と周囲の空
気の混合条件が破断時に高められると著しく増加する。ここ数年間に実施された、
特に一九八六年にアルメリア太陽熱発電所で発生したトラブルに関する試験の結
果、こうした燃焼が、当初の安全報告で考慮されたような、プール燃焼(混合度が
低くエネルギー放出が少ない)と呼ばれる燃焼よりもむしろ、「噴霧状」燃焼
(「密に」混合し、強いエネルギーを放出する)と呼ばれる燃焼に、近いことが明
らかにされた。
 こうした仮定に基づいて事業者が行なった計算では、二次冷却系配管の完全破断
の影響が、安全上容認できるものであることを立証することはできなかった。原子
炉建物の破損の危険性を、完全に排除するこ
とができなかったためである。」(甲イ・一八二・一七頁)とされ、二次系配管の
完全破断が原子炉の建物の破損をもたらすことがありうることが判明した。
(2) また、「もんじゅ」で想定されている大漏洩事故に相当する「より小規模
な破損(一秒に数十キログラム)に関しては、ナトリウム―の火災が各種の二次系
配管を囲むコンクリート壁に及ぼす長期的作用に対し、追加の予防策を講じなけれ
ばならない。実際、現在の知識では、高温下で水素放出が起こる可能性を否定する
ことはできない。あらゆる爆発の危険を排除できるように、このような放出の大き
さを制限する必要がある。
 この爆発の危険性を減じるための対策(断熱材によるコンクリート壁の保護、ナ
トリウム―火災の影響の制限のために講じられた措置の改善など)(が必要であ
り、)これが開始されている。」(甲イ・一八二・一八頁)とし、「これらの措置
が実際に講じられるまでの間、原子炉の出力はその定格出力の三〇%に制限する必
要がある」(甲イ・一八二・一八頁)としている。
(3) 結局、「(今回の)再検討により、原子炉建物内二次系ループにおけるナ
トリウム―大量漏洩への対応の困難さが明らかになった。
 一九八五年に発表された安全報告書には、「こうした火災は、二次系ループ配管
の最大流量時における瞬時完全両端破断という極度に保守的な仮定を考慮して解析
された」と記されていた。
 しかし、実際にはこの解析は根拠のない仮定の下に行われたものである。合理的
に包絡された仮定をもって検討すると、二次系ギャラリーは耐えられず、原子炉建
物の耐性も現時点では、保証されていないことが示されている。」(甲イ・一八
二・五頁)
との結論が下されている。
2 国と動燃はラヴェリー報告の警鐘を無視した。
 被告の動燃と国は、ラヴェリー報告の内容を一体どのように検討したのだろう。
科学技術庁原子力安全局に相当したフランスの原子力施設安全局は、解析の破綻に
遭遇しながらも、「もんじゅ」では想定を避けている二次系配管の完全破断という
厳しい想定を取り下げようとはしていなかった。また、「もんじゅ」で想定してい
る大漏洩程度のより小規模な漏洩事故についても安全解析の誤りを認め、緊急事故
対策を指示していた。その報告を本件ナトリウム―火災事故の三年以上も前に被告
動燃は翻訳までしておきながら、甘い事故想定と破綻した安全解析のまま、ひたす
らに本格
運転を目指していたのである。本件事故がある程度ですんだことは幸運であったと
言える。
3 まとめ
 右に述べたことから明らかなように、「もんじゅ」の二次冷却系配管からのナト
リウム―漏洩事故について、「最も厳しい条件」であるとして被告動燃が設定し、
被告国が妥当と判断した「設計基準事故」は、その想定はスーパーフェニックスよ
りはるかに甘く、その安全解析も信用の置けないものである。したがって、そうし
た「設計基準事故」によって、「もんじゅ」の二次冷却系の基本設計の妥当性を確
認できたと判断した本件安全審査と、それに基づいてなされた本件許可処分には、
重大かつ明白な違法があり、無効である。
一〇 本件ナトリウム―火災事故における被告動燃の責任
1 これまで詳述してきた本件ナトリウム―火災事故における被告動燃の責任につ
いて、原子力安全委員会は以下のとおり指摘している。この指摘は原子力安全委員
会自身の責任を等閑に付す無責任さを除けば、一応正当であり、原告はこれを動燃
の責任原因として援用する。即ち、本件ナトリウム―火災事故について原子力安全
委員会は動燃の責任を、
 「・「発生」の段階においては、温度計の設計ミス、
 ・「拡大」の段階においては、漏えい規模の不適切な判断、
 ・「対外対応」の段階においては、情報の不適切な取扱い
という三つの重要な要因が含まれていると考える。
 これらの各段階における重要な要因に関連して、以下の関連する要因及び背景を
摘出した。
 「温度計の設計ミス」については、このような設計を見過ごした要因として「品
質保証活動の不全」がある。
 「漏えい規模の不適切な判断」については、そのような判断をもたらした直接的
な要因として「不適切な異常時運転手順書」があり、これらが「事故時の不適切な
対応」を引き起こした。この背景には、「教育・訓練の問題」、「運転体制、技術
支援体制の問題」、さらには「ナトリウム―漏えい検知システムの不備」がある。
 さらに、これらの技術的な要因の背景には、「技術の蓄積と継承の問題」、「新
しい技術への挑戦という意識の問題」がある。
 「情報の不適切な取扱い」については、関連する要因として「事故時の情報の重
要性に対する認識の欠如」がある。この「情報の不適正な取扱い」は現場記録ビデ
オの編集等に端的に現れており、これが大きな社会的影響を引き起こした。」(乙
イ・一二・九頁)
と指摘している(
但し、右見解は原子力安全委員会自身の責任を無視し、動燃のみに責任を転嫁する
甚だ一方的で不公正なものではある)。
2 本件ナトリウム―火災事故は設計基準事故に該当するものとして、被告らが依
拠する「基本設計」論の当否に関わるものである。その設計基準事故=基本設計の
内容について、審査権者である原子力安全委員会から右のような本質的な批判を受
けた以上、動燃が「もんじゅ」の設計、建設、運転をすることができないことは余
りにも明らかである。常識的にも、事故発生を防止できず、発生した事故の拡大を
防止できず、さらにはその事故についての事後対応もできない事業者=動燃が、当
該事業の遂行を認められる余地はない。
3 再三述べたとおり、被告らの見解によれば、本件ナトリウム―火災事故は設計
基準事故に該当するもので、「基本設計」の内容となるものである。動燃は右「基
本設計」の内容を実現も履行もできなかったのだから動燃を事業主体とする「もん
じゅ」の運転は差止められなければならない。
一一 結論
 本件ナトリウム―火災事故は「もんじゅ」の危険性と「基本設計」の誤りを現実
に明らかにした
1 最悪の事態が起こりうる
(一) 被告らは本件ナトリウム―火災事故の発生にもかかわらず、①炉心冷却能
力は維持され、②周辺環境への放射能の放出もなかったから、「もんじゅ」の安全
性=「基本設計」の妥当性は確保されたなどと主張する。しかし右は暴論である。
被告らの主張によれば、原告は生命と引換えにしか勝訴判決を得ることができなく
なるが、そのような法理が成り立つはずがない。本件ナトリウム―火災事故で最悪
の事態が回避されたのは自然条件などによる僥倖に等しかったのである。
 本件ナトリウム―火災事故に起因する最悪の事態として証人P16は以下のとお
り証言する。
 「もんじゅでもしライナに穴が開いたら、最悪の事故として、どのような状況が
考えられるかということを御説明いただけますか。
 ある事故が起こったとします。かなりシビアな事故が起こったときは、幸い外へ
放射能が出なかったけれども、これがもうちょっと条件が変わって、進行していた
ら、最悪事態に至らなかったかどうか、こういう計算をやることは、もう今では常
識になっています。今から十七、八年前の一九七九年に、アメリカのスリーマイル
島というところで、初めて世界で最大の事故が起こりましたが、そのときも放射能
の漏れば少
なくて済んだわけですけれども、もしも事故がもう少し進展していたら、どんなこ
とになったかということをいろんな研究者が推定しています。そういうことで、そ
の事故の重大性というのは客観的に評価できる、そういうことは動燃なり国は当然
おやりになるべきです。それだけのお金も人材も用意しているんですから。そんな
ことは全然しないで、いいや、大したことなかった、放射能がでなかったら心配な
いと、そんなあほなことやっている。しょうがないですから、弁護士さんのほうか
ら、もし穴が開いたらどないになるんやと言われたので、さっきのちょうどテレビ
に出てきましたあの過熱器室で穴が開いたら、コンクリートとナトリウム―が直接
接触致しますから、そこで水素が出て爆発を起こすかもしれません。あるいは、コ
ンクリートが、最初に申しましたように、もろもろになりますから、蒸気発生器だ
とか過熱器というのは重いものですから、そんなコンクリートの上に置いたら、下
がぶよぶよになったら、どさっと落ちます。どさっと落ちなくても、かしいだだけ
でも、それに付いている配管やらが破損する、そうすると、過熱器や蒸気発生器と
いうのは、中に水が一杯入っているわけですから、それとナトリウム―が接触する
と、大爆発が起こります。そうすると、もう原子炉室にまでその影響が及ぶのは必
至ですから、あとは本当に最悪事態寸前になると思います。そういうことがどのく
らいの確率で起こったかということについては、データをもっておられる動燃や国
がちゃんとおやりになるべきであって、私たちは、そういう意味では、あれよりは
もっと厳しい、先程のテレビでも、バルブが写っていましたけど、あれはドレーン
をするバルブですから、あの上に落ちてあれが焼けただれたりしたらバルブが使え
なくなりますから、ドレーンができなくなる、そうすると、もういつまでたっても
配管の中でナトリウム―がぐるぐる回っているという悲劇的な事態にある、それは
もう本当にあの部屋で十分起こり得たわけですから、この事故を軽く見て、安全と
安心は別やと、そんなのんきなことを言っている事故ではなかったと、私は思いま
す。」 (P16証人・四五回・一一四頁~一一六頁)
(二) 右のとおり本件ナトリウム―火災事故は、「もんじゅ」の施設全体の破損
をもたらす危険性があった。
 この危険性は、
 (1) 本件許可処分との関係では重大かつ明白な違法事由で
あり、
 (2) 事業者=動燃の関係では、運転の続行を不可とする違法事由である、こ
とが明白である。
2 何が問題なのか?
 本件ナトリウム―火災事故で問題とされるべきは以下の諸点である。
(一) 第一に、本件ナトリウム―火災事故の原因は温度計さや管の設計ミスにあ
ると断定されているが、このミスはメーカーも事業者たる被告動燃も、そして安全
審査を担当した被告国も本件ナトリウム―火災事故まで発見することができなかっ
たのである。この事実によれば、もんじゅの安全性について被告国は被告動燃に依
存し、被告動燃はメーカーに任せきりにするという無責任ないし責任転嫁の構造が
明らかになるのである。
 第二に、右第一の無責任構造が温度計さや管の設計(ミス)のみに止まり、他の
設計や施工は右三者が責任をもって対処していたという保証がどこにあるのか。換
言すれば他の構造や部材にも無責任構造に基づく設計ミスが存在し、これらに起因
する事故が発生する可能性を如何なる根拠によって被告らは否定できるか。被告ら
の一連の報告書の中のどこにも右の根拠は全く提示されていない。
 第三に、温度計さや管の設計ミスによる本件事故の発生は、もんじゅの危険性の
端緒にすぎず本件ナトリウム―火災事故とその原因はもんじゅの安全性のシステム
全体が脆弱なものであることを明らかにしたものと理解されるべきである。従って
本件ナトリウム―火災事故を温度計さや管の破損によるナトリウム―漏洩事故に限
定し、その範囲内で本件事故発生を合理化しようとすることは根本的に誤ってい
る。このような態度は第二のそして更に重大な事故をもたらすことになりかねない
のである。
 要するに高速増殖炉の開発技術には未だ知見を得られない、あるいは実証されて
いない諸問題が存在すること(例えば、本件事故についても被告らが二次系の安全
性を一次系よりも軽視していたことがうかがわれ、これも事故原因の一つと考えな
ければならない)を被告らは自覚し、高速増殖炉の危険性について謙虚になるべき
である。
(二) いずれにせよ本件ナトリウム―火災事故は、単なる二次系ナトリウム―の
「小規模」漏洩による特異現象などと理解されてはならず、高速増殖炉の開発技術
と「もんじゅ」のシステム全体を真蟄に再考する契機としなければならないのであ
る。しかし、被告らには、このような問題意識と誠実さを見出すことはできない。
 即ち本件ナトリウム
―火災事故は、その重大性と明白性から、
1 被告動燃には事業者としての技術的能力と災害を防止する能力が欠けているこ
と、
2 被告国には安全審査を担当する者としての資質ないし技術的知見・能力および
責任感が欠けていること、
を明らかにしたのであり、現在直ちに被告らがなすべき唯一の作業は、一旦もんじ
ゅを完全に運転停止し、廃炉の方法を研究することである。この作業を行なわず、
漫然と「安全総点検」なるものを実施し、もんじゅの運転再開の機会をうかがうこ
となどは許されない。況んや、本件ナトリウム―火災事故について「一般社会のい
う『安心』と技術的観点での『安全』との間に大きな隔たりがある」(原子力安全
委員会第一報、乙イ・一二・八頁)などの詭弁を用いて、原告ら住民を愚弄するこ
とは絶対に許されない。「大きな隔たり」は被告らの技術的能力ないし安全審査の
能力および安全性に対する認識と高速増殖炉との間にこそ厳然と存在することを被
告らは知るべきである。
第二 隠されていたイギリスPFR蒸気発生器事故と動燃高温ラプチャ実験におけ
る伝熱管大量破断
 ―臨し取られていたもんじゅ設置許可―
一 はじめに
1 この訴訟を通じて蒸気発生器に関し明らかになったことの要点を端的にまとめ
ると次のとおりである。
(1) イギリスのPFRでは一九八七年に設計基準を大幅に上回る伝熱管四〇本
が破断する事故が発生していた。又、この事故が大量の配管の破断に至った理由は
もんじゅの安全審査では想定されていなかった高温ラプチャ現象によるものであ
る。
〈高温ラプチャ〉
 ナトリウム―・水反応の発熱がもたらす高温が原因となって、伝熱管壁の機械的
強度が低下し、蒸気発生器伝熱管が内圧によって破断する現象。従来は蒸気発生器
の破断の伝播についてはウェステージという、物理的現象と腐食現象の複合した現
象によるとされ、安全審査の事故解析に当たっても、ウェステージ現象を念頭に解
析がなされ、安全性判断の根拠にされてきた。しかし、PFR事故はこのような想
定の前提自体が誤っていたことを示唆するものであった。
(2) ところが、本件訴訟における原告の証拠収集活動の結果、もんじゅの安全
審査が進行中であった一九八一年動燃は定格出力時のもんじゅ蒸発器上部条件を模
擬した伝熱管破損事故の模擬実験を行い、伝熱管二五本が高温ラプチャによって破
断するという結果が発生していたことが判明した。しかし
、驚くべきことに、この結果を被告動燃は科学技術庁にも、原子力安全委員会にも
ひた隠しに隠し通してもんじゅの設置許可を臨し取ったのである。この経過は言っ
てみれば、もんじゅナトリウム―事故後のナトリウム―燃焼実験Ⅱで床ライナーに
穴が空いたが、このことを隠し通そうとするようなものであった。
(3) このような経過は原告団・弁護団の努力によってはじめて明らかにされた
のである。
2 もんじゅ蒸気発生器に関する主張と立証の流れ
 もんじゅ蒸気発生器に関する本件訴訟における論争の経緯はかなり複雑な経緯を
たどった。簡単に総括すれば、原告の立証と被告動燃、被告国の立証、原告の反証
と被告動燃の最終段階での「反証」、被告国の高温ラプチャ問題についての沈黙と
いう経緯をたどった。
 まず、はじめにもんじゅ原子炉の蒸気発生器の安全性に関する本件訴訟における
論争の経緯、とりわけ、証人尋問をこれが実施された日時にしたがって整理してお
きたい。
 まず、裁判官にこの問題について判断する際に、どうしても忘れて頂きたくない
ことがある。それは、以下に述べるイギリスPFR事故についても、既に情報を入
手していた被告動燃側は必死に事故自体を隠してきた。それに対して、直接証拠を
取り寄せ、それを翻訳して裁判所に提供してきたのはすべて原告側である。また、
蒸気発生器細管の定期検査用のプローブが細管にひっかかってしまったことや蒸気
発生器の細管で流動不安定現象が発生したことも、被告動燃が自ら進んで公にした
ものではない。いずれも動燃内部からの匿名の情報提供に基づいて、原告団が事実
を公表し、これを被告動燃が追認する形で公となったのである。匿名の内部告発が
なければ、このような事実は永遠に闇に葬られていたのである。PFR事故の客観
的事実を徹底して求めてきたのが原告側なのであり、これを黙殺し続けてきたのが
被告側なのであった。
 裁判所は本件における立証の過程をその順序に従って見て欲しい。なぜなら、蒸
気発生器に関する基本的な情報が被告動燃によって秘匿され、訴訟の当初において
は、論争の前提が成り立たなかったのである。
 このような基本的な情報の第一が被告動燃の実施したSWAT実験に関する情報
であり、第二がイギリスPFR事故に関する情報である。とりわけ、SWAT実験
の全体像は九九年二月二六日に被告動燃から開示された「海外出張報告」によって
明らかになった。そ
のために、本準備書面において、蒸気発生器の安全性に関して、原告の従来の主張
を大幅に整理し、一部は新たな主張も付け加えた。しかし、このような訴訟の展開
となったのはひとえに被告動燃の情報の秘匿によるものであり、原告にとってはや
むを得ないものであった。
〈民事訴訟関係〉
1 P9証人被告主尋問
 二〇回 一九九工年(平成四年)一月二四日
2 P9証人原告反対尋問
 二三回 一九九二年(平成五年)九月二五日
 PFR事故に関する報告書甲イ一二五号証の一提出
 二四回 同年一一月二〇日
3 P10証人原告主尋問
 三〇回 一九九三年(平成五年)一二月一〇日
 PFR事故に関する報告書甲イ一八四号証提出
 三一回 一九九四年(平成六年)三月四日
 PFR事故に関する報告書甲イ二一〇、二一二号証提出
4 P10証人被告反対尋問
 三二回 一九九四年(平成六年)五月一三日
〈行政訴訟関係関係の立証〉
5 P6証人被告主尋問
 一三回 一九九五年(平成七年)七月二六日
6 P6証人原告反対尋問
 一四回 一九九五年(平成七年)九月二七日
7 P8被告主尋問
 一五回 一九九五年(平成七年)一一月八日
〈一九九五年一二月八日もんじゅナトリウム―漏れ、火災事故発生〉
8 P8原告反対尋問
 一九回 一九九六年(平成八年)七月三日
 二〇回 一九九六年(平成八年)九月二五日
〈民事訴訟関係の立証〉
9 P10証人原告主尋問
 四六回 一九九七年(平成九年)一〇月八日
 反対尋問には関連質問なし
〈平成一〇年六月被告動燃準備書面一五、
 乙イ四三号証 P23陳述書
 同 四四号証 被告動燃作成「蒸気発生器伝熱管の高温ラプチャ型破損評価手法
の整備と適用」 提出〉
10 P11証人被告主尋問および同証人原告主尋問
 五〇回 一九九八年(平成一〇年)七月一五日
〈一九九八年一一月 P10 国会議員を通じて科学技術庁にPFR事故に関する
動燃「海外出張報告」の開示を要請〉
〈一九九九年二月二六日 右文書開示される。その主要部分を原告から同年三月甲
イ四四三号証として提出〉
 以上のような、立証経過の端的な特徴は次のように総括できる。P8証人の証言
までの立証では、被告側は、動燃も国も原告申請のP10証人の指摘したPFR事
故に関する原告側の立証に対して、これを考慮する必要を認めず、安全審査時の判
断に間違いはないと繰り返していた。このような被告側の立証の誤りについて原告
側はP10証
人の再申請証人尋問において、完壁に反証した。
 ところが、被告動燃の最後の証人であるP11証人の尋問の直前に、乙イ四三、
四四号証を提出し、さらに、被告動燃準備書面一五を提出してきたのである。ま
た、同様の主張、立証は被告国側からは全くなされておらず、被告国は高温ラプチ
ャ問題については沈黙している。
3 遂に明らかとなった驚くべき動燃の真実
 一九九九年二月二六日にいたって、被告動燃が開示した海外出張報告(甲イ四四
三号証)は驚くべき内容を持つものであった。結論だけをここでまとめれば、①イ
ギリスPFRの過熱器に設置されていなかったとされた急速ブローはもともとは設
備されており、有効でないという理由で外されていたこと、②仮に急速ブローが設
備されていても、事故の結果は大きくは異ならなかったと推定されていること、③
ドイツでの実験では、管内で水の流動があるケースでも高温ラプチャが発生してお
り、水の流動があれば高温ラプチャは起こり得ないと言う被告動燃の主張に反する
結果が出ていること、④一九八一年の被告動燃の実験SWAT―3 RUN16で
はもんじゅの蒸発器上部の定格出力時の条件が模擬されたが、伝熱管合計二五本の
高温ラプチャによる大量破断が発生した。しかし、このデータは動燃限りのものと
され、安全審査では、高温ラプチャの可能性は一切無視され、伝熱管の破断伝播の
原因としてはウェステージのみが解析の対象とされたこと、⑤被告動燃が金科玉条
のように引用するSWAT―3 RUN19実験は、RUN16実験の結果に驚愕
した被告動燃が許可処分後の一九八五年に内部的な辻棲を合わせるために、各種実
験条件を大幅に条件を切り下げて実施したものであり、到底保守的な条件を設定し
たものとは言えないものである。にもかかわらず、この実験でも、高温ラプチャが
五本発生している。
 このように、この文書は被告動燃によって作成されたものであるにもかかわら
ず、乙イ四三、四四号証の内容の根幹を自ら否定するものだったのである。
 それでは、このような立証の構造を民事訴訟、行政訴訟の双方の訴訟においてど
のように評価すればよいのかを以下に詳細に見ていくこととしよう。
二 蒸気発生器とは何か
 まず、蒸気発生器技術の一般的性格と問題点を説明する。
1 タービンを駆動する蒸気を発生させる
 小規模用途を除き、現在の発電は、水蒸気が蒸気タービンを駆動し、その回転エ
ネルギーを電気エネルギーに変換することによって行われる。水蒸気は水(原子力
界では軽水と呼ばれる)を加熱することによって生成されるが、加熱源に石油、石
炭あるいは天然ガスを用いると火力発電であり、原子力(核分裂の連鎖反応)を用
いると原子力発電になる。火力発電の加熱装置がボイラーであり、原子力発電の加
熱装置が原子炉である。原理的には両者の違いは熱源のみであるが、原子炉には膨
大な核分裂生成物(死の灰)が内包され水(一次冷却水)には常時配管等材料の放
射化物が含まれていることから、熱輸送系については両者に異なるものがある。す
なわち、火力発電ではボイラーで発生した水蒸気が直接タービンを駆動するのに対
し、加圧水型の原子力発電では上記放射性物質の漏洩を嫌い、一次系から隔離され
た二次冷却水を蒸発させ、その水蒸気がタービンを駆動するようになっている。原
子炉内で直接加熱された一次冷却水から二次冷却水へ熱を送る装置が、加圧水型原
子力発電の蒸気発生器である(甲一九九号証一三三頁以下)。
2 ナトリウム―と水の間での熱交換
 冷却材は異なるが、高速増殖炉の場合も同様である。ただし、高速増殖炉の熱輸
送系に対してはさらに条件が加わる。冷却材が液体金属ナトリウム―であるため、
蒸気発生器に破損が起こりナトリウム―と水とが接触した場合の激しい反応による
危険性を考慮にいれねばならない。その反応が発生しても放射性物質放出につなが
らないよう、「もんじゅ」では一次冷却系と水・水蒸気系との間に、非放射性ナト
リウム―を冷却材とする二次冷却系が、中間熱輸送系として設けられている。した
がって、水・水蒸気系は三次冷却系に相当する(甲一九九号証一四四頁以下)。
3 熱交換量を大きくし、熱の損失を最小化する
 蒸気発生器が発電所の熱輸送系を構成する機器として成立するためには、設計に
おいて二つの基本的条件を満たさなければならない。まず、熱交換量をできるだけ
大きくしなければならない。そのために、伝熱面積をできるだけ大きくする必要が
ある。その結果、蒸気発生器は必ず、多数の長くて細い管の束で構成され、多数本
の細管壁を介することによって内側液体と外側液体とで大量の熱を交換出来るよう
にする。二つ目は、熱交換(蒸気発生)時の熱の損失をできるだけ少なくすること
である。決め手は、熱をやりとりする細管の壁厚をできるだけ薄くすることに尽き
る。
(甲イ一九〇号
証、七ないし一三頁、甲一九九号証一四四頁以下)
4 構造上の脆弱性こそ本質
 以上の条件から一目瞭然なように、蒸気発生器とは、その本質からして極めて繊
細な機器であり構造上非常に弱いものである。上記基本条件を無視し、たとえば安
全上の余裕確保を目的に細管壁を厚くしても、それは発電設備としての役割を果た
せないのである。蒸気発生器を安全上から見るとき、この構造上の脆弱な本質をま
ず踏まえておかなければならない。
(甲イ一九〇号証、七ないし一三頁、甲一九九号証一四四頁以下)
三 高速増殖炉蒸気発生器の軽水炉と比較した特徴
 高速増殖炉の蒸気発生器は、設計および使用条件が加圧水型軽水炉のそれと比べ
際だって苛酷である。その苛酷さを「もんじゅ」と軽水炉(加圧水型)と比較し、
以下に説明する。
1 熱交換媒体の違い
 軽水炉では水と水との間で熱交換するが、「もんじゅ」では液体金属ナトリウム
―の二次冷却材と水あるいは水蒸気の三次冷却材との間で熱交換する。もし蒸気発
生器細管が破れると激しいナトリウム―水反応が起こり、衝撃的破壊力の発生、爆
発性気体の水素の発生およびそれによる圧力上昇が起こり、機器を破壊する危険が
ある。ナトリウム―水反応の影響に対する対策が必要とされるのである(P10三
〇回三九ないし四三丁)。
2 使用温度の違い
 もんじゅと軽水炉の蒸気発生器の比較を表にまとめたものを示す(図表六―二―
一)。軽水炉の蒸気発生器の使用温度は最高約三二〇℃だが、「もんじゅ」は約五
〇五℃と、一八○℃以上も高温である。そのため、使用材料に高温強度のあるもの
が要求される。さらに、ナトリウム―は熱容量が小さく(すなわち熱しやすく冷め
やすい)、軽水炉と違って材料が熱衝撃や過大な熱応力にさらざれる危険があり、
それに対する対策が必要である。(P10三〇回四三丁)。
3 伝熱管(細管)材料に求められる条件の違い
 軽水炉では、主として耐食性だけ考慮した材料を選べばよいが、「もんじゅ」で
はナトリウム―が高温のため、耐食性と高温強度の両方が要求される。そのため、
「もんじゅ」では、水が液体の状態で流れる段階と水蒸気になった後の段階に分
け、前者の段階には耐食性のある材料、後者の段階には高温強度のある材料という
ように細管材料に異なるものを採用している。したがって、蒸気発生器として蒸発
器と過熱器というほぼ同じ形状をした二つの大型機器を設けなければ
ならない(P10三〇回四五、四六丁)。
 このことは、更に次のような困難な技術的問題を引き起こす。蒸発器には腐食に
強い材料として炭素が多く含まれるクロム・モリブデン鋼が、加熱器には高温に耐
えられる材料として炭素量の少ないSUSステンレスが採用されている。このよう
に、もんじゅの蒸気発生器は強度的にもギリギリのところで製作されているのであ
る(図表六―二―二)。しかし、この両者の材料が同じナトリウム系に共存するこ
ととなる。そのために、炭素量の多い蒸発器から炭素量の少ない過熱器に炭素が移
行するという「脱炭・浸炭」現象が起きてしまう。すると、それぞれの機器に必要
とされていた耐食性、耐高温性が失われてしまう危険があるのである(甲イ一九九
号証一五〇頁以下、P10三〇回四五、四六丁)。
〈脱炭・浸炭〉
 炭素含有量の多い鉄から炭素が抜けることを脱炭、炭素含有量の少ない鉄に炭素
が浸透することが浸炭という。同一系の中に、炭素含有量の違う鉄が共存すること
によって発生する。浸炭は鋼の表面の硬化の手段としても用いられる。
4 細管壁にかかる圧力の違い
 細管の内と外との圧力差が、軽水炉では約九〇気圧だが、「もんじゅ」では使用
条件が約一三〇ないし一五〇気圧とはるかに大きい。当然、圧力の違いに応じて
「もんじゅ」の細管壁厚は軽水炉より厚くしなければならないが、一方、壁が厚い
と熱衝撃や熱応力が大きくなるため壁厚は制限されるという安全対策上の深刻なジ
レンマがある(P10三〇回四四丁)。
 以上に列挙した比較から、「もんじゅ」(高速増殖炉)の蒸気発生器は、使用さ
れる外的条件だけでも、軽水炉の蒸気発生器よりけた違いの技術的困難性、いいか
えれば危険性を持っていることが明白である。
四 「もんじゅ」蒸気発生器の構造的脆弱性
 「もんじゅ」で採用されている蒸気発生器の設計には以下のような構造的な脆弱
性が存在する。
1 形状が複雑
 伝熱管(細管)の形状が軽水炉のような逆U字形でなく、ヘリカル・コイル(ら
せん形)になっており複雑である。一体の蒸発器または過熱器に、約一五〇本のヘ
リカル・コイル型伝熱管が束ねられている。
 このような、形状が選ばれた理由は熱交換に優れていること、温度変化に伴う膨
張収縮をよく吸収できるというメリットからである。しかし、このような複雑な形
状となっていることから製作が困難であり、又、検査にも困難がある。そもそも
軽水炉の蒸気発生器は既に確立した設計が存在しているが、高速増殖炉の場合は未
だに試行錯誤の段階で確立した設計というものが存在しない。このことも高速増殖
炉における蒸気発生器技術の困難さを物語っている(図表六―二―三、P10三〇
回五一、五二丁)。
2 溶接部がある
 また、伝熱管を渦巻状にして、一本の伝熱管の全長が約八○メートルにも及ぶた
め、一本の管で造ることが出来ない。溶接部のない軽水炉の伝熱管と違い、一本の
伝熱管を造るのに数本の管を溶接してつなぐ必要がある。しかし、蒸気発生器にお
ける過去のナトリウム漏洩はほとんどが溶接部で発生しており(甲イ一二三号証、
甲イ一一九)、高速増殖炉の蒸気発生器においては、ナトリウム中に浸されている
部分に溶接個所を有しない設計とするのが基本である。そのため、多くの高速増殖
炉で直管型や逆U字型などナトリウム中に溶接部分を持たない単純な伝熱管構造が
採用されている。たとえば、CRBR、PFR、SNR―300などはナトリウム
中に溶接部分を持たない構造となっている。しかし、「もんじゅ」では経済性(熱
伝達効率)を優先したため、あえてナトリウム中に溶接部分を持つヘリカル・コイ
ル型が採用されている(甲イ一二〇号証三二頁、P10三〇回五二丁)。
 ナトリウム中に溶接部がない設計のほうが望ましいことを被告国申請のP6証人
も認めている(P6一四回七六丁)。なお、このことは安全工学の基本的な考えか
らも当然の帰結であるが、被告国申請のP8証人はこのような自明の事柄すらも認
めず、「即答しかねる」「溶接の技術による。」などと答えている(P8伸三一九
回二六、二七丁)。このような証言にP8証人の証言態度が政治的で、科学的に誠
実でないことが端なくも露呈されている。そして、同証人のような科学者によって
なされた被告国の安全審査の空洞化した実態がもんじゅナトリウム火災事故という
重大な結果をもたらした大きな要因である。
3 現実に溶接の不良が発生している。
 溶接部では肉厚が他の箇所より厚くなるため、熱応力が大きくなって温度の急変
時に破損の原因になり得る。さらに、溶接部の厚肉部は伝熱管検査の障害になる。
実際「もんじゅ」において、伝熱管内検査機器のセンサーが溶接部で引っかかり挿
入できなかった例があった。前述のようにもんじゅで採用されたヘリカルコイル型
の蒸気発生器では螺旋管の細管が使用されている。螺
旋管の欠点として、定期検査の際にセンサーがひっかかりやすくその挿入が困難で
あるということが指摘されてきた。このような指摘は被告国申請のP6証人もこれ
を認めている(P6一四回七七丁)。
 一九九一年七月にもんじゅの運転前の総合機能試験の際に、定期検査用のプロー
ブがひっかかり、プローブの方を削るという事件が発生している。プローブがひっ
かかった場所は細管の溶接箇所であることは被告動燃申請のP17証人、被告国申
請のP8証人もこれを認めている(図表六―二―四(P9証人二五回調書添付図
面)、P9二五回四一ないし四五丁、P8一九回二六丁)。
 溶接個所で細管の内径が狭くなりひっかかったということは、ひっかかりの原因
は溶接の細管内部へのたれ込みであることを示している。P6証人もその可能性を
認めている(P6一四回七七丁)。
 このような溶接箇所にたれこみがあると、腐食や振動・応力集中の原因となる可
能性がある。このことは被告国申請のP8証人もこれを認めた(P8一九回二六.
二七丁)。
 しかし、もんじゅの施工に当たってはこのような危険な箇所がないか科学技術庁
は検査を実施していないのである。今回のナトリウム漏れ事故で配管に差し込まれ
た温度計の設計が全くチェックされていなかったように、細管破断事故の原因とな
りうる細管の溶接不良が見過ごされている可能性が高いのである。もんじゅで実際
に細管の溶接不良を原因として細管の破断が起きても、動燃・科学技術庁は予想で
きない事態だったなどと言い訳することは絶対許されないのである。
 これまでに発生している蒸気発生器のリーク事故のほとんどが溶接不良個所か流
体振動が原因である。従ってナトリウム中に溶接個所のない設計が望ましいことは
あきらかである(甲イ一二〇 三〇頁)。
 イギリスの高速増殖炉原型炉PFRはナトリウム中に溶接個所がない構造となっ
ている。この条件だけ取り上げればもんじゅはPFRよりもより危険性が高いとい
うこととなる。
4 伝熱管は薄く脆弱である。
 「もんじゅ」の蒸気発生器伝熱管の厚さは、蒸発器で三・五ミリ、過熱器で三・
八ミリと薄く脆弱である。蒸気発生器の細管破断事故はきわめて危険な事故であ
り、またその発生がさほど珍しくないという特徴を持っている。P8証人はPFR
細管破断事故は特異な条件で発生したと主張したが、軽水炉ではあるが美浜原発2
号機でも細管破断事故が発生して
いる。この事故の原因は振れ止め金具の支持不足といわれている。このような状況
もP8証人の用語法によれば当該原子炉に特異な状況に起因するものともいえる。
ちなみにP8証人はPFR事故は「特異」と述べながら、美浜事故は「特異」なも
のであることを認めなかった。このような証言態度は同証人の証言が政治的な意図
に左右され、科学者としての客観的なものとなっていないことを示している(P8
一九回二七丁)。
 事故はいずれもその時点での特異な条件で起きるので、特異だといって見ても何
も言ってないことに等しい。要するに細管は脆弱であり、その破断はさまざまな原
因によって十分ありうることであるという事実を直視することである。
5 流動不安定現象を引き起こしやすい
 「もんじゅ」は、蒸発器、過熱器とも下降流部を有するが、このような下降流部
を持つ構造は、流動不安定現象を起こしやすい(甲イ一一九(「液体金属冷却高速
増殖炉用蒸気発生器の現状」一七頁第二表))。特に低流量時に危険とされてい
る。
 現に「もんじゅ」でも一九九五年五月二二日に発生し、同年九月二七日、本件公
判時においてもP6証人の証言でも流動不安定現象であることを確認している。P
6証人は高速増殖炉の蒸気発生器において流動不安定現象の防止が重大な設計上の
要請であること、もんじゅでは安定運転の可能な範囲を過大に予測していたこと、
弁の応答の特性の評価を誤ったこと、その結果低流量時に下降流部で沸騰を引き起
こして、流動不安定現象を引き起こしたことを認めたのである。図表六―二―五は
この際の事象のシミュレーション解析であり図表六―二―六は被告動燃技術者の学
会報告に掲載された「不安定現象発生状況の一例」である。両図表の示す類似性
は、この現象が流動不安定現象であることを明らかに示している(P6一四回七四
ないし七六丁、甲イニ二三、二二六号証五三頁)。
 このような流動不安定現象の危険性はこれによって細管が激しく振動することで
ある。このよう恋振動によって、繊細な細管が傷つき、その場所から破断に至る可
能性は否定できない。もんじゅの実機で流動不安定現象を引き起こしてしまったと
いうことは、その際の振動によって蒸気発生器細管に将来の破断の原因につながる
かもしれない初期欠陥を与えた可能性があるという重大な事実を意味しているので
ある。
 〈流動不安定現象〉
 液体が配管中を流れる際に配管中への
気体の混入、もしくは突然の沸騰など何らかの理由で気体と混合して、流動が不安
定化し、配管が激しく振動する現象。断水後、空気が混合した水道管が通水後に激
しく振動する現象などが代表的。
五 「もんじゅ」蒸気発生器事故時の影響
 「もんじゅ」の蒸気発生器伝熱管に破損が起これば、以下のように重大な影響が
推定される。
1 ナトリウム―・水の爆発的反応によって中間熱交換器が破壊される危険性があ
る。
 ナトリウムと水との激しい反応による衝撃力あるいは発生した水素の高圧によっ
て中間熱交換器が損傷する可能性がある。中間熱交換器が破壊されると、一次系と
二次系との境界が破れて強放射性の一次冷却材ナトリウムが漏洩する。一次冷却材
ナトリウムは、運転中に放射化されており、半減期一五時間のナトリウム二四と半
減期二・二年のナトリウム二二を生成・蓄積しているため、運転停止後約一週間は
死の灰並みに強い放射能を有している。その漏洩は、作業員および周辺住民被曝の
原因となる(P10三〇回四二ないし四三丁)。
2 二次冷却系機器、配管を損傷する危険性がある
 ナトリウム―水反応の衝撃力あるいは水素による高圧により二次冷却系機器また
は配管が損傷すれば、高温の二次冷却材ナトリウムが空中に漏れて火災を引き起こ
す。その時発生する大量のナトリウム化合物は微粒子となって空中を拡散して機器
や屋内を汚染し、人がそれを吸入したり皮膚に触れたりすれば障害を蒙る。このこ
とは、もんじゅナトリウム漏洩・火災事故から明らかである。
3 中間熱交換器が破壊された場合、暴走事故につながる危険性がある。
 ナトリウム―水反応の結果中間熱交換器が損傷した場合、反応で発生した水素が
破断口から一次冷却系内を通って炉心内部に入っていく恐れがある。そうなると、
[もんじゅ]の炉心が正のボイド反応度特性を持っているために、反応度が上昇し
暴走事故につながる危険性がある(「気泡通過事故」)。この危険性は、一次冷却
系より二次冷却系の方が常に高圧に保たれ、かつ、事故時には発生した圧力がそれ
に加わるため、より可能性の高い事態である。しかし、この問題は、今まで指摘さ
れたことがなく、安全上の解析もなされていない。中間熱交換器が破壊される事態
を想定していなかったからである(P10陳述書甲イ四四四号証)。
 なお、蒸気発生器に関係した事故ではないが、一九九八年一一月、フランスの原
型炉フェニック
スで中間熱交換器が破損し、圧力のより高い二次系から一次系へ、大量のナトリウ
ム―が流入し、原子炉容器内に六トンものナトリウムが漏洩する事故が発生した。
蒸気発生器破損事故と違ってナトリウム中に気体は含まれていなかったが、この事
故は、中間熱交換器の一次系二次系間の境界が破られる可能性が現実に存在するこ
とを示している。また、原子炉を停止し、点検を行うまでこの境界が破られている
ことが気付かれなかったことも重大である(甲イ四三四、四四四号証)。
六 「もんじゅ」蒸気発生器における安全確保対策の不十分性
1 異常防止対策は信頼できない。
 被告が示した異常発生防止対策は、諸規格に適合する材料選定、設計、製作、据
付、試験、検査、水質管理など品質管理や工程管理等ソフト面での対策が中心であ
る (被告準備書面一五、平成一〇年六月一五日)。しかし、これらは単なる建前
にすぎず、「もんじゅ」事故を始め、動燃のこれまでの実態から見ると信頼できる
ものではない。
2 異常の早期発見は不可能―水素計の限界―
 影響緩和対策の基本は異常の早期発見である。その検知手段として、被告は、水
漏洩率一キログラム程度まではナトリウム中水素計により早期に発見できるとして
いる(被告準備書面一五)。しかしながら、公開されている水素計の特性図(図表
六―二―七)によると(甲イ三八三号証五六四頁)、水漏洩率が毎秒○・一グラム
から一キログラムまでの範囲では、漏洩を検知するまでに数十秒という長時間を要
する。同じ特性図は、この間にウェステージ効果により他の伝熱管へ破損が伝播す
ることを示している。
 二次系のナトリウム中に水素、トリチウム(三重水素)が存在していることは今
回のナトリウム火災事故の際のデータからも裏づけられる(乙イ九4―30、3
1)。この水素は炉心で発生するトリチウムと、水・蒸気系から蒸気発生器の伝熱
管を透過してナトリウム―中に入ってくるものが存在する。漏洩検知にこれほど長
時間を要するのは、このようにもともとナトリウム中にバックグラウンドとして水
素が存在するため、そのノイズ対策として信号の平均化処理を行うなどいくつかの
特別な機能を付加させる必要があった(被告準備書面一五、四六~四七ページ)か
らである(甲イ四四四号証)。
 このことは、原告がナトリウム中水素計には限界があると主張してきたことがま
さに正しかったことを示している。その結果、「もんじゅ」の水素計は、四桁にも
及ぶ漏洩率の広い範囲にわたって、早期検知にはならないものである。このような
検出方法では、微少な漏洩から十分時間をかけて徐々に拡大する場合ならともか
く、今回の「もんじゅ」事故のように、もし最初から中規模漏洩で始まった場合に
は、漏洩検知計としてまったく意味をなさない。これは、漏洩検知システムの致命
的欠陥であり、早期検知の点で影響緩和対策が破綻していることは明白である。
 本水素計の警報に対する処置は、もともと運転員の判断によるものとされていた
(甲イ一二四号証、P8(主尋問証言)一四回五四丁)。ところが、被告準備書面
一五の四七~四八ページでは、毎秒○・一グラム程度を超える漏洩時では、三基の
うち二基の水素計による水素濃度の顕著な増加の検出により、自動的に蒸気発生器
の緊急停止およびプラント・トリップにつながる信号を発するシステムになってい
る、と説明されている。この変更は、原告が主張してきた運転員の判断だけに依拠
する危険性を、「もんじゅ」事故以後になって取り入れたものに他ならない。な
お、漏洩率が毎秒○・一グラム以下では相変わらず運転員の判断にまかされてい
る。自動化の内容も、毎秒○・一グラム程度を超えた時点で緊急停止につながるの
ではなく、さらにそこからの“顕著な増加”を検知して初めて働くものである。し
たがって、先に述べた時間的遅れに加え緊急停止の作動はさらに遅れることにな
り、他の伝熱管への破断伝播拡大防止が間に合わず、自動化が有名無実になる恐れ
が十分にある。
 このように、水素計が使い物にならないので被告動燃では別原理の漏洩検出器が
開発中であり、音響式の漏洩検知器の開発経過が、しばしば学会で報告されている
(P10四六回七三ないし七九頁、甲イ三八五号証)。
七 もんじゅ蒸気発生器細管破断事故に関する設計基準事故と高温ラプチャ事故に
ついての安全審査の欠落
1 設計基準事故
 設計基準事故という概念は「発電用軽水型原子力施設の安全評価に関する指針」
で定められている。設計基準事象は
(1) 事象が適切に選定されていること
(2) 結果が最も厳しくなる解析条件
(3) 最も厳しくなる初期条件
(4) 安全機能別に結果を最も厳しくする単一故障を仮定する
(5) 工学的安全施設では外部電源喪失を仮定する
(6) スクラムでは最大反応度価値の制御棒一本は上限のまま
(7) 解析のモデルや
パラメーターは結果が厳しくなるよう選定する
等の条件を満たすように選定されなければならない。
2 設計基準事故選定の根拠は示されていない
 もんじゅの安全審査では、蒸気発生器細管破断事故は次のような扱いを受けた。
 許可申請書添付書類 「3.16蒸気発生器伝熱管破損事故」において動燃事業
団は伝熱管の大規模な破損を仮想した場合の原子炉施設への影響を評価している。
 動燃は設計基準リーク(DBL)として、もんじゅの場合「1+3DEG」すな
わち初期事象として蒸発器の伝熱管一本破断、破損伝播によって三本破断としてい
る。そして、その場合の中間熱交換器にかかる圧力が設計耐圧以下であることをコ
ンピューター解析によって確認したとされる(甲イ一九〇 一一頁、甲イ一二
四)。
 しかし、このような設計基準事故の選定そのものが妥当なものであるということ
を示す実験等のデータは全く示されていないのである。
 今回明らかになった動燃の「海外出張報告書」(甲イ四四三 三四七ページ)に
よれば、RUN19試験に関する説明中で、「高速増殖原型炉「もんじゅ」の蒸気
発生器の設計基準リーク(DBL)として、一九七〇年代半ばに1+3DEG(初
期一本+破損伝播による伝熱管両端ギロチン破損三本)が選定された。これは当時
動燃で実施していた小リーク・ウェステージ試験データや海外との情報交換で得ら
れた知見を基に保守的に選定したものである。」とされている。七〇年代半ばまで
の破損伝播の機序としては、ウェステージしか想定しない実験をもとに設計基準事
故が選定されていたのである。安全審査での最大の課題はこのような設計基準事故
の選定が保守的なものであることを検証することにあったのである。
〈初期スパイク圧〉
 蒸気発生器細管の破断直後の水ナトリウム反応による圧力。もんじゅの場合、伝
熱管の一本の瞬時両端破断に相当する水の漏洩量を仮定して解析している。
〈準定常圧〉
 蒸気発生器細管の破断からある程度時間的に遅れて現れる、ナトリウム・水反応
による水素の蓄積による圧力上昇。もんじゅの場合、伝熱管の初期の一本を入れて
合計四本の両端完全破断に相当する水漏洩量を想定して解析している。
3 SWACSコードについて
 事故解析に使用されたSWACSコードは、水ナトリウム―反応による水素ガス
の発生量を考えて、発生圧力を模擬するコードである。
 SWACSコードにおける設計基準
事故の事故拡大の原因、経路としては、対象とする物理現象が①水噴出過程 ②初
期スパイク圧過程 ③圧力波伝播過程 ④準定常圧過程とされているが、前述した
設計基準事故における破損伝播の程度(一プラス三)ははじめから条件として与え
られている。そして、準定常圧過程での現象としてはウェステージだけが想定さ
れ、高温ラプチャが想定されていない。従って、当然のことながらこのコードによ
って設計基準事故の想定が妥当なものであることを根拠づけることはできないので
ある(甲二八八(高速増殖炉の安全解析に用いる解析コード))
4 高温ラプチャ現象の無視
(1) 本件の安全審査では準定常圧過程としては、ウェステージだけが想定さ
れ、高温ラプチャは想定されなかった。しかし、このこと自体が大変な問題である
ことが本件訴訟の最後の段階で明らかとなった。SWAT―3実験に高温ラプチャ
実験が含まれていることが公式に明らかにされたのは乙イ四三、四四号証がはじめ
てである。乙四三、四四号証だけでは、この実験の持つ意味ははっきりしなかった
が、原告側の開示要請によって明らかになった甲イ四四三号証によって、この実験
の持つ意味が明確となった。
(2) 国の安全審査には動燃が安全審査が行われていた一九八一年九月二八旧に
実施したSWAT―3RUN16の実験データは提出されなかった。この実験で
は、定格出力時のもんじゅ蒸発器の上部条件を模擬して実験がなされたが、伝熱管
九二本の内二五本が高温ラプチャを原因として破断するという信じられない結果が
発生した。
 甲イ四四三号証では「過去に実施したRUN16試験では、ターゲット管として
六本は水蒸気で、四八本は窒素ガスで内部加圧を行った。但し、いずれも内部は流
動のない状態である。この試験の結果蒸気管の一本とガス加圧管の大部分に高温ラ
プチャ型破損が発生した。上記結果は、「もんじゅ」の設計基準リーク選定の視点
からも重大な問題である」とされているのである(三四八ページ)。
(3) 被告動燃はSWAT―3 RUN19で高温ラプチャは起きないことを確
認したと主張する(乙イ四三、四四号証)。しかし、この主張は次のとおり失当で
ある。
① RUN19実験は一九八五年四月四日に実施されたものであり、すくなくと
も、許可処分のなされた一九八三年五月エ七日までには高温ラプチャの起きないこ
との確認は一切取れていなかったのである。にも
かかわらず、被告動燃は被告国にも、原子力安全委員会にもこの案験のことを隠し
て許可処分を得たのであり、文字通り、この許可処分は事実を秘匿して臨し取られ
たものと言うほかない。
② そして、このことを被告国の立場から見れば、高温ラプチャ現象については、
実験データは一切提供されていないのであるから、SWAT―3 RUN19実験
の実験条件が保守的なものかどうかについても、一切国・原子力安全委員会は検証
していないこととなるのである、なお、この実験の条件が保守的なものといえない
こと次項の九項において論ずることとする。
④ また、甲イ四四三号証によれば日本側の「もんじゅ実証炉に係わる日本のNa
-水反応研究」についての発表に対する質疑で次のようなやりとりがなされてい
る。
 実証炉の解析コードであるLEAPコードについて「Q:LEAPコードでは〇
veTheatingと内圧ラプチャについては考えていないのか。
A:LEAPコードではウェステージによる破損伝播を考えているが、二次破損孔
径の推定式には、ガス封入管の内圧ラプチャのデータも含まれている。なお、オー
バーヒーティングの有無を確認するために計画されたRUN-19では〇verh
eatingによる高温ラプチャーは生じていない。」とのやりとりのあと、(備
考)として、「この後、オーバーヒーティングに関する討議を相手側は希望してい
る様子であったが、日本側の準備資料が不足しているためこれ以上の討議はできな
かった。この重要な.テーマを更に検討するためには別の機会を作り、時間と準備
が必要である。」と記載されている(五四ページ)。
 また、「伝熱管破損伝播現象の理論、実証的理解、材料の重要性」に関する発表
については、日本側が発表でRUN19の試験結果を説明したことに引き続く質疑
概要では、「議論の焦点は、当初予想していた伝熱管材によるウェステージ特性の
違いとは異なり、伝熱管の〇verheating現象の有無に注がれて議論が集
中したが、その結論を出すまでには至らなかった。」とされている(五五ペー
ジ)。
 このようなやりとりからはっきりと見えてくることは、日本側が準備した発表中
のRUN19試験で高温ラプチャが発生しないことを確認したという発表が、PF
R事故に衝撃を受けて、高温ラプチャの研究に集中しているイギリスの技術者たち
の納得を得られなかったことを示している。つまり、日本における高温ラプチャに
関する研究が十分なものとは認められなかったと言うことなのである。
5 被告国に対する行政訴訟に関する結論
 被告国は被告動燃の行った高温ラプチャ試験SWAT―3 RUN1619につ
いては、その主張において、一切触れていない。安全審査で一切審査していないの
であるから、言及したくともできないのである。もんじゅにおいて、中規模から大
規模のリークによって高温ラプチャが発生する可能性があることはRUN16試験
から明らかである。にもかかわらず、被告国の安全審査では、もんじゅが高温ラプ
チャの危険性に対して十分な安全性を備えているかどうか、全く検討も判断もなさ
れていないのである。
 このように、被告国に関する限り、このSWAT―3 RUN16および同19
実験の存在が明らかになったことにより、それ以外のことを論ずるまでもなく、も
んじゅ許可には重大かつ明白な違法があり、無効であることは明らかとなったと断
言できる。
八 PFRの高温ラプチャ事故はもんじゅの設計基準事故の想定が誤りであること
を示している。
1 PFR蒸気発生器事故の経過
 甲二一二号証はPFR事故について、「一九八七年二月のPFR N〇2過熱器
におけるナトリウム―中漏洩事故は、稼働中の蒸気発生器でのナトリウム・水反応
について、テスト装置の結果とは全く違う非常に重要な情報を提供した。」として
いる。
 PFRはイギリス.における高速増殖炉原型炉であり、電気出力二七・二万キロ
ワットで、もんじゅとほぼ同規模の炉である。蒸気発生器は蒸発器、過熱器、再熱
器の3つの機器からなる。いずれも伝熱管の構造はU字管型であり、もんじゅより
は極めて単純である。構造を図表六―二―八に示す。
 事故は一九八七年二月二七日午前九時四三分四八秒に発生した。炉は突然自動停
止し、圧力開放板が破裂し、ナトリウム―・水反応が発生して強い圧力が発生した
ことは明らかだった。
2 本件訴訟におけるPFR事故をめぐる原告の主張の要点
 この蒸気発生器伝熱管破断事故では、一本の瞬時完全破断(ギロチン破断)が、
その後わずか八秒間に他の三九本のギロチン級破断に拡大した。原告は、P10証
人の主尋問とP6、P8証人の反対尋問において、原告ら自らが入手したこの事故
の報告書類に基づいて次のような具体的な問題点を指摘してきた。
(1) 破断した伝熱管の本数が、如何なる国の設計基準をも
一桁上回っていたこと、
(2) 短時間で多数本に破断が伝播した原因がナトリウム―水反応の発熱による
高温ラプチャーであり、高温ラプチャーが現実のプラントで大規模に発生するこ
と.を世界の専門家が十分予想していなかったこと、
(3) 従来の模擬実験が実際の事故を十分模擬していないこと
(4) 「もんじゅ」における同様の事故が起こりうること、
(5) その場合の事故の規模、破損が伝播する範囲については再現実験を行う以
外に確認の方法がないこと
 を指摘してきた。
(6) 又、同じ事故が蒸発器で起こっていたら、中間熱交換器の設計限界を超え
た可能性があること
(7) このようなより深刻な事態になっていたことが想定されるため、欧米各国
では従来の設計基準を見直す検討が行われたこと、
(8) しかし^日本では、この事故を受けて、設計基準の見直しも、蒸気発生器
細管の破断事故の再現実験も行われていないこと、
を指摘し、PFR事故の原因が解明された現在の科学技術の水準に照らして、本件
許可処分には明白かつ重大な違法が認められ、また、運転の継続を認めることので
きない顕著な危険性があることを主張した。
3 被告らの主張とその変遷
 ところが、被告らは、当初PFRと「もんじゅ」との設計の違いを理由に、「も
んじゅ」で同様の事故は起こり得ないとだけ主張し続けてきた(被告動燃準備書面
一五、四一~五九頁)。その理由となる設計の違い①内筒の設計②水素計の問題③
急速ブローが設置されていなかったとされる点の合計三点を挙げているが、以下
に、まず被告らのこの主張に根拠がないことを説明する。
 なお、その後、被告らの内動燃は対応を転換し、これまで非公開としてきたSW
AT―3 RUN19試験を引用して、一九八五年の段階で既に高温ラプチャの起
きないことを確認していたとする一方で、この事故によって判明した知見を一部と
り入れ、安全性総点検を行い、その結果、蒸気発生器細管の細管破断時の安全余裕
が小さいことが判明したとして、今後弁の増設などの追加の安全対策を実施するな
どとしている。しかし、右試験が高温ラプチャの起きないことを確認したものとは
いえないし、その改善策は安全確保のため十分なものではない。このことは次項九
項で項を改めて論ずることとする。
4 事故原因と破損伝播の原因
 甲イ一八四号証によると最初の細管破断の原因は、内筒に隙間があるため、ナト
リウム―の
バイパス流が発生し、伝熱管への衝突流が生じたためであるとされている。
 この事故はわずか一〇秒程度のうちに、破断した細管付近の三九本の伝熱管を破
断し、更に七〇本を損傷させるという重大事故に発展した(図表六―二―九 甲イ
一二五号証図六、甲イ一九〇号証図一二)。この事故拡大の原因は最近の調査結果
(甲イ一八四号証)8・3及び9(破断メカニズムの解析)によると伝熱管三九本
は一〇秒以内に二次破損したもので、この二次破損原因のほとんどは、発熱反応で
ある水ナトリウム―反応による過熱であり、腐食やウェステージは重要でなかった
とされるに至っている。すなわち、「破断は、腐食性の損傷に起因する特徴を示し
ていたが、破断のメカニズムは過熱された結果物理的強度を失ったものだった。」
とされているのである。
5 事故原因に関する被告の主張に対する反論
 まず、被告は内筒隙間からのナトリウム―流れを防止する対策のなかったことを
挙げ、同じ原因の事故はもんじゅでは発生しないとしている。しかし、最初の一本
の破断原因が内筒隙間からのナトリウム―バイパス流による伝熱管の振動・摩耗=
フレツティングに起因するものであることは原告も初めから説明しているところで
あり、このことに関連して「もんじゅ」も同様の設計であるなどと主張しているわ
けではない。問題は、「もんじゅ」の設計がこの点で異なっているからと言って、
それが、「もんじゅ」でギロチン破断は起こり得ないとする理由にはならないこと
である。先に説明したように、「もんじゅ」の伝熱管にはPFRと違って事故発生
の原因となりやすい多数の溶接個所があり、破断発生要因としてはPFRをはるか
に凌ぐものがあることは明らかである。軽水炉のケースであるが、一九九一年二月
九日に美浜二号の蒸気発生器で発生した細管破断事故の場合でも破断の原因は伝熱
管の振動、フレッティングとされており、破断個所の回りの伝熱管も減肉してい
た。
 そして、温度変化によって伸縮する伝熱管束を支持具で支える構造になっている
限り、加圧水型軽水炉と同様、高速流体中で振動によりフレッチング(擦れによる
減耗)が起こり得ることも自明である。事故の原因となった事象によって破断した
細管の回りの細管も損傷していることは十分ありうることであり、そのことから
も、PFRのような配管の大量破断事故が特異なものでないことが裏づけられる
(P10四六回七〇な
いし七二頁)。
6 水素計取外しの問題
 二番目に、被告はPFRでは事故当時、ナトリウム―中水素計が働いていなかっ
たとして、事故発生に対する早期検知手段の不在を挙げ、もんじゅではこのような
事態は避けられるとしている。確かに当初の一九八八年の報告書甲イ一二四ではP
FR事故では水素計は故障していたとされていたが、一九九二年の報告書甲イ二一
二 三頁では「本当の事故が発生する確率の低い割には疑似トリップ信号を発する
頻度が非常に高い」とされ、取り外されていたとされている。今回原告が開示要請
した「海外出張報告書」では、インターロックからもともと外されていた上に、当
日は故障していたと総括されている(甲イ四四三 六一ページ)。
 このような被告の主張に対しては、原告は先に、「もんじゅ」の水素計の応答時
間が遅く事故時の早期検知手段として有効性がないことを指摘した。PFR事故で
は、最初の一本のギロチン破断前の小漏洩の発生した時間が明確でなく、その推定
幅は数時間から二、三分と非常に広い。漏洩率も毎秒○・〇一グラムから一グラム
までと不確かさが大きい(甲イ二一二号証、七ページ)。もし、短い時間であった
り、あるいは漏洩率が小さかったら、検知時間がさらに遅れることとなる。「もん
じゅ」の水素計であっても、六、2で前述したようにギロチン破断にいたる前に漏
洩を検知した上で必要な判断と対応をとることは困難である。また、自動的な緊急
停止措置も、漏洩率自体ではなく毎秒○・一グラム以上の漏洩率に達した後に、そ
の後の漏洩率の増加を検知して初めて作動する仕組みでは、作動までの時間が遅
れ、到底今回のPFR事故のようなギロチン破断を防止することはできない。被告
の主張にはまったく根拠がないのである(甲イ四四四号証 P10陳述書)。
7 急速ブローが設置されていなかったとされる問題
 P8証人はPFR事故は「極めて特異な条件」(P8一四回五六丁)で発生した
事故であり、もんじゅの場合の参考にならないとし、とりわけ、過熱器に急速ブロ
ーが設置されていなかったことを強調した。
 確かにPFRでは過熱器には急速ブローは設置されていないが、この事故につい
ての公式報告をもとに作成された甲イ二一二号証五頁によると低速ブローによっ
て、この事故の際一〇秒以内に全ての防護動作は完了しているとされている。P8
証人によれば、もんじゅの急速ブローでも動作開始ま
で約二秒、防護動作を完了するには一〇秒程度かかるとされている(P8一九回四
一、四二丁)。さらに、設計速度より遅れることもありうるのであって、どちらに
しても、もんじゅとPFRにこの点において大した差はないということができる。
 ところが、本件訴訟の最終段階において、被告は、事故当時のPFRには過熱器
に低速ブロー系しか設置されていなかった上に、低速ブローも最初の一五秒間はほ
とんど機能していなかったと主張するに至った。この問題は重要であるので、次に
項を改めて詳細に論ずることとする。
 〈ブロー〉
 ブローとは、伝熱管破断後ナトリウム―水反応による影響を緩和するため、蒸気
発生器内に残っている水または水蒸気を排出することである。
8 事故が蒸発器で発生していたら
 PFR事故は過熱器で発生した。過熱器は既に蒸気となっている水をさらに過熱
する部分であるが、同じような破断事故が、もし蒸発器で発生した場合、液体状の
水がナトリウム―中に噴出することとなるので、より大きな規模の水ナトリウム―
反応が発生することとなる。P9証人はPFRの中間熱交換器を取り替えた事実は
ないなどという(P9二六回一〇丁)が、前記報告書(甲イ一八四)11.0の結
論によると、この事故においても設計圧力一二バールぎりぎりの一〇・五バールま
で圧力がかかったとされており、蒸発器の事故の場合には、設計圧力を超える事態
は十分ありえたことを調査結果自体が認めている(報告書10.0、P10四六回
八四ないし八六頁)。
 被告動燃の「海外出張報告書」においては、イギリス側の説明として、
「IHX(中間熱交換器)の事故時の圧力条件を種々のケースで検討したが、IH
Xの設計圧力を上回る圧力は今回の事故ではかかっていない。但し、蒸発器で同様
なリークが発生すると問題。特にEV(蒸発器)の水・蒸気しゃ断用のパイロット
弁の故障はコモンモード故障で隔離失敗の可能性あり。」と指摘されている(甲イ
四四三 四五ページ)。この指摘は、事故が蒸発器で発生していた場合、設計圧力
を超えた可能性があること、遮断弁が故障した場合には隔離に失敗し、さらに事故
が大規模に拡大する可能性があることを示している。
 設計圧力を超えるということは機器の基本的な健全性が失われる可能性があると
いうことであり、本件の場合でいえば、中間熱交換器が破壊され、大量の水素が一
次系に流入して「気泡通過事故」
(暴走事故)を起こすか、あるいは一次系の大量の放射能を含んだナトリウム―が
二次系に流入し、更に環境中に放出される可能性があることを示している。
九 高温ラプチャによる伝熱管大量破断は防ぐことができない。
 ―隠されていた動燃高温ラプチャ実験とpFR事故が示すこと―
1 PFR事故の安全上の位置付けとその変化
 高温環境による破損伝播については、同事故の報告書(甲イ一八四)が述べてい
るように、「この現象はどのFBRにも共通する重要性を持っている。PFRの事
故解析はこれを考慮して修正された。」(11.0)とされている。イギリスでは
現実に事故を再現する実験が行われ、解析もやり直されているのである。
 被告動燃は本件訴訟においてP10証人から具体的な事故のレポートを示される
までこの事故を踏まえた設計の再検討結果などは一切公表してこなかった。P8証
人は、被告国=科学技術庁・被告動燃の姿勢を代弁して、PFR事故は「特異な条
件」と片付けて、このように極めて重大な事故から何も学ぼうとしない姿勢をあら
わにしていたのである。
 ところが、その後被告動燃はこの問題についての対応の軌道修正を図ったものと
考えられ、一定の検討結果なるものを原告申請のP10証人の二回目の尋問も終了
した後の一九九八年六月になって裁判所に提出し、右書証に基づく新たな主張を含
む準備書面一五を提出してきた(乙イ四三、四四号証)。この中にはSWAT―3
 RUN16 19の両実験が含まれていた。
2 隠されていた動燃高温ラプチャ実験
 P8証人は証言で「今のような状況で、ナトリウム―・水反応の反応熱によって
隣接する伝熱管が過熱されましても、その内部に有する蒸気などで内側から冷却さ
れまして、その冷却効果によりまして、伝熱管の強度がそれほど低下することがな
いので、いわゆる高温ラプチャのような現象は起こらないということを確認してお
ります。」と証言していた。同証人がここで述べている「申請者側の実験」は動燃
の実施したSWAT―3のことであることも認めていたが、これ以上のことは明ら
かにされず、いつ行われたRUNの何番の実験であるかも明らかにされなかった
(P8一四回五八丁)。
 この証言の段階では、SWAT―3の試験は甲イ二八八号証一七八頁図では、R
UN6まで、甲イ三〇二号証ではRUN7までがその存在と簡易なデータが公表さ
れていたにとどまり、被告動燃が高
温ラプチャ実験を行っていたこと、そのRUNが16と19であることは公開され
ていなかった。
 甲イ四四三号証によればRUN16 19の実験条件は図表六―二―一〇の通り
である。
3 RUN16試験の再現としてのPFR事故
 一九八一年の被告動燃の実験SWAT―3 RUN16ではもんじゅの蒸発器上
部の定格出力時の条件が模擬された。この実験では、伝熱管合計二五本の高温ラプ
チャによる大量破断が発生した。正確には、ガス加圧管二四本(同一ヘッダ“につ
ながれているので二四本で全数破断と同じこと)、注水管一本の合計二五本が破損
するという大破損事故に発展したのである。
 RUN16の試験条件は一次リーク平均注水率二二〇〇グラム/秒、注水時間は
六〇秒、注水量は二二八キログラムとなっている。
 この試験は結果を比較するなら、PFR事故に酷似している。むしろ、PFR事
故はこの試験の再現だったとも言える。しかし、被告動燃はこの驚くべき試験結果
から高温ラプチャの問題に正面から取り組もうとするのではなく、試験結果を秘密
にしつつ、大幅に条件を切り下げた実験を行い、高温ラプチャはもんじゅでは起き
ないことを確認したとしてこの問題についての検討を打ちきろうとしたのである。
4 保守的といえないRUN19試験条件
(1) 条件が大幅に切り下げられている。
 被告動燃が準備書面(一五)において金科玉条のように引用するSWAT―3 
RUN19実験は、RUN16実験の結果に驚樗した被告動燃が内部的な辻棲を合
わせるために、各種実験条件を大幅に条件を切り下げて実施したものであり、到底
保守的な条件を設定したものとは言えないものであった。このことは甲イ四四三号
証 三四八ページに次のように記載されていることからも明確に裏付けられる。
 RUN19の試験を行った動機として、
「この試験の結果、蒸気管の一本とガス加圧管の大部分に高温ラプチャ型破損が発
生した。上記結果は、「もんじゅ」の設計基準リーク選定の視点からも重大な問題
であるが、伝熱管が静止した蒸気又はガスであり、実機条件での水・蒸気による冷
却効果が含まれていないため、過度に保守的であった可能性がある。」「過度の保
守性を排し、」と説明されている。
 この記述だけを見ると、RUN19は16と水蒸気の冷却効果の点だけを比較す
るために、その条件だけを変更してなされたものとも考えられる。しかし、実際に

他の条件も大幅に切り下げられている。RUN16の試験条件は一次リーク平均注
水率はRUN16が二二〇〇グラム/秒に対してRUN19は一八五〇グラム/秒
 注水時間はRUN16が六〇秒に対してRUN19は三二秒、注水量はRUN1
6が二二八キログラムに対してRUN19は六一キログラムとなっている。このよ
うに伝熱管の冷却条件だけでなく、極めて重大な条件が「過度の保守性を排」する
との名目で切り下げられているのである。にもかかわらず、この実験でも、一六本
の加圧管については高温ラプチャが五本について発生しているのである。むしろ、
この規模の漏洩における高温ラプチャの危険性を示すものとも評価できる実験結果
である。
(2) 必ず伝熱管内に水流動を想定することはできない
 伝熱管破損事象において必ず、伝熱管内に水・蒸気の流動を想定することは保守
的な想定とは言えない。伝熱管破損事象の際にはごく短時間の内に、ブローと隔離
という二つの操作が行われる。ブローが先行し、その完了後に隔離がなされれば被
告動燃の想定通りとなる。しかし、ブローに失敗したり、失敗しなくても、隔離が
先行した場合には伝熱管内に水・蒸気流動のない状態での伝熱管破損が現実化する
こととなる。
(3) 多重故障を想定すべきである
 このように、伝熱管破損とブローの失敗や伝熱管破損と隔離の失敗という二つ以
上の事象の同時発生という故障を想定すれば伝熱管の高温ラプチャによる大量破断
は必至と言わなければならないのである。
 美浜原発における蒸気発生器破断事故の際には、伝熱管の破断と加圧器の逃し弁
の不作動という二つの事象の同時発生という多重故障が現実に発生している。もん
じゅの場合はこのような事態は文字通り破滅的な事態の始まりとなるであろう。
 また、甲イ四四三号証にも「特にEV(蒸発器)の水・蒸気しゃ断用のパイロッ
ト弁の故障はコモンモード故障で隔離失敗の可能性あり。」と指摘されている(四
五ページ)。共通モード故障も現実的な可能性として考えなければならない。
5 急速ブローが設備されていれば安全とは言えない
(1) 被告主張を覆す被告動燃海外出張報告書
 被告動燃はPFR事故がこのような重大事故に発展した理由を急速ブローが設置
されていなかったことに求め、もし、これが設置されてさえいれば、事故がこのよ
うな重大な結果につながることはないと主張してきた。しかし、甲イ四四三
号証はこのような主張が成り立たないことを被告動燃鵬自らの調査結果によって裏
付けている。
(2) イギリスPFRの過熱器に設置されていなかったとされた急速ブローはも
ともとは設備されており、有効でないという理由で外されていたこと
 まず第一に指摘できることは、PFRにおいてももともとは急速ブローが設置さ
れていたと言うことである。甲イ四四三号証によると
「SH(過熱器)にFastダンプ系を設けていない理由は?」という日本側の問
いに、「SHのFastダンプ弁は元々は設置されていたが、有効でないという理
由で取り外した。このため、SH2のリーク事故時にはSHにはFastダンプ弁
は設置されていなかった。SH2の事故後、再びFastダンプ弁を設置した。」
と答えている(二三ページ)。
「SH(過熱器)にfast dumPは設置したのか。」という日本側の問いに
も「設置した。もともとは設置されていたものである。」との答がなされている
(四七ページ)。
 過熱器の急速ブローは元々は設備されていたという事実は極めて重大な事実であ
るにもかかわらず、被告動燃の乙イ四三、四四号証ではこのような事実は完全に隠
されている。更に、重大な指摘は次の点である。
(3) 仮に急速ブローが設備されていても、事故の結果は大きくは異ならなかっ
たと推定されていること、
 前項の二三ページの問答に続いて「Fastダンプ系があったら、事故は早く終
わったと考えるか。」という決定的な問いに対して、イギリス側は「YES、但
し、破損孔からのリーク量が大きいので、効果は大きくないかも知れない。」と回
答している。急速ブローがあったとしても、有効性には疑問があり、「効果は大き
くない」とされていることは極めて重大である。被告動燃が「PFRには急速ブロ
ーがなかったから伝熱管の大量破断の結果となった。」「急速ブローのあるもんじ
ゅは絶対高温ラプチャは起きない」と言っていたことが、単なる机上の計算にすぎ
ず、実証性のないものであることを被告動燃作成の出張報告自体が示している。
(4) PFR事故でブローに時間を要したという被告動燃の主張について
 被告動燃はPFR事故で大量の伝熱管の高温ラプチャが発生したのは過熱器に急
速ブローが設置されておらず、ブローに時間を要したためであると主張し、過熱器
に急速ブローが設備されているもんじゅではこのような事故は発生しないとしてき


この主張は、甲イ二一二号証の記述と全く矛盾するものであった。甲イ二一二号証
五ページによると、「自動的な防護動作は、わずか一〇秒の間で有効に完了した。
プラントの防護システムは期待通り機能した。」と書かれている。甲イ二一二号証
は英国原子力学会誌であり、英国の原子力界では最も権威のある学術誌である。
 これに対し被告は、準備書面一五の五一ページにおいて、「事故後一一秒後に圧
力が○・七気圧に低下したのは」「伝熱管の破損口を通じて、蒸気系の蒸気がナト
リウム―系に流入した結果にすぎないと解さざるを得ない」.と何の根拠もなく勝
手に解釈しなおして、甲イ二一二号証の上記結果を事実上否定した。
 一方、被告の主張を裏付けるものとして、被告から提出されたのは一技術者の個
人的メモだけであった(乙イ第四四号証)。PFR事故は大事故であるから、当
然、公式の事故調査報告書は存在すると考えられる。事故経過の事実関係はそもそ
も調査の出発点であり、その中でもブローの作動経過は最も基本的な事項であるか
ら、公式報告書に作動記録が必ず記述されているはずである。被告は事故調査報告
書を入手できる立場にあるから、必要ならばそれ自体を引用すれば済むはずであ
る。それをやらずに、一技術者の個人的メモを根拠に議論する被告動燃の態度は奇
異なものと言わなければならない。
(5) なぜ、技術者の個人的メモが提出されたのか。
 このような被告動燃の態度の謎は、原告が求めた甲イ四四三号証の開示によって
解けた。原告は本件事故に関する被告動燃P18ほか作成のレポート「海外出張報
告書AGT8\日本ナトリウム―水反応専門家会議」の開示を国会議員を通じて九
八年一一月に求めた。ところが、被告動燃はイギリス側の企業秘密に関連するとい
う理由で、九九年二月二六日までにはその公表に応じなかった。
 甲イ四四三号証として提出したこの報告書には確かに、ブローについて「作動開
始まで三〇秒かかる。」(一七、二三ページ)という記載が見られる。被告動燃は
乙イ四四号証添付の技術者の個人的なメモなどでなく、この報告書を出せば、この
点の証明は可能だったはずである。被告動燃が既に存在していた甲イ四四三号証を
法廷に提出せず、新たに手紙を書いて、既に閉鎖されたPFRに勤務していた技術
者からその返事をもらうという迂遠なやり方を行った理由は明らかである。甲イ四
四三号証には他にこの準備書
面で触れたように、これまでの被告動燃の主張に真っ向から反する重大な指摘が含
まれていたからである。
(6) 急速ブローがあれば大破断にいたらなかったという証明はされていない。
 急速ブローが有効であることを裏付ける実験データは存在していない。もんじゅ
に設備されている急速ブローの有効性に関する機器の設備データや実験結果は小リ
ークおよび小中境界の二ケースだけである。文字通り、ないよりはましかもしれな
いが、「効果は大きくない」かもしれないのである。
 PFR事故については、一般に研究者が入手できる実記録に乏しく事実関係自体
にも推定が多い。上記技術者のメモもほとんどが推定によるものである。特に、重
要なブローの動作に関して、「実際には、これらの弁を通ってある程度の蒸気の減
圧はあったかも知れませんが、弁が開き始めたという直接の証拠はありません。」
と述べ、ブローの動作についてはデータ自身が存在しないことを伝えている。した
がって、漏洩中ブローがまったく行われなかったというのは、事実を述べたのでは
なく、保守的な計算をするために選んだ入力条件に過ぎなかったことも明らかにし
ている。
 結局、ここで判明することは、被告動燃の「低速ブローが一五秒ほとんど機能し
なかった」という説明は海外出張の際の聞き取り結果以外には実データの裏付けも
なく、公式の報告に基づくものでもないということ、そしてPFR事故の解析に当
たったイギリスの技術者は「保守的な」仮定としてブロー系が働かなかったという
解析条件をとっただけとも考えられるということである。いずれにせよ、急速ブロ
ーがあれば大破断事故にいたらなかったという被告動燃の主張は何の裏付けもな
く、むしろ、PFR関係者はこのような被告動燃の見解に同意しなかったことがは
っきりした。
4 水流動があっても安全とは言えないことを示すドイツ・インターアトム社実験
 ドイツでの実験では、管内で水の流動があるケースでも高温ラプチャが発生して
おり、水の流動があれば高温ラプチャは起こり得ないと言う被告動燃の主張に反す
る結果が出ている。すなわち、甲イ四四三号証によれば西ドイツ(当時)のべンス
ベルグのインターアトム社の訪問時の説明として、
 「中リークのナトリウム―水反応試験に関して、「注目すべき試験結果は管内に
水流動がある場合でも高温ラプチャが発生していると言っている点である。」「水
リーク率が八○グ
ラム/秒以上になると高温ラプチャを引き起こす。」(六五ページ)
 とされている。この試験結果の図表までが資料として添付されている。これを図
表六―二―一一として示す。このような試験結果は水流動があれば高温ラプチャは
起きないとする被告動燃の主張を完全に否定するものである。
 また、今後、被告動燃は蒸気発生器の水リーク試験の試験装置の新設を準備して
いるとされている。このこともこの現象が未だ未解明なものであることを裏づけて
いるのである(甲イ三八四 八六頁)。
5 繊密な事故の再現実験こそが不可欠である
 被告準備書面一五は、事故中の蒸気発生器内の挙動を確認するための「解析」を
行っている。しかし、それらはすべて計算によるものであり、極めて窓意的なもの
である。新たな実験はなされておらず、実証性がない。被告動燃が「もんじゅ」事
故の後に実施したと同じように、再現実験を行うべきである。計算というのは、同
じコードと入力データを使い、費用も含めて対等に実施できる条件がなければ客観
性を保証できるものではなく、対立する者間のやりとりも成立しないのである。ま
た、再現実験してみなければ重要な事実を見逃す可能性があることは、「もんじ
ゅ」事故の再現実験で得られた最も重要な教訓である。
一〇 設計基準事故の見直しの動きと今後
 高速増殖炉開発は今や世界的には過去の出来事となりつつあるが、最後に蒸気発
生器に関する設計基準事故に関して、生じていた動向を紹介し、もんじゅにおける
設計基準事故の想定の見直しが必至のものであり、これが行われなければ炉の安全
性を確認することはできないことを明らかにしておきたい。
1 アメリカの新型高速炉について
 アメリカはもんじゅなどのヨーロッパのタイプと違うプリズム炉の設計概念の研
究開発をしていた。このような原子炉も計画だけで、既に放棄されているが、少な
くとも設計中の同炉について、NRC原子力規制委員会はその安全評価に四〇本以
上の破断を想定する見解を示していた(甲イ六三号証、NUREG―一三六八)。
2 ヨーロッパ高速炉EFRについて
 既にヨーロッパ高速炉の開発は停止している。しかし「設計の終盤の段階で、設
計基準事故については甲イ一八二の二のいわゆるラベリー報告三一頁に見直しの議
論がなされていることが紹介されていた。
3 軽水炉でも設計基準事故見直し
 最近、海外では軽水炉の蒸気発生器細管の破断事故
について設計基準事故の見直しが進んでいる。もんじゅの事故想定が不十分なこと
は、軽水炉の事故評価が最近になってより厳しい方向で見直されていることからも
裏付けられる(原子力安全委員会「平成三年版原子力安全白書」甲イ一一五号証一
六七ないし一六九ページ)。
① アメリカ
 原子力規制委員会は報告書NUREG―O八四四で蒸気発生器伝熱管破損のリス
ク評価と伝熱管の健全性の問題を取り上げている。この中で、設計基準事象として
の再評価に関しては複数本の破断、主蒸気管の破断事象との組合せなども含め、N
RCの今後の継続検討課題とすることとなっている。
② フランス
 二本破断を状態四(一万炉年から一〇〇万炉年に一回程度の発生頻度の事象)と
して想定している。
③ ドイツ
 「主蒸気管破断と蒸気発生器伝熱管破損」「蒸気発生器伝熱管破損と主蒸気安全
弁開固着」の複合事象の解析が行われている。
4 PFR事故と被告動燃の隠されていたSWAT―3 RUN16 19実験か
ら導かれる結論
 まとめとして、これまでに明らかになったことは、
① PFR事故伝熱管三九本の破断、七〇本の損傷、動燃が一九八一年に実施した
SWAT―3 RUN16は伝熱管二五本の破断をもたらした。いずれも設計基準
を大きく上回る事故であり、PFR事故は動燃の実験の再現とも言えるものであっ
た。この大量破断のメカニズムは高温ラプチャを原因とするものであった。破断の
事故伝播に関してこれまでの安全審査の前提となってきた現象把握自体が誤ってい
たといえる。
② 被告動燃はSWAT―3 RUN19の実験で水流動のある伝熱管に高温ラプ
チャは発生しなかったことを唯一の根拠としてもんじゅでは高温ラプチャは起きな
いとしている。しかし、この実験の条件は保守的なものといえないし、この実験で
も加圧管の五本については高温ラプチャが発生しているのである。
③ 急速ブローが設備されていれば安全であることは証明されていない。被告動燃
の調査によっても、PFRでは、急速ブローは有効でないとして取り外されてい
た。又、仮に設備されていたとしても効果は大きくないとされていた。
④ 再現実験をやり、推定された事実関係、事故推移を検証すべきである。推定さ
れた条件による計算だけの現状では、事故とその影響の解明は不可能である。
⑤ このような再現実験に基づいて設計基準事故を設定し直す作業が不可欠であ
る。
⑥ 高温ラ
プチャーによる伝熱管大量破断事故の発生の危険性は極めて高い。にもかかわら
ず、この点に関して国の安全審査は全く行われていない。
⑦ もんじゅ蒸気発生器には看過しがたい安全上の重大な欠陥があり、又、このこ
とが全く国の安全審査で審査されていないことが明白となった。もんじゅ設置許可
には重大かつ明白な違法があり、もんじゅの運転は差し止められなければならな
い。
第三 地震による事故発生の危険性
一 地震に弱い「もんじゅ」
 本件原子炉は、冷却材にナトリウム―を使用している。ナトリウム―は、比熱が
軽水の約三分の一であり、熱伝導率は軽水の約一〇〇倍と大きく、熱伝達率も大き
い。一方「もんじゅ」の機器・配管はステンレス・スティールで作られており、金
属の中でも特に熱膨張が大きい。そのため管の厚み方向の熱応力は、特に原発の起
動や停止のように温度変化が早いときに問題となり、緊急停止のように急激な温度
変化があるときに、配管や機器の材料にはそれらの内外に生じる急激な温度勾配に
よって、熱衝撃と言われる瞬時の大きな力が加わる。この熱衝撃を緩和するために
は、材料の肉厚を薄くしなければならない。例えば「もんじゅ」の配管の直径は、
加圧水型原発より一〇センチも太いのに、加圧水型原発の配管の厚さが七センチで
あるのに対し、「もんじゅ」においては、わずか一センチほどしかない。「もんじ
ゅ」設計者からすれば、このように熱に対する強さと地震に対する強さとを双方兼
ね備えさせなければならないが、相反する要求となってしまっていて、結局、地震
に対する強さをぎりぎりまで犠牲にして、熱に対する強さを優先せざるをえなかっ
たのである(甲イ一九九号証一八四ページ以下、図)。
 この点は、設計者の側も認めているところであり、甲ハ四六号証の日本原子力産
業会議の「原子動力研究会年会報告書」(Ⅶ―26)で、石川島播磨重工業の杉浦
光は次のとおり述べている。
 「FBRでは圧力が低いため、容器、管は、耐震設計が支配的になるが、板厚を
増すあるいは耐震支持点を増加させるためには、高温であるため熱応力設計から制
約が生じ、耐震設計と高温構造設計での最適化が重要となる。FBRは軽水炉に比
較して建設コストが高いが、日本では特に耐震設計の影響が大きいとされてい
る。」
 耐震設計と高温構造設計との最適化というのは、要するに、双方の要請が相反す
るため、その間でどのように妥協をはか
るかということであり、高温構造設計のために、耐震設計はある程度犠牲にせざる
をえないことになるのである。
 ところで、最近になってようやく公開された設計及び工事の方法についての認可
申請書には、具体的な構造設計の内容が記載されているが、その数値のほとんどが
隠されて空白となっている。これほどまでに空白にしておかなければならない理由
は、考え難く、右のとおり、熱応力設計上の要請と耐震設計上の要請との間の妥協
の産物であるからこそ、判定の微妙なものも混じっていて開示できない可能性があ
る。この事実もまた、「もんじゅ」設計が、かろうじて合格したに過ぎないもので
あることを示すものとなっている。
二 「要注意断層」(ブロック境界断層)
1 古い考え方に立つ国の審査
 歴史地震を重視する国の審査が、現在の地震に対する考え方に合致していないこ
とはすでに述べた。そもそも、国はプレートテクトニクスを前提にしているかどう
かも疑わしい。すでにプレートテクトニクスは、高校の教科書にも掲載されるほど
の確立された常識となっている(甲ハ六九号証)。この考え方に立てば、第四紀後
半、日本は同じように太平洋プレート、ユーラシアプレート、北米プレート、フィ
リピン海プレートによる応力場に置かれ、同じ断層運動が繰り返し生起してきたこ
とが導かれる。活断層は、それぞれ活動性が異なるにしても、現在もみな活動して
いる。それが、年平均変位量という概念に良く表わされている。この年平均変位量
という概念は、断層がわずかずつ年々歪みを蓄積していっているということを前提
としている。
 この考え方に立てば、まずもって注意を要する断層は、松田時彦の言う要注意断
層の考え方からすると、危険度が○・五を超える断層や空白域ということになる。
しかし、指針には、このような空白域を考慮するという記述は一切登場しないし、
もちろん、危険度等という概念も登場しない。
2 空白域
 ブロック境界の断層については、部分的にすでに破壊された区間(破壊域)と長
期間地震が発生していない区間(空白域)とを認めることができる。これを描いた
図が甲ハ六七号証一九八ページの図であるが、本件敷地付近には、敦賀湾―伊勢湾
構造線にDとEの二つの空白域が、花折―金剛断層線にFの空白域が認められる。
このうちDは甲楽城断層の北部であり、Eは柳ヶ瀬断層、Fは木の芽(敦賀)断層
と花折断層である。
(一) 甲楽城断
層の北部は、これまでそれに対応する歴史地震が認められていないので、右甲ハ六
七号証では一〇〇〇年を経過時間とみなしている。しかし、この経過時間が正しい
保証はなく、もはや十分に歪が蓄積されている可能性は否定できない。しかも、一
九六三年に甲楽城断層の南側部分が、マグニチュード六・九の地震を起こしてお
り、松田時彦の言う「断層の一部分が活動したときの残余の部分」でもあるから、
この部分が活動する可能性は、相当にあると見るべきである。また、一九六三年の
地震のマグニチュードは六・九であるから、それほどエネルギーの解放は進んでい
ないと見るべきであり、北部が動いたときに動く範囲は、もう少し広範囲である可
能性も大きい。
 なお、甲ハ六七号証では、二〇三ページで起こりうる地震のマグニチュードは
七・二と記載されているのに、一九九ページでは+七・三とされている。これは、
十分に歪が蓄積されたら七・三であるが、経過時間を一〇〇〇年とすれば七・二で
あるということを意味する。だから、仮に経過時間が一〇〇〇年ではなくもっと長
かったとすれば、必然的にマグニチュードは七・三となる。
 この断層の南端が本件敷地の直近であるが、そこまでの距離は約一二・五キロメ
ートル程度(仮に「震央」とすると一五キロメートル程度)となる。
(二) Eの柳ケ瀬断層は、空白期間六七〇年とされている。しかし、?マークの
付された一三二五年の地震は、マグニチュード六・七とされる地震であり(乙イ六
号証 六―五―二四の六の地震)、本来想定される七・三の地震の八分の一しかエ
ネルギーが解放されていない。すると、この部分も、かなり歪が蓄積されている可
能性がある。
 この断層についても、その南部で一九〇九年に姉川地震が起きており、同様、同
一断層の残余部分とも言えるから、その点からしても要注意断層と言うことができ
る。
 この断層の北端(椿坂峠と金折は見ている様子である)が本件敷地の直近である
が、そこまでの距離は、約二〇キロメートル程度と見ることができる。
(三) 花折断層と敦賀断層は、空白期間三三三年とされている。しかし「そもそ
も松田時彦の言う危険度Pの妥当性には、疑問が呈せられており、空白期間が比較
的短いからと言って予断は許さない。いずれにせよ、甲ハ六七号証では、ここも空
白域の一つとして上げているから、やはり危険性はあると見るべきである。
 甲ハ六七号証二〇〇ペー
ジには、「要注意断層への疑問」が記載されている。また、甲ハ六八号証五五ペー
ジ(二段目)にも、「こうなれば『同じ規模の地震が同じ規模で繰り返す』との固
有地震説には疑問が出てくる」とされ、「次の地震の規模をもっと狭い範囲に特定
することは難しいのが実情だ」として、「活断層があるというだけで黄色の信号が
ともっていると考えるべきだ」との松田時彦と藤田和夫の言葉を引用している(同
三段目)。まだ歪の充填には時間がかかるようにみえても、実際にはいつ地震が発
生するかは分からないのである。
 この部分の北端が本件敷地の直近であり、距離は約一八キロメートル程度であ
り、本来想定される地震のマグニチュードは七・五とされている。
三 断層不連続論争の終焉
―不連続の活断層も同時に動く―
 動燃は、甲楽城断層と柳ヶ瀬断層と、その中間に存在する山中断層とを一つの断
層系としてみるべきだとする原告らの主張に対して、これらの間に連続する破砕帯
が認められない、両断層は各々異なる傾斜を示している等の理由を挙げて、これら
を一つの断層系としてみようとはおらず、国もまた動燃のこの主張をそのまま受け
継いで主張する。
 これらの断層が、連続していることは、P4証人が正しく指摘するところであり
(P4証人三五回五二丁以下)、柳ヶ瀬断層自体、南部は横ずれの成分が卓越して
いても北部では縦ずれの成分が卓越している等、動燃の言い分は採用しがたいもの
であった。なお、これら断層は同じ敦賀湾―伊勢湾構造線の一部であり、一九六三
年の越前岬沖地震は、甲ハ六七号証の前記空白域・破壊域の図では、双方の断層に
またがるものとして活動があったとされている。
 ところで、実は、この議論は、現在ではもはやほとんど意味のないものとなって
しまっている。すなわち、現実に起きた兵庫県南部地震では、三つの断層が次々と
動いたが、甲ハ六五号証五一ページにあるように、最初①の断層が動き、それが
②、③の断層に飛び火して、三つの断層が動いたのである。このうち、①の断層は
横ずれ型断層であったが、ここから飛び火した②の断層は逆断層型の断層であっ
た。実際、同五〇ページの図にも、①と②の断層は、離れて記載されており、単に
①の近傍にあった②の断層が、①の断層の運動の影響を受けて動き始めたことが分
かるのである。
 こうして、型が違って連続していない複数の断層も、飛び火して同時に動くこと
がありうるこ
とが、事実をもって明確に証明されてしまった。もはや、断層が「連続しているか
いないか」ということを議論する意味はなくなってしまったと言って良い。ともか
く近くにあれば、複数の断層は次々と動いてしまうことがありうるのである。乙ハ
一六号証の松田時彦論文も、問題は地殻に蓄えられた歪エネルギの歪領域の大小で
あるとする(二七〇ページ)。松田は、断層系が、一つの歪領域を形成してさえい
れば良いと考えているのであり、二七三ページの図は、雁行しているわけでもな
い、連続していなさそうにも見える複数の断層が、一つの領域の中に描かれてい
る。断層が連続しているか否かよりも歪領域の問題に帰着してしまっているのであ
る。
四 地震地体構造から想定される地震は、より敷地近傍に想定しなければならない
 指針は、耐震設計の方法として、当該地域の地震地体構造から、最大の地震を想
定する方法を採用している。
 具体的には、この地域における地震の規模の上限をマグニチュード七・八である
とし、この規模の地震を起こしうる長さの断層が六〇キロメートルの断層であるこ
とを考えて、相当する断層として花折断層を選定して、ここで発生するとしてい
る。ところで、前記のとおり、仮に花折断層の位置で起こるとしても、敦賀断層と
ともに断層が動くと見るべきであり、そうなると震央距離としても、六〇キロメー
トルとは行かなくなってしまい、約五〇キロメートル程度ということになる。更に
は、前記のとおり、甲楽城断層と山中断層、柳ヶ瀬断層とは一体のものであるか
ら、どこかの部分で発生した地震は、仮にこれらの断層が連続していなかったとし
ても、次々飛び火して次々伝播する。すると、地震地体構造を考えると、これらの
一体となった断層系として考える必要があり、甲楽城断層の位置にこのマグニチュ
ード七・八の地震を考えることになるはずである。申請書で記載している限界地震
中、もっとも敷地に影響を与える地震は、甲楽城断層で起こりうるとされるマグニ
チュード七・○の地震である。これを○.八上回った(地震のエネルギーでは一六
倍ほど大きな地震となる)マグニチュードの地震であれば、敷地に極めて深刻な影
響を与えることが確実であり、同じ断層で七・○の地震が起こりえるとして設計し
た「もんじゅ」は、到底健全性を保ちえない。
五 ブロック内の考慮されるべき危険な活断層
 甲ハ六七号証(二〇五ページ一三行目以下)に
よれば、「ブロック境界では、空白域が来るべき地震で破壊する可能性の高い区域
であるとみなし、地震危険度を見積もってきた。ところが、ブロック内ではブロッ
ク境界と同じ方法で地震の起きる危険度の高い領域を検出するとができない。」と
される。また、同二〇六ページには、「従来の考えでは活動間隔が、A級活断層一
〇〇〇年、C級一〇〇〇〇年、B級がその中間の値をとるとみなされてきた」が、
そのような関係は同ページの表からは読み取れないとし、「危険とみなされる活断
層の範囲は、・・・一万年を考えればすべての活断層が評価の対象となろう」(同
二〇七ページ下から六行目以下)としている。
 こうして、実は、本件敷地周辺の断層は、すべてが要注意ということになり、耐
震設計審査指針の考えを考慮するなら、すべてが設計用最強地震とならなければな
らなくなるのである。
 そこで、本件敷地周辺で、ブロック境界ではない、危険な断層について見ること
とする。
1 白木―丹生リニアメント+S―15~17
(一) まず、本件敷地の沖合に海底音波探査で存在の確認されたS―15~17
の断層がある。これらの断層の活動性は明らかではないが、すでに相当期間活動が
なく、歪は一〇〇%近く蓄積されている可能性がある。S―15と17とは伏在断
層とされていて、かなり長期間活動をしていないことが明らかであり、極めて危険
な断層と言うことができるであろう(甲ハ六九号証)。
 次に白木―丹生リニアメントは、「日本の活断層」で活断層の疑いのあるリニア
メントと記載されているものである。このリニアメントは、その延長上に海底断層
S―15~17があって、これと走行方向が調和的であることからしても、活断層
の疑いは相当程度あるものと思われる。このリニアメントとS15~17との連続
性はその相互の位置関係からあるものと思われるが、すでに述べたとおり、どちら
にしても、断層が近傍に連続しうる形態で存在していたなら、実際に連続している
か否かは無関係に、一方が活動したとき、その影響を受けて同時に活動する可能性
がある。実際の断層は、地表地震断層の前後の地中に更に続いており地表の断層
は、その氷山の一角でしかないことは、今回の兵庫県南部地震によっても実証され
ている。すると、白木―丹生リニアメントとS―15~17とは一つの断層である
か、少なくとも地下では相当部分がオーバーラップしている可能性が高
い。だから、これらの断層およびリニアメントは一つの断層系として考える必要は
確実にある。
(二) ところで、動燃は、このリニアメントが、「日本の活断層」で確実度Ⅲと
されていて、この確実度Ⅲというのは、「活断層の疑いがある」というに過ぎず、
活断層ではない可能性が大ということを意味すると主張しており、申請書にも確実
度Ⅲであると記載されているので、国も同様の立場を取っていると思われる。そこ
で、以下、この点を検討する。
 確かに確実度がⅢであれば、「活断層の疑いがある」という程度にとどまること
は「日本の活断層」記載のとおりである。しかし、「疑いがある」という程度であ
れば、耐震設計の基礎にする必要がないというわけには行かない。原発、特に高速
増殖炉は、多量の放射能、とりわけ危険なプルトニウムを多量に内蔵しており、し
かも高速増殖炉は、熱応力設計が必要なため地震に弱い構造とならざるをえない宿
命にある。だから、疑いがあったら、それだけでその想定される活断層に対する備
えを十分にしておかなければならない。そうでなければ疑いが現実化したときに、
取り返しのつかないことになってしまう。これは、事故の発生確率に対するのと同
様の考え方である。例えば確実度Ⅲの一〇個の活断層のうち一でも、活断層である
ならば、そのような危険な賭けはするわけには行かないのである。もっとも、確実
度Ⅱの断層が、「活断層と推定されるもの」とされていることと対比すれば、確実
度Ⅱのものは活断層である可能性が五〇%以上のもの、確実度Ⅲのリニアメント
は、活断層である可能性が五〇%以下のものと見るべきであるから、決してそれほ
ど可能性が小さいというわけではない。
 だから、確実度がⅢであることのみで良しとされて、それ以上の検討なく「もん
じゅ」設置が許されてはならないのである。これを別の角度でみるなら、要するに
原告側は、当該リニアメントは断層の疑いがあるという程度に立証すれば足り、疑
いがあることを立証できれば、あとは被告側で断層ではないことを立証しなければ
ならないということになる。立証責任は、疑いの程度までは原告側に、その後は被
告側が負う。
 ところが、動燃は、どうやら確実度Ⅲと言えば、それで足りると思っているよう
である。ここでも、動燃は、可能性が五〇%以下のものは耐震設計で考慮する必要
がないと言っているのである。前述の松田式、金井式についても、同様
に、この式で算出される値より大きくなる、全体の半数の実測値は考慮しなくて良
いと、動燃も国も考えているのであるが、動燃も国も、半数に満たないデータは無
視をするという基本的立場を、ここでも堅持しようとしているのである。
 しかし、動燃も、これだけではさすがに相当ではないと考えたのか、更に「この
リニアメントの周辺地域を詳細に踏査し、確認できる露頭はすべて調査した結果、
この地域の花崗岩は、小規模な粘土化帯がいくつか認められるものの、リニアメン
トに沿った連続する断層は認められない。また、この粘土化帯を不整合に被覆する
下末吉層相当層に対比される被覆層には変位が認められない」と申請書に記載して
いる。
 ところで、周辺地域の露頭は、甲ハ一二号証添付の図面のように存在する。この
白木峠の道に沿ったところに露頭がところどころ散在しているのである(図面で斜
線の付されている道沿いの崖状部分)。だから、この道から離れたところに露頭が
あるわけではなく、詳細に踏査したと言っても、道沿いの露頭を見たというだけな
のである。
 これら露頭は、甲ハ一二号証の写真に撮影されているが、①の写真の段になって
いる上の崖の部分の粘土化帯を②と③とで撮影してある。これらは、その状態から
して北東―南西方向に走る粘土化帯であり、それがどこまで続いているかは、確認
することができない。甲ハ一三号証には、粘土化帯が北東―南西方向に走行して何
本も描かれているが、露頭部分から推定したものであって、これらの表層土壌をは
がして確認したというものではありえない。そのような作業を行なったという主張
も証拠もないし、そもそもそうした調査を行なった形跡は、写真からも全く見られ
ない。要するに、動燃の行なった現場での地質踏査なるものは、いつでも確認する
ことのできるいくつかの道沿いの露頭を見たというだけなのであって、それでリニ
アメントを断層ではないと断定しようと言うのである。何と大胆不敵な発想である
ことか。それだけの作業で、そこまでの断定などできようはずがない。本当に断層
ではないと否定したいなら、手近にある露頭を見るだけなどという安易な方法では
なく、多額の資金が必要であろうと、大規模に表層土壌を除去して基盤の状況を直
接確認することが必要であり.この方法のみによって、リニアメントを断層ではな
いと確定することができるのである。
 なお、写真に撮影されている二段に
なった比較的大きな露頭は、近時、工事の都合で作られた露頭であり、甲ハ一二号
証添付の図面作成時にはなかったものである。この新たな露頭でも、それまで発見
されていなかったいくつかの粘土化帯が発見されている。要するに、この周辺に
は、北西―南北方向にいくつもの粘土化帯が走行しているものと思われ、これを切
る断層がないかどうかを表層土壌を除去して検討するならともかく、そのうちのい
くつかをただ観察したとしても、何の有益な結論も導かないことは明らかである。
 更に、動燃は、海域のS―15~17についても検討し、これが活構造ではない
と申請書に記載している。しかし、まず、この音波探査を行なった当事者であり、
本件に利害関係を有さない海上保安庁水路部が、これを活断層だと認めていること
が重要である。また、すでに述べたように、この部分の音波探査記録(S―17の
南端部分)では、④の部分の最上位層には地層の乱れはないが、その下方を見れ
ば、変位した地層の山状の形態が、下に行くほど高く鋭くなっていっていて、地層
にも乱れが認められる。これは、明らかに定期的にこの断層が活動していること、
いまなお活動していることを示しているのである。
 動燃は、こうして白木―丹生リニアメントについては、「日本の活断層」の記載
にもかかわらず、活断層ではないと断定し、S―15~17の断層についても、活
断層ではないとする。ところが、この動燃の主張は、一向に受け入れられることも
なく、「日本の活断層」は、一九九一年に新版が発行されたが、そこでも動燃の主
張にもかかわらず、あいかわらず右リニアメントは、活断層の疑いがあるとされ続
けているのである。
(三) こうして、S―15~17と白木―丹生リニアメントはあわせて一つの断
層として見て、本件審査の資料としなければならない。そこで、この断層の長さを
見れば、全部で一四キロメートルあり、これを松田式にあてはめれば、マグニチュ
ード六・七の地震が発生することになる(甲ハ七四号証)。この地震のもたらす地
震動の大きさを図で見ると、その地震動の大きさを知ることができる(図4―2―
5―4)。
 なお、実際に断層の走行しているのは、本件敷地のわずか一キロメートル足らず
の箇所であるが、動燃、国の採用する震央距離をとれば二・五キロメートルになっ
てしまう。目の前一キロメートルを走行する長さ一四キロメートルの断層が動いた
場合、断層の中央のところの一キロメートル離れた場所に敷地があるのか、あるい
は一四キロメートルの断層の中央から二・五キロメートル南下した断層部分から一
キロメートル弱離れた場所にあるのかで、違うとはだれも思わない。ここに震央距
離という考え方の不自然さがある。
 この点を見れば一たとえ震央距離を二・五キロメートルとしたとしても、本断層
が、他の断層の点とは比較にならない大きな地震動をもたらすことが、一目瞭然に
分かる。そこで、更に進んで、この断層が活動したときの想定される最大速度振幅
を、近距離の地震でも適用可能なP19・田中の式(甲ハ七三号証、なお甲八六〇
号証の原子力安全委員会の「検討会」報告書も三八ページにこのP19の経験式を
掲載して、その信頼性を認めている)により算定すると、四三・四カインとなる
(甲ハ七四号証)。この値は、模擬地震波のS2の最大速度振幅二二・八カインの
一・九倍の値である。しかもこの値は、まだ松田式、P19式の誤差の問題は考慮
していない値であり、誤差を考慮すれば、更にその値は大きくならざるをえない。
 すでに述べたように、「もんじゅ」は、熱応力設計上の要請から、耐震設計に安
全余裕がほとんどないことは確実である。だから、この動燃が想定した最大速度振
幅の一・九倍の最大速度振幅に耐えられる設計になっているはずはなく、まして、
松田式、P19式の誤差を考えれば、「もんじゅ」が想定できる最大の地震に対し
て安全を確保することができないことは明らかである。
(四) 大崎の方法では、建物のそれぞれの高さの床の質量を一つの点に集中させ
て単純化し、扱う(甲ハ五二号証添付資料14の第2・1図)。ところが、実際の
建物は、連続して質量が分布する広がりを持ち、一点にすべての質量が集中してい
るわけではないから、大崎の方法では実際の揺れの状況は正確には分からないこと
になる。そこで、生じた問題が「衝撃的破壊」の問題であり、これが明白に現われ
たのが兵庫県南部地震であった。甲ハ七二号証一九四ページ以下は、次のように言
う。
 「兵庫県南部地震は、いわゆる直下地震であり、震源近傍に特有の激しい揺れが
生じた。揺れの初期にきわめて激しい縦揺れと横揺れが、ほぼ同時におこり、比較
的振幅の小さい揺れがそれに引き続いたことが、大きな特徴である。したがって、
その揺れ初期の大振幅の一波とか二波が大震災の発生と大きく関係していたので
はないかと考えられる。ところで、筆者が重視していることは、破壊や変形の生じ
た多数の被害のうちには、その揺れ初期の一波とか二波が主因となり、しかもそれ
らが作用したごく初期の○・三秒とか○・六秒の時刻に、構造物の一部に破損(大
きく完全な破損の発生を指しているのではない)が生じたものがあった可能性が高
いことである。このように発生した破壊やき裂が核となって、引き続く揺れにより
生長・伝ぱし、大きな破壊をもたらしたもののあることが考えられる。」
とし、そのような破壊(衝撃的破壊)の可能性は、建造物を単純化せずにありのま
まの実体に近い状態で調べることが必要だとしたのである。
 この直下地震の場合に、現案の建物で起こりうる「衝撃的破壊」については、
「もんじゅ」の耐震設計では全く検討されておらず、専ら右の質量集中の仮定に基
づいて設計がなされている。実際に白木―丹生リニアメント+S―15~17が活
動して直下地震が発生したときには、この兵庫県南部地震で起こったような破壊が
起こるか可能性が否定できない。
 現在の知見に照らして考えれば、ここにも、本件審査では検討されていない重大
な問題があるのであって、本件許可処分には、この点でも、重大かつ明白な過誤、
欠落が存在する。
(五) 次に見ておかなくてはならないのが、本件敷地におけるボーリング調査の
結果である。それをまとめたのが、乙イ六号証6―3―131等の図面であり、こ
れはP3証人三三回にも図面として添付されている。ここにあるCL級、D級の岩
盤の分布状況を見ると、平面図で北北東―南南西方向に細長く分布している。この
走行方向は、白木―丹生リニアメントと海域のS―15~17の断層の走行方向と
すこぶる調和的である。また、乙イ六号証6―3―142に記載されているボーリ
ング柱状図にの九九メートル付近の記載には、「たて方向の条線および鏡肌が認め
られる。」と書かれ、伺6―3―168の柱状図では、その一五九メートル付近に
は、傾斜八○度前後の破砕帯が、幅一メートル強にわたってあるとされ、更にピン
ク色粘土、黒色酸化物もあると記載されている。P4証人は、これを断層運動にと
もなってできた部分だと証言する(P4証人三六回一七丁)。
 実際、条線や鏡肌は、これをはさんだ二つの岩盤が動いたかちこそできたと見る
べきであろうから、やはり断層である疑いが濃厚である。
 なお、この弱い岩盤がどの
程度広がっているかは、判然とはしない。甲ハ三九号証添付の図面Aの、原子炉建
屋の下に細長いスポット状に存在するCL級岩盤(青色で図示)は、そこにボーリ
ングが届いて分かったものであるが、そこだけスポット状にあるというのも不自然
で、実はボーリングがそれほど密になされているわけではないため分からないだけ
で、この弱い岩盤が更に広く続いている可能性が高い。
 結局、本件原子炉の真下にも断層が走行しているということになる。原子炉直下
の断層は、主たる断層ではなく、副次的な断層であると思われる。しかし、断層が
動いだときに同時にこの断層も動く可能性があって、そのようなことを想定した設
計でもないから、「もんじゅ」の施設は甚大な損傷を受けることになる。なお、仮
にこれが断層ではないとしても、断層に伴う亀裂である可能性は高い。甲ハ七二号
証二一ページ一〇行目によれば、兵庫県南部地震でも、「神戸・阪神地域では、地
表に多数の亀裂が発生し、その中には系統的な変位を示すものも報告されている
が、明瞭な地震断層は認められていない」。仮に、これが断層ではなく亀裂であっ
たとしても、「もんじゅ」の耐震設計は、あくまでも基盤の岩盤は健全であって割
れたり変位したりしないことが前提であるから、その前提が全く崩れてしまう。
 したがって、「もんじゅ」直下に断層や亀裂が発生することを考慮していない本
件許可処分に、過誤、欠落のあることは、この点からしても明らかである。
2 敦賀半島西岸断層
 右の白木―丹生リニアメントから更に断層は南方に続く。この断層(敦賀半島西
岸断層)の総変位量は八○○メートルで、断層の西側地塊を八○○メートル南に移
動させれば、いくつもの点で東西の地形がよく合致する。この付近が東西から圧縮
されているから、この右横ずれ断層である敦賀半島西岸断層と対をなすS21~2
6の断層系が左横ずれ断層であることは、良く力学的に合致する。
 この断層の長さは、約一九キロメートルであり、断層が動くことによって発生す
る地震のマグニチュードは六・九である。この敦賀半島西岸断層が動いたときの地
震動の大きさについても、乙イ六号証六―五―四三の図にあてはめてみる。この断
層としてみた場合、震央は、ほぼ本件敷地の前になり、震央距離は約一キロメート
ルということになる。
3 S―21~27+野坂断層
 S―21~27は、海底音波探査で存在の確認された断層群
である。このS27より南東には、まだ断層を延長する形で若干の急崖が続いてお
り、その先には更に野坂断層が、ちょうどこれら断層系の延長上に続いている。
 この断層群について、乙イ六号証の申請書(6―3―27)は、「なお、この断
層群は陸域の野坂断層と地質構造上調和的であるが、音波探査の結果、両断層の海
域には断層が認められないことから、S―21~S27断層と野坂断層は連続しな
いものと判断する。」としている。
 このS―21~27断層群の南東延長線上にも、わずかの高度ではあるが、多少
の急崖が続いている。この部分については、確かに海底音波探査で断層とされては
いないが、地下深部では断層となっている可能性は否定できない。兵庫県南部地震
でも、野島断層以東は、断層は地下深部に潜ってしまって、地表面では摺曲となっ
て現われていた。このS―27以東の地形は、断層とはされてはいないものの、断
層崖を延長した地形であり、地下の断層による摺曲地形と見ることが可能である。
そこに断層が見当たらないからと言って、それで地下で更に断層が続いている可能
性を否定できないし、むしろそのように続いていると見た方が地形上も合理的であ
る。実際、地表地震断層は、活動した地中深く存在する断層のうちの氷山の一角で
しかない。兵庫県南部地震の活動した断層の状況を見れば、この点は一目瞭然であ
り、地表地震断層の前後に実際に動いた断層はかなりの区間続いている(甲ハ六五
号証九一ページの図)。したがって、S―27の更にその南東に、この断層群の地
中の延長部分は続いていることは確実である。一方、野坂断層についても、その北
西側に野坂断層の地中の延長部分が続いていることも確実である。してみればS―
21~27の断層群と、正確にこの断層群を延長して続く野坂断層は、やはり一体
となった断層と見るのが合理的であり、仮に連続していな<とも、少なくとも、地
下深部ではS―21~27断層群の極く近傍からオーバーラップして野坂断層は始
まっていると見るべきである。したがってこの断層群が活動すれば、その断層の動
きに影響されて飛び火して、兵庫県南部地震で①断層から②断層と③断層とに飛び
火したように、これに続いて野坂断層が動く可能性はやはり否定できない。
 こうして、このS―21~27断層群と野坂断層とは一体のものとして考えるべ
きことになるが、全体の断層群としては、この断層群は、長さ二九キロメートル、
断層距離九キロメートルの断層群となる。これに松田式を適用すると、マグニチュ
ード七・三となるが、念のため動燃や国の言い分のとおりに震央距離を求めると一
〇キロメートルとなるので、これを他の断層同様、図に書き入れる。
 この断層群についても、申請書で検討した甲楽城断層等の活断層より、大きな地
震動を本件敷地に与えることが、この図からも明らかである。もっとも、マグニチ
ュードも、想定された最大の地震動を与えるとされる甲楽城断層のM七・○より
○・三も大きく(地震のエネルギーで三倍程度の違いとなる)、距離も甲楽城断層
が一一・五キロメートルとされるのに対して、一〇キロメートルと近いから、この
想定された最大の地震動よりかなり大きくなるのはいわば当然のことであろう。そ
こで更に、最大速度振幅を金井式とP19式とで計算すれば、金井式では二六・五
カイン、P19式では三八・四カインとなる(なお、断層距離が一〇キロメートル
未満のこの断層については、P19式をより適切な経験式とすべきであろう)。こ
の値は、模擬地震波のS2の最大速度振幅二二・八カインの一・一六倍(金井
式)、一・六八倍(P19式)の値である。しかもこれらの値は金井式、P19式
のそれぞれ誤差を考慮していない値でしかなく、誤差の上限を金井式の二・五倍と
すれば最大速度振幅は六六・二カインとなり、模擬地震波の二二・八カインの二・
九倍となる。しかも、この値はまだ松田式の誤差を考慮してはいない値でしかな
い。
 「もんじゅ」は、すでに述べたように熱応力設計上の制約から耐震設計での安全
余裕がわずかしかない。すると、金井式で算出した二六・五カインの地震であって
も、はたして施設が健全性を保てるか大いに疑問であるし、ましてP19式で算出
した三八・四カインや金井式の値に誤差として二・五倍を乗じた六六・二カインの
地震動に「もんじゅ」の施設が耐えられるはずはない。
 よって、この断層について検討をしていない本件許可には、重大な過誤、欠落の
あることが明らかである。
六 各地震の危険性の要約
1 以上のとおり、歴史地震を重視して設計用最強地震を策定しようということ自
体が誤りであり、原子炉施設設計の対象として考慮すべき地震としては、構造線上
の空白域とその他のブロック内の活断層が動いたときの地震を考えるべきである。
そこで、構造線上の空白域から、甲楽城断層(北部
)を、近傍のブロック内断層からS―15~17+白木―丹生リニアメントの断層
群、敦賀半島西岸断層、S―21~27+野坂断層の断層群とを検討すると、どれ
も申請書で取り上げた地震(設計用限界地震最大のものが甲楽城断層が活動したと
きのものとされる)よりかなり大きな地震動をもたらすこととなる。
 なお、白木―丹生リニアメントは確実度Ⅲとされているが、原発の耐震設計上、
確実度Ⅲの断層は、存在する可能性のあるものとして扱わなければならない。この
リニアメントについての動燃の調査は、現に存在する露頭を調査したにすぎず、不
十分であって、このリニアメントを活断層ではないと断定するには足らない。
2 これらの地震は、どれもいつ動いてもおかしくはない状態にある。空白域にあ
る甲楽城断層は当然のことながら、その他の断層も堆積層に覆われる等して最近活
動した様子がなく、歪は相当に蓄積されているものと思われる。
3 松田式、金井式は大きな誤差を避けられない経験式であり(P19式も同様で
ある)、その誤差の上限を採用して耐震設計をすることが必要である。
4 右の考慮すべき地震に、松田式、金井式もしくは原子力安全委員会の「平成七
年兵庫県南部地震をふまえた原子力施設耐震安全検討会」も採用するP19式をあ
てはめると、動燃・国が選定した地震から算出される地震動の大きさより、更に大
きな地震動が施設に影響を及ぼすことになる。白木―丹生リニアメント+S―15
~17の断層では、P19式によって算出される最大速度振幅は、四三・四カイン
とねり、模擬地震波のS2の最大速度振幅二二・八カインの一・九倍の値となる。
またS―21~27+野坂断層での最大速度振幅は、金井式で二六・五カイン、P
19式で三八・四カインとなり、模擬地震波のS2の最大速度振幅二二・八カイン
の一・一六倍(金井式)、一・六八倍(P19式)、金井式の誤差を二・五倍とす
れば六六・二カインという値になる。
 その上、更に松田式・P19式の誤差の上限を取ると、更に大きな平均速度振幅
を用いなければならなくなる。
5 もともと「もんじゅ」は、熱応力設計と耐震設計という相反する要請の妥協の
産物として設計がなされざるをえない宿命にある原子炉である。
 耐震設計審査指針では、S2地震との組み合わせで、すでに「建物の相当部分が
降伏し、塑性変形する場合でも過大な変形等が生じ、その施設の機能に影響を及
ぼすことがないこと」とされていて、施設が変形する等の被害を受けても可とする
扱いとなっている。もはやすでにそこには安全余裕はないと見て良い。とりわけ耐
震設計を犠牲にしてでも熱応力設計を行なわなければならない「もんじゅ」では、
安全余裕が切り捨てられている可能性が高い。
 そうであれば、これほど大きな地震動に耐えられるはずはなく、多くの施設が崩
壊することになってしまう。
6 白木―丹生リニアメント+S―15~17の断層は、直下地震を引き起こす。
本件敷地の原子炉設置部分の直下には、走行方向が右断層と調和する、弱い岩盤の
広がった薄い面がある。条線が見られる等、これが断層である可能性は高い。これ
が断層であったとすれば、本件許可の前提である施設の基礎岩盤自体の健全性が損
なわれることになる。
 右断層は、直下地震を引き起こすが、直下地震について近時問題とされている衝
撃的破壊の生ずる可能性も否定できない。
7 したがって、特に現在の知見に照らすと、本件許可処分が、重大な過誤、欠落
のある、重大かつ明白に違法なものであることは確実に明らかとなっている。
七 地震によって生じる施設の損傷
 想定外の地震動によって施設の受ける損傷の特徴は、同時に多数の建物や設備が
損傷を受けることである。三系統の冷却系設備があっても、それがすべて同時に損
壊する可能性が高く、また建屋にしても、原子炉容器にしても、更には配線等の設
備やガードベッセルでさえ健全性を保ちうるかどうか疑問がある。要するに、すべ
ての施設が、同時に損傷を受ける可能性がある。これが他の事故とは大いに異なる
ところなのである。例えば、冷却系設備がすべて損傷を受けて機能しなくなれば、
崩壊熱の除去もできなくなり、運転を中止している現在であっても、炉心崩壊を招
く。
 一旦、想定外の地震が施設を襲ったときに施設が受ける損傷は、広範囲かつ深刻
であり、多量のプルトニウムを含む放射能が施設外に漏出し、多数の住民が死亡す
るなどの甚大な被害が生じ、付近一帯を汚染して、更に日本列島の相当部分を放棄
せざるをえない事態が、十分に想像可能なのである。
 これまで日本列島は、歴史的に稀有な静穏期であったと言われ、兵庫県南部地震
を機に激動期に入ったのではないかと多くの学者が言う。現在、生活している国民
のほとんどが想像し難い、激しい時代に突入しようとしているのである。
 藤田和夫は、次のように言
う(甲八七二号証二二二ページ以下)。
 「地震はなぜおこるのかという問題に対する、行政を含めて一般の意識が、あま
りに低すぎた。それは古代人に劣るといってよいだろう。かえって自然にたいする
畏怖感がなくなっていることが、大災害につながったとも言える。その責任は、わ
れわれ地球科学者にもある。
 地震は地殻歪みの蓄積が破断現象を伴って解放される現象で、一過性のものでは
ない。グローバルにみれば日本列島全体が地殻の巨大な歪み帯である。
 しかしそのなかでも地震のとくにおこりやすいところがある。それは地質構造に
も地形にもあらわれていることが急速にわかりつつある。地震や火山爆発などは、
台風・洪水・土石流などとはちがって一桁大きいタイムスパンでの中でおこるカタ
ストロフィックな事件である。それらを視野に入れた、日本列島に生きるための自
然観を、社会に浸透させてゆくのが、地球科学者の役目であろう。」
 本件判決で、裁判所が、地震の危険性を、正しい自然観のもと、正しく指摘する
ことがぜひとも必要である。もし裁判所が、その指摘を怠るなら、日本列島は危険
な賭けの中に置かれる。判決が正しい指摘を怠って、多数の住民が死亡し、日本列
島の相当部分を放棄したときには、本件判決をなした裁判所の責任も厳しく問われ
ることになるだろう。そのようなことのないよう、正しい判決をすることを、原告
らは強く求めるものである。
八 「自然的立地条件に係る安全性に関する原告らの主張に対する反論」に対する
反論
1 被告国の右補充書は、松田式の誤差についての原告らの主張に対して、単に
「活断層の評価は適切にされている」とするのみで、マグニチュードの推定に伴う
誤差に対しては適切な評価と安全確保のためのその誤差への対応がないという主張
には反論がない。
 金井式については、誤差の存在を認めて.不十分ながら反論を企図しているが、
松田式については、誤差の存在について認めることもしない。そこで、安全審査に
おいて適用している松田式には誤差がないあるいは無視できるほど小さいという主
張をしようとしているのかをまずもって明らかにされたい。また誤差の存在を争わ
ないなら、その誤差への対応についての主張に対する反論は放棄するのか明らかに
されたい。
 ちなみに右松田式は、どこまで行っても「単なる目安」でしかなく、「合理的な
式」とも言えない。ここには大きな誤差が内包されることが当
然の前提となっており、この誤差について考えないなら、それだけで被告国の処分
は違法なものとなる。
 この単なる目安でしかないはずの松田式が、無視できるほど誤差が小さい式とし
て適用できるということになれば、地質学上の大きな発見となるから、必ずや学術
論文として学術誌に掲載されているはずであるが、そうした論文は存在していな
い。被告国の言うような断層に対する詳細な調査だけでは、もちろん松田式の誤差
の評定はできない。実際に地震が起きてそのマグニチュードを推定して、それと断
層の長さとの関係が松田式の言うような関係となるかが問題なのである。しかし、
松田式の誤差を評定するに足る数の地震が、近時起こっているとは到底考えられな
い。
 この誤差について、被告国は、耐震設計で安全余裕があるから大丈夫だと主張す
るかも知れないが、その場合には、誤差をどれほどと見積もって、その誤差のどの
程度まで(何σまで)誤差の範囲として取っているのか、それに対する安全余裕は
どれほど考慮しているのかという具体的な主張が必要である。
 なお、松田式について、金井式のように耐震設計の安全余裕でカバーできるとい
う主張を被告国がしなかったのは、松田式が誤差がないからではなく、逆に松田式
が単なる目安でしがなくて誤差の評定が困難で、誤差を論じるならそれを極めて大
きいものとして扱わざるをえないので、そうした主張もしょうがなかったものと思
われる。この点の反論を放棄すれば、巨大地震によるもんじゅ倒壊の恐れは確実に
存在するのであるから、他の論点を論ずるまでもなく、それだけで本件許可処分の
違法性は重大かつ明白となる。
2 金井式の誤差についての原告の再反論
 平成一〇年二月一五日付P2証人調書添付4は、標準偏差等について論述した書
籍の抜粋である。これによれば、1σの範囲にデータのある確率は0・6827で
あり、田中貞二論文が金井式の誤差を○・六四~〇・五七としているのは、その程
度の誤差についてのものである。これを2σとすれば、確率は0・9545とな
り、3σとすれば確率は0・9973となる。すなわち、誤差が二・五倍まであり
うるとする甲八九号証の図は、3σ(1+0・57×3)にほぼ相当するのであ
り、被告国も正当とする右田中論文からしても誤差は少なくとも二・五倍程度を考
えなければならない。
 考慮する誤差は、誤差を一σまでとるか、3σ、4σとするのかによ
って異なってくるのであるが、どこまでの誤差について「耐震設計の全体の保守珊
性」(三二ページ)によってカバーできると被告国が主張するのか明らかではな
い。何σまでの誤差について保守性でカバーできるかを明らかにしない主張は無意
味ですらある。5σでも10σでもあるいは100σでも1000σでも対応でき
ると主張しているはずはありえないからである。
 また誤差二・五倍では危険性があることは、被告の右甲八九号証についての主張
の前提となっていると見ることも可能であり、いずれにせよ、被告国には、どの程
度の誤差までを考慮しているのか、安全審査において実際に誤差をどの程度まで考
慮するという議論がなされたのか、耐震設計の全体の安全性によって、どう具体的
に対応できると主張するのか、誤差について対応できるとする証拠は、全証拠中ど
こにあるのかを明らかにすべきである。
九 自然的立地条件に関する原告ら反論に対する被告の反論に対して
1 被告国は、原告の「被告国は、松田式のマグニチュードの推定に伴う誤差につ
いては、誤差の適切な評価とそれに対する安全確保のためのその誤差への対応を行
っていない。誤差の存在についても認めることもしない。この誤差について、誤差
をどれほどと見積もって、その誤差のどの程度までを誤差の範囲として取り、それ
に対する安全余裕はどれほど考慮しているのかという具体的主張が必要である。金
井式についても、どの程度の誤差までを考慮しているのか、安全審査において実際
に誤差をどの程度まで考慮するという議論がなされたのか、耐震設計の全体の保守
性によって、どう具体的に対応できると主張するのか、誤差について対応できると
する証拠は全証拠中どこにあるのか」との主張に対し、
① 松田式は、他の原子炉施設の耐震設計においても、有用な経験式として現在で
も広く活用されている。このことは、松田時彦が新松田式を提案した後でも変わっ
ていない。
② 本件安全審査では、地下の地質構造も推定した上で活断層の長さの妥当性を評
価しているのであって、断層が引き起こす地震の規模を過小評価することもない。
③ 松田式は、経験式であって、断層の長さとその断層が引き起こす可能性のある
最大のマグニチュードの関係を経験を踏まえて表した式であって、右の関係を保守
的に評価することを目的として策定されたものではない、原子炉施設の耐震設計
は、基準地震動の策定から個
別具体的な耐震設計までの全体で保守性を確保する体系を採用しているから、松田
式に保守性がないことをもって、右式を適用することが不合理であるということは
できない。
④ 金井式が岩盤における最も確からしい地震の影響を評価する経験式として現在
でも広く活用されているものであるから、金井式を用いることは適正かつ合理的で
ある。
⑤ 原子炉施設の耐震設計は、基準地震動の策定から個別具体的な耐震設計までの
全体で保守性を確保する構造となっているのであるから、基準地震動の策定に当た
って経験式である金井式を用いることは、何ら不合理ではない。
 と主張する。
2 このうち、松田式、金井式が他の原子炉施設においても広く用いられていると
の主張は、「誤差問題」に対する何の反論にもなっていないものである。他の原子
炉施設においても松田式、金井式が用いられているとしても、それは他の原子炉施
設でも、「誤差問題」を完全に無視した耐震設計が行なわれているということを意
味しているに過ぎない。
 確かに、被告国は、松田式が断層の長さとマグニチュードの関係を保守的に評価
することを目的とした式ではないと認める。これは、想定されるマグニチュードが
松田式による値を超えうること、すなわち、誤差の存在することを認めたものであ
り、松田式によって算出された値が過小評価となることを認めたものとも言うこと
ができる。
 ここでの問題は、松田式が合理的か新松田式が合理的かの問題ではない。金井式
についても同様に、それが合理的かどうかの問題ではない。いずれの式が合理的で
あろうと、経験式を導いた基礎となる数値がどこまでの範囲に存在するか、その数
値の限界がどこにあるのかが問題なのであって、それら数値の平均的な値がどこか
は、保守性の要求される原発の耐震設計では必要はない。必要なことは、誤差の限
界を求め、それを保守的な値として使用することである。それが耐震設計の出発点
でなくてはならず、それを行っていない耐震設計は耐震設計の名に価しない。
3 「誤差問題」に対する被告国の立場は次のようにまとめられる。
(一) 被告国は松田式の誤差の範囲の推定を行っていない。
① 被告国は、松田式の誤差の最大限の推定値を具体的に算出し、地震が発生した
ときの地震動の大きさを、その最大限の推定値のマグニチュードを用いて算出した
上での耐震設計を行っていない。
② したがって、被告国には、対象と
している断層から、実際にどれだけの大きさのマグニチュードの地震が最大限起り
うるかが分からない。
③ したがって、被告国には、松田式の誤差の最大限の地震が発生したときに、そ
の後の耐震設計で「安全余裕」をとったとしても、その「安全余裕」で足りるかど
うかが分からない。
(二) 被告国は、金井式の誤差の範囲の推定を行っていない。
① 被告国は、金井式の誤差の最大限の推定値を具体的に算出し、その最大限の地
震動を用いた耐震設計を行っていない。
② したがって、被告国には、対象としている断層が活動したときに、実際にどれ
だけの地震動が最大限発生しうるかが、分からない。
③ したがって、被告国には、金井式の誤差の最大限の地震動が発生したときに、
その後の耐震設計で「安全余裕」をとったとしても、その「安全余裕」で足りるか
どうかが分からない。
4 原告らの主張の要約
 最後に原告らの「誤差問題」についての主張を明確にしておくため、その主要な
点を要約する。
① 松田式は、すこぶる大きな誤差を内包する式であり、マグニチュードとして少
なくとも○・六(エネルギーとして約八倍)の誤差を考えなければならない。しか
も、誤差の評定が困難であることからすれば、○・六では不足するものと思われ、
○・八(エネルギーとして約一六倍)、あるいは一・○(エネルギーとして約三二
倍)程度の誤差を考える必要がある。
② 金井式も、大きな誤差を内包する。誤差としては二・五倍程度は考慮する必要
がある。
③ 耐震設計は、松田式、金井式の誤差の最大値を用いて行なわなければならな
い。それが、起こりうる地震の最大のマグニチュード、最大の地震動を示すものだ
からである。
④ 耐震設計上の安全余裕が十分であるかどうか(十分な保守性が存在するかどう
か)の評価は、松田式、金井式の誤差の最大値がどれだけかを評価して、初めて可
能である。
⑤ ところが、被告国は、松田式、金井式の誤差の最大値を取った上での耐震設計
の評価をしていないから、耐震設計において十分な安全余裕があるとは言えない
⑥ 松田式、金井式の誤差は、前記のように巨大であるから、これに対処できるだ
けの安全余裕は、「もんじゅ」の耐震設計には存在していない。
第四 炉心崩壊事故解析の誤り
一 出力暴走事故の恐さ
1 出力暴走とは
(一) 中性子が核分裂性物質にあたると核分裂反応が起こり、その時、平均して
二~三個の中性子が生まれる
。その中性子がさらに別の核分裂性物質の核分裂を起こすと「核分裂連鎖反応」が
起こる。中性子は核分裂を起こす以外に、炉心から外部に漏れたり、原子核に捕ま
ったりして消滅するが、原子炉内で中性子の発生数と消滅数が等しくて平衡が保た
れている状態(これを臨界状態という)ならば、原子炉の出力は一定であるが、中
性子の発生数が消滅数よりも上回れば連鎖反応は時間と共に増大し、逆ならば時間
と共に減少する。炉心が臨界からずれている状態を示す量を「反応度」といい、
「正の反応度が投入される」ならば連鎖反応は増大して出力は上昇し、「負の反応
度が投入されるならば連鎖反応が減少し、出力は低下することになる。
 何らかの原因で、正の反応度が投入される、つまり、核分裂で発生した中性子の
うち一個を越える数が次世代の核分裂を引き起こすことになり制御に失敗すると、
原子炉は暴走する。たとえば次の世代で前の核分裂よりも平均して一〇〇〇分の一
よけいに核分裂が起こるとすると、連鎖の二回目には一・一〇〇一の二乗、三回目
には三乗、四回目には四乗となって指数級数的に増大する。しかも、核分裂と核分
裂の間の時間は、軽水炉では数万分の一秒であるのに、もんじゅでは○・四五マイ
クロ秒(百万分の一秒の約半分)である。そのため、○・〇一秒の後には軽水炉で
は一・七倍であるのに、もんじゅでは実に二万回の核分裂が起こり出力は七〇〇億
倍というすさまじい増加となる。すなわち、あっと言う間に出力が上昇して制御棒
を入れる操作が間に合わず、原子炉をコントロールすることは不可能である。
(二) ところで、実際には核分裂で発生する中性子は核分裂と同時に発生する.
「即発中性子」だけではなく、遅れて発生する遅発中性子が存在し、原子炉はそれ
をコントロールすることによって行う。しかし、その割合は軽水炉では約○・五パ
ーセントであるのに、もんじゅでは約○・三八パーセントと少ない。通常の臨界状
態の場合には、発生する即発中性子の数は消滅する中性子の全数より必ず少ない
が、正の反応度が投入されて即発中性子だけで臨界が維持できる状態になる(これ
を即発臨界という)と、もはやコントロール不可能となる(甲イ三八五号証四~六
頁)。
2 出力暴走事故は軽水炉でも高速増殖炉でも起こっている
(一) 軽水炉SL―1原子炉・・・制御棒の引き抜きによる事故
アメリカのSL―1は、電力と熱を供給する熱出力三
〇〇〇キロワットの沸騰水型軽水炉であるが、一九六一年、運転再開のための制御
棒駆動装置取付作業中に制御棒を持ち上げたために、原子炉が突然暴走・爆発し、
三名の運転員が死亡する事故が発生した。制御棒が急速に引き上げられたために反
応度の急速な増加が起こり、出力が上昇して熱膨張と気泡が発生し、炉内の圧力が
上昇して制御棒を更に引き抜く結果をもたらし、爆発に至ったと考えられている。
燃料ウランはほぼ一瞬のうちに溶融し、全重量一三トンの原子炉容器は約一メート
ル飛び上がり、二個の遮蔽プラグは炉運転室の天井を貫いて噴き上げられた。爆発
によって発生したエネルギーは一三OMJ(TNT火薬に換算して約三〇キログラ
ム)と推定されている(甲イ三七五号証、甲イ三八五号証)。
(二) 高速増殖炉EBR―1原子炉・・・燃料の湾曲による事故
 アメリカのEBR―1は世界で最初に稼働した発電用原子炉であり、プルトニウ
ムを燃料としナトリウム―とカリウムの合金を冷却材とする高速増殖炉である。一
九五五年、実験中に出力が上がりすぎたために原子炉を止めようとしたところ、ボ
タン操作を誤ったため停止操作が二秒遅れ、暴走した。暴走の原因は、燃料が内側
に曲がって寄り集まると正の反応度が投入されると言う高速増殖炉特有の危険性に
よるものであったため、高速増殖炉関係者に大きな衝撃を与えた。炉心の四〇~五
〇パーセントは溶融し、爆発にまでは至らなかったが、暴走のエネルギーは一四M
Jと推定されている(甲イ三七六号証、甲イ三八五号証)。
3 チェルノブイリ事故-最悪の出力暴走事故
(一) 事故の経過
 チェルノブイリ原子力発電所は、直径一一・八メートル、高さ七メートルの円筒
型炉心を持ち、炉心体積の大部分は減速材である黒鉛ブロックが占めている。黒鉛
ブロックには練炭の穴のように、直径一一・四センチメートルの穴が垂直方向に貫
通し、その穴の中に、圧力チャンネル管が一本ずつ合計一六九三本入り、一本一本
の圧力チャンネル管の中に挿入された燃料棒の隙間を通る軽水によって冷却され
る。
 一九八六年四月二五日、四号炉では、点検のために原子炉を停止する機会に、原
子炉停止の際にディーゼル発電機が動き出すまでの間、タービンの慣性回転を非常
用ポンプの電源として利用できるかどうかチェックするテストが計画されていた。
テストの開始が遅れ、二六日午前一時二三分四秒にテストが始まり、同分
四〇秒、原子炉を完全に停止させるために運転員が制御棒の一斉挿入ボタンを押し
た直後、原子炉の出力が急激に上昇して暴走が始まった。爆発によって、直径一七
メートル、厚さ三メートル、重量約一六〇O~二〇〇〇トンの分厚い生体遮蔽盤が
上に持ち上げられ、原子炉建屋の屋根が吹き飛ばされ、壁が崩壊した。原子炉上部
の中央ホールにあった燃料交換機とそれをつり下げていたクレーンも崩れ落ちた。
その後、粉々になった燃料破片や燃え盛る燃料被覆管の破片、さらには黒鉛の破片
が大量の冷却水とともに上方高く噴き上げられ,火花のように舞い、タービン建屋
の屋根に舞い落ちて数十カ所におよぶ火災を発生させた。
 一方、黒鉛ブロックに火が着き、やがて全面的な原子炉火災に至った。建屋の火
災はすぐに駆けつけた消防隊によって消火されたが原子炉本体の火災を消すのは実
に困難であった。事故発生から約三六時間後にプリピヤチ市の住民に避難命令が出
された直後から、旧ソ連空軍ヘリコプター部隊が上空から五〇〇〇トン以上の砂や
二〇〇〇トンの鉛、ドロマイト(苦灰石)、ホウ素等を混入した砂袋を投下し、一
〇日後の五月六日、ようやく原子炉の火災は完全に鎮火した。その間、燃える炎に
よって原子炉にある放射性物質は上空高く運ばれ、ジェット気流に乗って北半球全
体に届き、広範囲の放射能汚染を引き起こした。
(二) いまだに解明されない事故原因・・爆発のメカニズムとエネルギー
 事故から四か月後に、旧ソ連政府は、事故の原因は運転員の{まったくありうべ
からざる教則違反運転規則違反の組み合わせ}によってもたらされたものとする報
告書を提出した(甲第五号証二二三頁)が、一九九一年一月になって、旧ソ連原子
力産業安全監視国家委員会の特別調査委員会は「チェルノブイリ四号炉事故の原因
と状況について」と題する報告書を発表し、「事故の原因は、運転員の規則違反で
はなく、設計の欠陥と当局の怠慢にあり、チェルノブイリのような事故はいずれ避
けられないものであった」とした(甲第一七九号証)。
 この報告書によると、事故直前の原子炉の状況は、熱出力二〇万キロワットとな
っていたが、制御棒を引き抜き過ぎていて反応度操作余裕が低下し、かつ、低出力
に伴う正のボイド反応度係数などが相まって、一触即発の状態に陥っていた。その
状態で運転員が原子炉を停止するために制御棒を一斉挿入したところ、運転員に知
らされてい
なかった制御棒の設計のために、停止するはずの原子炉が逆に暴走を始めた。急激
な出力上昇により、大量の蒸気が発生し、ボイド反応度係数が正であるために更に
暴走を続け、燃料棒と圧力チャンネル管が破壊されたという。低速運転中の自動車
を止めようとしてブレーキを踏み込んだらアクセルだったというとんでもない欠陥
炉だったのである。
 しかし、現在に至るまで、事故の原因を絞り切れていないし、起きた爆発も核暴
走によるものか水蒸気によるものか水素によるものかも判明していない。爆発の回
数が一回か二回かも絞り切れていない。そのために、爆発のエネルギーがどの程度
であったかも推定されていない。二回目の爆発の際に炉心全体が一四メートル以上
飛び上がったとの報告もある(甲イ三八七号証)が、確定されたものではない。
 炉心崩壊事故のエネルギーがどの程度であるか、後述するように大きな論争の的
となっているが、現実に発生した事故についての爆発エネルギーさえ推定出来ない
のでは、少数の小さな実験(しかも、原子炉を破壊するという実験ではまったくな
い)から発生するエネルギーを推測することがいかに困難であるかはよくわかる。
(三) 正のボイド反応度の重要性
 ただ、はっきり言えることは、正のボイド反応度が出力上昇の大きな原因となっ
たことである。ボイド反応度とは、炉内で気泡(ボイド)が増加するときに核分裂
連鎖反応が増加することである。つまり、定常状態で一定量のボイドが存在する時
には問題にはならないが、何らかの原因でボイドが増加した場合に^その変化量に
応じて正の反応度が入ってしまうことが問題となる。チェルノブイリ炉では、低出
力時には正のボイド反応度が大きすぎて、他に反応度の増加を抑制するメカニズム
があっても、全体の反応度係数が正となっていたのである。
 もんじゅにおいては、炉心のボイド反応度は正であり、しかもかなり大きい。許
可申請書において炉心を気泡が二〇リットル通過する場合を「設計基準事故」とし
て、どの程度出力が変動するかを計算しているが、気泡が炉心に入ると大きな反応
度が投入され、出力が一気に上昇することがわかっている。そして原子炉緊急停止
(スクラム)をかけても間に合わないこともはっきりと示されている。計算結果が
大事故に至らないとされているのは、気泡が二〇リットルと少なくてそれが通過し
たために出力が低下したために過ぎない。
二 研究対
象は燃料破損から溶融炉心の冷却まで
1 炉心崩壊事故とはどのようなものか
(一) 高速増殖炉では、最悪の事故として、次のようなケースが考えられる。ま
ず、何らかの理由でナトリウム―流量が減少する。たとえば停電によるポンプ停
止、地震によるナトリウム―配管の破断、異物が炉心下部に張りついてナトリウム
―の流路をふさぐ等が原因となりうる。同時に原子炉停止系の不作動による制御棒
の緊急挿入に失敗すれば、燃料棒は熱が奪われないために温度が上昇して溶融し、
被覆管がもろくなって破れて、被覆管に閉じこめられていた燃料と核分裂生成物の
ガスが飛び出す(このあたりまでの現象を「起因過程」という、図6―4―1の上
三分の一、図6―4―2の上半分)。
(二) ①燃料が寄り集まること、②ナトリウム―中に気泡が発生することの両方
によって正の反応度が投入され核分裂連鎖反応はますます増大し、出力は上昇す
る。それぞれの燃料集合体内で液体となって揺れ動いていた燃料もますます加熱さ
れ、燃料集合体の壁も破れて燃料が炉心プールを形成する(遷移過程、図6―4―
2の下半分)。炉心上部と下部と周囲にあるブランケットや構造体が壁を造りその
内部で溶けた燃料や被覆管などが全炉心プールとなって縦方向のみならず横方向に
も動き、全体的に揺動(スロツシング)する。より外部の燃料を次々と溶かしてプ
ールは拡大し、プール内で構造材金属が沸騰し、何回かの沸騰と揺動を繰りかえす
うちに燃料が急速に寄り集まって再臨界に至り、即発臨界にいたる(図6―4―
3)。
(三) その爆発によって燃料は四方八方に飛び散り、急速に分散して未臨界状態
となり出力が低下する(機械的炉心崩壊過程、図6―4―1の中間)。暴走の結果
発生した熱エネルギーによって高温高圧となった炉心が膨脹して周囲に対して仕事
をし、熱エネルギーが機械的エネルギーに変換される(炉心膨脹過程、図6―4―
1の下左図)。原子炉容器や遮蔽蓋は強い衝撃をうけて破壊される(耐衝撃応答過
程、同)。炉心が未臨界になった後にも、高温となった燃料は崩壊熱を出して溶
け、ナトリウム―と反応しながら炉心下部に堆積する(炉心物質再配置過程、図6
―4―1右下図、図6―4―4)。崩壊熱を出し続ける燃料は原子炉の内部や外部
に設置されたコア・キャッチャーで受け止められて長期に冷却される(事故後崩壊
熱除去過程、図6―4―5~6)が、冷却が旨く行か
ないと、溶けた燃料は格納容器の床(コンクリートと反応して床を突き抜け、外部
にててくることとなる。
2 計算コードの開発=計算偏重の研究状況
(一) 炉心崩壊事故研究はEBR―1事故を契機に始められたが、一九五〇年代
に定量的なモデルを考えたのはノーベル賞受賞者であるアメリカのべーテとテート
の二人の研究者である。べーテとテートは、高速増殖炉における突発的な出力上昇
(出カバースト)から生ずる爆発エネルギーの上限値を評価するために、事故発生
と同時に冷却材が炉心内から喪失し、燃料も溶融するとの仮定を置き、炉心の上半
分が重力の加速度により下半分に落下するというモデルを考えた。溶融した燃料が
集合して再臨界となり核的爆発にいたるという保守的なモデルである。七〇年代に
なって、リチャード・ウェブは、より明確なモデルを考えた。
 ウェブは、高速増殖炉はプルトニウムの含有量が多い燃料を大量に詰め込んでい
るために臨界量を大幅に超えるから核爆発は燃料の一部が集まるだけでも起きると
して、まず炉心の中央部分で一部が溶融し1回目の核爆発が起こると考えた。問題
はその後である。最初の核爆発によって溶融した燃料が炉心上部のナトリウム―中
に噴き上げられるとナトリウム―が一気に蒸発してナトリウム―蒸気爆発が起こ
り、その爆発力によって燃料は再び下部に急激に圧縮される。その結果再び燃料は
密に集められ、二回目の核爆発に至る。核物質の急激な圧縮による核的爆発は原子
爆弾の仕組みそのものであり、二回目の爆発が一回目の爆発をはるかにしのぐ恐れ
がある、としたのである。
(二) その後、起因過程についてはSAS3Dコードが開発され、起因過程で即
発臨界を超えた場合の計算のためにVENUS―PMコードが開発された。もんじ
ゅの「技術的には起こるとは考えられない事象」の解析はこれらのコードを使った
計算である。
(三) 七〇年代朱に至って、遷移過程の重要性が認識されてSIMMERコード
がアメリカで開発された。このコードはアメリカの研究者ボードルーが開発し、セ
オファネスによって更に向上発展した。セオファネスは炉心崩壊事故研究の世界的
権威であり、現在では軽水炉の苛酷事故研究の第一人者である(甲イ第三八五号証
一六頁)。後述するようにアメリカの原型炉クリンチリバー炉や旧西ドイツの原型
炉SNR三〇〇の安全性評価の再検討作業はこのセオファネスが中心となって行
われた。
(四) 問題は、このコードは核計算部・流体力学部・構造材部を組み合わせ先膨
大な計算コードであり、一つのケースの計算に大型計算機で二〇~三〇時間を要す
るというものであって、パラメータを若干変えれば結果が状幅にかわり、不確かさ
の大きい計算である。また、実験が現象のわずかな部分をとらえたものしかできな
いため、コード全体の実験的検証がいまなおできていない。
三 起因過程・遷移過程から機械的炉心崩壊・事故後物質移動過程へ
1 ULOFとは何か
(一) 炉心崩壊事故発生のきっかけとしては、①運転中にポンプが停止し冷却材
の流れが減少したときに原子炉停止に失敗した事象(ULOF=Unprot e
cted Lose of Flow)と、②正常な運転状態から逸脱して連鎖反
応が増加し始めたときに原子炉停止に失敗した事象(UTOP=Uprotect
ed trainsient Over―Powert)の二つが主として考えら
れているが、そのうちエネルギー放出量の点からULOFが他の事故形態を包絡し
ているので、以下ULOFケースについて検討する。
(二) この場合、事故推移の形態として、三ケースが考えられている(図6―4
―1)。第一は、ULOF後冷却材ナトリウム―の温度が上がって沸騰し、ボイド
反応度が正のために反応度が増加して出力が上昇し、燃料被覆管も溶けて移動する
ために燃料が寄り集まり更に反応度が上昇して一気に即発臨界に至って核的に爆発
するケースである(同図左側)。起因過程のうちに爆発して機器配管を破壊して終
了するケースであり、もんじゅの爆発エネルギー「三八OMJ」を出したケースも
これである。第二は、起因過程の段階では即発臨界に至らないで炉心溶融が徐々に
進行し、燃料自体が寄り集まって遷移過程に移行するケースである。燃料、集合体
壁、構造体などを全て溶かした「全炉心溶融プール」が形成され、沸騰し揺動(ス
ロッシング)する複雑な過程であり、最悪の場合には、即発臨界に至って、第一の
ケースを超えるエネルギーを発生する可能性もある(同図真ん中)。第三は、起因
過程の段階で燃料が炉心から排除されて反応度が低下し、炉心が部分的損傷をうけ
ただけで終結するケースである(同図右側、P10証人四六回二五~三〇頁)。
2 燃料破損がどのように起こるかが問題・・・起因過程
(一) ナトリウムの流量が減少してナトリウムの温度が上昇
し、燃料被覆管が破損して燃料が被覆管外部に出るあたりまでの過程である。特に
燃料破損のメカニズムが問題である(図6―4―2の上部)。問題になるのは、第
一に正のボイド反応度である。ありうるのは、炉心上部でナトリウムの沸騰が始ま
りボイド領域が炉心中心領域に拡大すると正のボイド反応度が入ること、および、
被覆管が破れて溶融燃料が放出されてナトリウムが一気にボイド化することであ
る。第二に、燃料が軸(上下)方向の中心に集まる際に正の反応度が入ることであ
る。炉心にまだナトリウムが液体のまま残っている時に燃料被覆管が急激に破損す
る「未沸騰・部分沸騰集合体におけるバースト型燃料破損」乙イ一八号証八頁)が
問題となる。燃料集合体の中心ではボイド反応度も燃料移動による反応度も大きい
ので、燃料が中心部位で破損すれば大きな反応度が入ることになる。動燃のP2証
人が「燃料が軸方向に集まると言うことは、燃料が持っている、専門用語でいいま
すと反応度価値という考え方があるんですけれども、反応度価値が高い方向に働く
ことになりますから、プラスの反応度が挿入されると言うことでございます。もう
一点は、溶融燃料が放出されまして、今度は冷却材をボイド化いたします。ボイド
反応度も軸方向の分布は炉心の中心が高くなっておりますので、これも大きな寄与
があると言うことでございます」(P2証人四八回一一〇頁)と述べているとおり
である。
(二) 破損の発生位置であるが、動燃が作成した「高速増殖炉原型炉UL〇F事
象の評価研究」(乙イ一八号証八頁)では、「破損の発生位置を炉心の軸方向中心
に固定する想定は、破損のメカニズムを無視した想定である」旨記載されている
が、後述するように実験中に燃料棒が軸(上下)方向中心で破損したケースは存在
しているのであり、それを排除することは、実験結果のうち自分にとって不都合な
ものを排除するものであってそれこそご都合主義的研究態度である。
(三) 破損口の軸(上下)方向長さについて、後述するように、もんじゅで九九
二MJの最大爆発エネルギーが計算されたケースでは「三〇センチメートル」が仮
定されている。P2証人は、「五センチメートルはアメリカの主にTREATとい
う試験炉を用いたデータでございますが、そこら辺のデータで、この程度とってお
けば充分保守的であるということが、アメリカにおいていわれておりましたし、私
どもも同様
に判断したということであります」、「(九九二MJをだしたのは)壊れた瞬間に
同時に三〇センチメートルにわたって穴があいているというような、ちょっと考え
がたい想定を置いたようなケース」(P2証人四八回四〇~四一頁)というが、被
覆管がわずかに破損して○・〇三~〇・〇四秒後には全長の六~七割が破損するデ
ータも得られているのである。燃料破損の位置及び大きさについては実験データの
ばらつきを考慮して、当然、保守的に考えなくてはならない。
3 炉心が沸騰・揺動するプールになる…遷移過程
(一) 起因過程が比較的穏やかに進行した場合、崩壊した燃料が大量に炉心にと
どまっているので常に再臨界の可能性をはらみながら事態が進行する。初めのうち
は、燃料集合体のラッパ管の溶融は始まるが、まだ燃料の溶融・崩壊は燃料集合体
毎に独立している。溶融燃料は、各ラッパ管の中で、上に行けば重力の作用で落下
し、下に行けばナトリウム蒸気圧等で噴き上げられて、上下動をくりかえす。この
動きが全部又は大部分のラッパ管で一致した場合を「同期する」又は「チューニン
グする」と呼んでいる(図6―4―7)。初めはバラバラに運動していたものが
「出力が上昇しますと、それによって炉心全体で温度が上がりますので、燃料の分
散がだんだん全体的に同時に起こるようになっていくという、そう言った現象がチ
ューニング現象」「出力変化を通じて、だんだん同期してくるというふうな傾向が
あるということは事実だと思います」(P2証人四九回三九頁)とされている。
 このようなチューニングが起こってくると、再臨界になって更に炉心溶融が促
進・拡大し、ラッパ管自体が溶融し溶融燃料とともに液体となり、より複雑な動き
をするようになる。ここまでの事態は、事故発生後わずか二~三秒内に起こる(甲
イ三七七号証訳文四頁)。やがて炉心全体が液体となって上下動のみならず半径方
向(水平方向)にも動くようになるが、炉心の上下と周囲で溶融物が冷えて固まっ
ている時にはあたかもボトルの中に液体が閉じこめられて(ボトルアップ)その中
で高温の液体が動くようになる。中心部で発生した蒸気が上昇すると周辺においや
られていた溶融燃料は押し下げられて中心に向かって押し寄せ、中心部でぶつかっ
て溶融燃料の高い盛り上がりを作る(図6―4―3)。このような沸騰したプール
全体の揺動現象は専門的には「スロッシング」と呼ばれてい
る(P2証人四八回一二八頁)。遷移過程の初期でチューニングが高まっていれ
ば、その後にもチューニングの度合いは高まり、スロッシングが大きく起こると考
えられる。
(二) 動燃は、①FPガスの圧力等によって燃料が分散する、②炉心溶融物質の
熱などによって制御棒案内管に開口部が出来て炉心外に燃料が流出するなどの理由
によって、反応度が低下し核的現象が終息すると主張するが、前述したボトルアッ
プされた状態での全炉心プールの揺動がピークに達した時には、即発臨界になり、
最大級の核的爆発が起こり、爆発エネルギーは起因過程のそれを上回る可能性が大
きい。遷移過程研究の第一人者であるセオファネスはクリンチリバー炉について、
最初に存在していた燃料の六〇パーセント位が炉心に残っている限り、この問題が
重要であるとして、半径方向(水平方向)の揺動も含めて計算したが、計算の対象
が後述するように炉心の真ん中に燃料が詰め込まれていない非均質炉心であった
(図6―4―8の右図)ために、出力分布が中心でピークになる形でないので、エ
ネルギー爆発的にはならなかったと結論づけている(甲イ三七七号証)。しかし、
もんじゅの均質炉心ではセオフアネスの方法で計算すれば、最大限のエネルギー爆
発があるとの結論になる可能性は高い(P10証人四六回三〇~四〇頁)。
4 炉心が崩壊してエネルギーが放出される・・・炉心膨脹過程など
(一) 即発臨界を超えると炉心にある溶融燃料は爆発力によって急速に周囲には
じきとばされて未臨界となり、出力は低下する(機械的炉心崩壊過程)。暴走の結
果発生した熱エネルギーによって高温高圧となった炉心は膨脹して周囲に「仕事」
をし、機械的エネルギーに変換される(炉心膨脹過程、図6―4―1左下図)。原
子炉の上蓋が飛び、原子炉容器が膨れあがって破壊されるのは、炉心で機械的エネ
ルギーが発生するためである。上蓋や原子炉容器がその爆発に耐えられるかどうか
を見るためには、爆発の機械的エネルギーがどのくらいになるかを計算しなくては
ならない。
(二) 爆発エネルギーは普通MJ(メガジュール)の単位で表されるが、瞬間的
にエネルギーを発する核爆発の場合には、火薬による爆発と同じように考えられる
ので、ダイナマイトの原料であるTNT火薬に換算して○○キログラムと表される
こともある。TNT火薬一キログラムは約四・四MJとなる。
 ちなみに、茨城県東海
村にある動燃の再処理工場で、一九九七年三月一一日に起こったアスファルト固化
処理施設の爆発事故においては、その爆発の規模は「TNT換算で数十キログラ
ム」とされている(通産省工業技術院物質工学工業技術研究所・田中克己氏の「爆
発原因に関する所見」より)。仮に五〇キログラムと考えれば約二二〇MJとな
る。もんじゅの許可申請書では爆発エネルギーは「約三八〇MJ」とされているの
で、TNT換算では約八六キログラムになり、東海再処理工場の爆発の約一・七倍
の規模となる。
5 溶融燃料は周囲を溶かし込みながら落下する・・コアキャッチャーの必要性
(一) 炉心崩壊事故が起きると炉心溶融物質は高温であるために周囲の構造材を
どんどん溶かし込んで炉心から下方へと落ちてくる(図6―4―4)。それを受け
止めるために、フランスでも西ドイツでもコア(炉心)キャッチャーが必要だとさ
れた。フランスのスーパーフェニックスはタンク型であり、炉心も中間熱交換器も
原子炉タンクの中に入っており、コアキャッチャーも原子炉タンク内で炉心の下に
設けられている(図6―4―5、甲イ三七三号証一一二頁)。フランスでは、当初
は燃料集合体七体分の燃料を受け止められるものとされてきたが、SCARABE
E実験と呼ばれる実験によって、隣接集合体への伝播を考慮しなくてはならなくな
り、以降の高速増殖炉の設計においては一〇〇パーセント受け止められるようなコ
アキャツチャーとすべきであるとされた(甲イ第三七三号証六七頁、P2証人四九
回三一頁)。
(二) 西ドイツでは規制当局からコアキャッチャーの設置が義務づけられて、原
子炉の下にとりつけられている(図6―4―6)。「ドイツの場合は、私どもは炉
外コアキャッチャーと呼ぶんですけど、原子炉容器の外の原子炉溶器室と言われて
いるその部屋の床に設けられているのがSNR-三〇〇のコアキャッチャーであり
ます」(甲イ第三七三号証、P2四九回三三頁)。
(三) もんじゅでも炉心の下に炉内構造物があり、その下に「受皿」がある。第
一回の許可申請書では「お椀」型であったが、補正では「皿」型になっている。動
燃のP9は「そういった特殊な事象(炉心崩壊事故のこと)を解析した場合でも、
念のためにもう一枚、そういった種類(炉心溶融物質)の一部のものが下に出てき
たという前提でそれを受ける構造物を付けておこうということで付けたもので、受
皿という名
称をつけたものです」
といいながらも「コアキャッチャーというほどの物ではありません。念のためにつ
けたものです」と強弁(P9証人二五回五三~五七頁)して、あたかももんじゅで
はコアキャッチャーは付いていないように述べるが、受皿は明らかにコアキャッチ
ャーである。「基本的に炉心部で燃料が溶融したものが下方向に落ちてきたとき
に、それが受け止められるように」設けられており、「ここでくい止めてやろうと
いうふうなコアキャッチャー」である(P2証人四九回三〇頁)。
四 ドイツとアメリカでは激しい炉心崩壊事故論争があった
1 SNR三〇〇の破綻・・・申請者の計算値が最高だとの確証がない
(一) 政府は第三者にチェックさせた
 旧西ドイツの原型炉SNR三〇〇はもんじゅとほぼ同規模の炉であり、炉心崩壊
事故における爆発エネルギーは、設置者側の計算では最高三七〇MJ(文殊と同じ
計算方法では約九三〇MJ)とされていた。
 連邦政府は、安全性について推進側の原子炉安全委員会(RSK)と批判側のミ
ュンヘン大学ヨハン・ベネケ博士グループという性格の異なるグループに安全解析
を行わせ、「安全」「危険」の両方の結論を得た。一方、ブレーメン大学ドンデラ
ー・グループは炉心崩壊事故による爆発エネルギーを計算した。後に州政府は、遷
移過程研究の中心人物であったアメリカのセオファネスをリーダーとするグループ
に申請者側の計算についての「再検討と評価」を依頼した。
(二) ドンデラーは安全側に立った計算を行った
 ドンデラーはSIMMERコードを使用して、初期遷移過程で再臨界に達した場
合の爆発エネルギーを計算し、最大の場合には八〇六MJ(七〇立方メートルまで
の等エントロピー膨脹換算、一気圧までの膨脹2換算すると二〇一二MJ)とな
り、申請者が計算した三七〇MJの約二・二倍の数値がでることを示した(甲イ三
九九号証)。この計算に対してカールスルー工研究所グループは、入力数値が間違
っているとか実験で確認されている現象を考慮していないとか主張して批判する
(乙イ一九、P2証人四八回七九5八五頁).が、同グループの計算には、初期遷
移過程におけるチューニング現象(甲イ三七七号証)が全く考慮されておらず、更
に移動していた燃料が再集合する時に、燃料・ナトリウムの相互作用によって燃料
の動きが加速されることなど厳しい結果をもたらす事象を考慮していない。これで
は出
力エネルギーが低くなり、過小評価となってしまう。炉心㈱崩壊事故の計算におい
ては安全側に立った仮定がもちいられるべきである(甲イ第四〇七号証七頁)。
(三) セオファネスは「設置者側の事故解析が証明できるとは確認できない」と
した
 セオファネスは、チューニング及び全炉心プールの揺動などを重視して設置者側
の評価を再検討した結果、結論として三七〇MJの機械的エネルギーの放出を越え
るような事態を実質的に排除できるとするSNR三〇○設置串請者の事故解析が、
証明できるとは確認出来ない」とした(甲イ第四〇七号証五~六頁)。この結論に
ついて、ヨハン・ベネケは「セオファネスらの結論によると、いくらぐらいのエネ
ルギーがでてくるかという上限を設定することを一貫性をもった形で証明するため
の実験ベースというものが一切ない。一貫した形で総合的に見るためのテスト設備
は存在せず、理論的にも一貫したものがない。三七〇MJというエネルギーの上限
についても上限であるとは言い切れない」と述べている(甲イ三〇六・九~一〇
頁)。
(四) 炉心崩壊事故論争はSNR挫折の大きな理由の一つとなった
 SNR三〇〇が中止になった理由は、財政的な面もあるが、同炉の関係者が州政
府とのやりとりで現在問題とされている事項として「炉心崩壊事故評価以外にもチ
ェルノブイリ事故、アルメニアのナトリウム火災、英国PFRのSG事故」をあげ
ているように(甲イ三七三号証六九頁)、技術的な危険性も大きな問題となってい
たのである。
2 クリンチリバー炉は爆発エネルギー逓減のために非均質炉心に変更した
(一) 原子炉規制委員会(NRC)は高い安全性を要求した
 アメリカではEBR―1の事故のあと炉心崩壊事故への関心が生まれたが、炉心
が大きくなるにつれて爆発エネルギーが大きくなることから、爆発エネルギーが逓
減される炉の設計が求められた。しかしそのような炉心の設計はなかなか困難であ
り、原型炉であるクリンチリバー炉の炉心設計としては、当初ボイド反応度の逓減
を考えない均質炉心(注・もんじゅも均質炉心である)となった。しかし、規制当
局であるNRCは炉心崩壊事故時の安全性を懸念して、これを設計基準事故とする
ことを要求した。七九年のTMI事故の発生によって安全性への要求は高まり、一
次系バウンダリに対する機械的エネルギーとしては一気圧までの膨脹で一二〇〇M
Jを要求した(P2証
人四八回九四~九五頁)。
(二) 均質炉心から非均質炉心へ変更して放出エネルギーを逓減した
 安全審査は七八年に中断し、炉心を均質炉心から非均質炉心にかえて八一年に安
全審査を再開した。非均質炉心とは、中心部分を初め炉心内にプルトニウム燃料の
ないブランケットを円環状に配置した炉である(図6―4―8)。P2証人は、変
更の理由として増殖能力が高まることなども挙げるが、最も大きな理由は「ブラン
ケット集合体を炉心の中心等に配置することにより、炉心の冷却材のボイド反応度
を小さくすることができる」からである(P2証人四八回四三頁)。その結果、
「ボイド反応度に関しては非均質炉心にすることによって約二分の一に下がってい
ますから、明らかに起因過程の現象は緩慢になっているかと思います」(四七
頁)。
 この非均質炉心について、セオファネスらが解析をし(甲イ三七七号証)、「均
質炉心ではボイド反応度が大きいので過出力によって駆動された流量減少事故が避
けられないが、非均質炉心ではボイド反応度は小さいので避けられる」「全炉心プ
ールでエネルギー放出が計算される例として、半径方向の揺動があるが、非均質シ
ステムであるために出力分布が中心でピークになる形でないので、挙動は非エネル
ギー放出的となった」との結論を出した。均質炉心が非均質炉心と比較して格段に
危険であることが裏付けられたのである。
五 炉心崩壊事故研究には実験的検証が少ない
1 実験は部分的現象についてのみ行われる
 原子炉は巨大な技術の固まりであり、事故が発生した場合に、原子炉の中では種
々の現象が複雑に関連し合う。時間的にも数々の因果関係が繋がって発展する。従
って、事故の過程をそっくり模擬した実験を行うことは不可能である。そこで部分
的現象に着目して実験することになるが、それにも予算的制約が存在する
 実験には、炉内実験と炉外実験がある。炉内試験とは実際に試験用原子炉を使
い、その炉心内部に試験用の空間をつくり、その中へ燃料棒などの試験材料を入れ
て大きな反応度を与え、燃料破損状況などの現象を観察するものであるが、試験用
原子炉の仕様によって試験できる領域・大きさ・得られるデータが制限される。な
によりも、たとえ小さな炉であってもその建設と維持に金がかかる。炉外試験は液
体の動きなどの特定の物理現象だけに着目し実験を行うが、実験は小さな部分だけ
で行われるから、複雑な現象
を呈する実機に応用する場合に、その手法が妥当かどうかが問題になる。
2 燃料破損実験は少数本でかつ熱中性子によるものである
 燃料破損は起因過程の初期事象(甲イ第三八五号証、図6―4―1)であり、事
故拡大の鍵を握るものであるが、日本ではもんじゅ用の燃料破壊実験は一切行われ
ていない(P2証人第四八回一〇一頁)。アメリカのTREAT実験、フランスの
CABRI実験やSCARABEE実験で行われる燃料破損実験に使用される燃料
棒の数は、TREATでは七本(一本を真ん中に、六本をその周囲にぐるりと並べ
たもの)まで、CABRIでは一本、SCARABEEでも最大三七本である。も
んじゅにおいては燃料棒一六九本で一つの炉心燃料集合体を形成し、炉心は一九八
本の炉心燃料集合体と一七二本のブランケット燃料集合体で構成されている。つま
り最大の実験装置であるSCARABEEでさえも、燃料集合体一本の五分の一、
炉心全体の一〇〇〇分の一しか模擬出来ていない。
 更に問題となるのは、高速炉用燃料棒で実験したといっても、炉内実験用原子炉
は熱中性子炉であるから、高速炉用燃料棒に照射される中性子は秒速二~三キロメ
ートルの熱中性子であって秒速三万キロメートルの高速中性子ではないことであ
る。燃料に照射された熱中性子はほとんど全て表面で吸収されて内部に入らない
が、高速中性子の場合には表面で吸収されることなくほとんど内部に突入する。燃
料破損は、表面のみならず内部における核分裂の発生と高温化が問題になるので、
高速炉の中の燃料の様相を実験的に見たいというのならば、高速中性子を照射しな
くてはならない(P10証人四六回四八~五〇頁)。
3 燃料棒が中心で破損したデータがある
 燃料棒が破損する場合、破損位置が燃料棒の中心であり、かつまだナトリウムが
液体であって沸騰していない時には、正の反応度が突然大きく入ることになる。
 セオファナスは、この点について「液体状態のナトリウムが優位に満たしている
集合体の中で、高出力位置(注・燃料棒の中心のこと)あるいはその近傍で燃料棒
破損が起きる。そこは燃料反応度価値が最大の位置である。上部と下部には核分裂
生成物のガスが数百気圧溜まっている。他の位置にあった燃料棒が急速に移動して
くる。出力が上昇する。もし、中心面より一〇~二〇センチメートル離れたところ
で起きれば、それより下にある燃料は反応度価値が低いと
ころに移動して、出力が低下する」と述べているとおりであり、P2も証人尋問に
おいて認めているところである(P2証人四八回一一〇頁)
 突発的な出力上昇時に燃料棒が炉心の軸(上下)方向中心で破損するかどうかに
ついて、動燃が作成した「高速増殖炉原型炉UL〇F現象の評価研究」(乙イ第一
八号証八頁)の「未沸騰・部分沸騰集合体におけるバースト型燃料破損」の項では
「破損口の位置というのは下の方から見てだいたい○・六五のところになってお
り、破損の発生位置を炉心の軸方向中心に固定する想定は、破損のメカニズムを無
視した想定である」と記載し、P2は「CABRI試験の実験データを基にして書
いてある話」だと証言する(P2証人四八回一一二頁)。しかし、セオファネスら
はTREAT―PFR実験においては燃料棒の真ん中で破損したケースがあること
を指摘し、真ん中で破損する可能性があることを強調する(P2証人四八回添付図
面⑤1~2)。P2証人は、TREAT―PFR実験のケースは計算コードの検証
には適切でないので排除したと証言するが、その根拠は明瞭ではない。現実に中心
で破損してピンの中の燃料が中心に向かって集まってきたことが確認されているの
であり、又、もともとデータの数が高々一〇とか二〇とか少ないのに計算コードに
あう適切なデータのみを採用して他を捨ててしまうことは「あまりにも恣意的かつ
非科学的」である。
4 破損口が三〇センチメートルとなる恐れは存在する。
 被告動燃は燃料破損口の長さを「五センチメートルとするのが妥当」とするが、
TREAT―PFR実験で、まず少しだけ破損し、○・○〇四一秒後には全長の七
〇パーセント近くが破損したという実験データが存在する(P2証人四九回六~九
頁)。燃焼末期には被覆管がもろくなっており、燃料棒内部のガス圧が数百気圧と
極めて高くなっていることを考えれば、破損口を三〇センチメートルと仮定するこ
とはそれほど不自然ではなく、かえって五センチメートルに固執する方が非科学的
だといえる。
5 溶融プール実験は茶筒の大きさの実験に過ぎない
 全炉心プールが揺動することに関する実験はわずかである。一つは、W・マシェ
ツクの実験であるが、これは「アクリルの円筒形の容器の中で、ちょうど茶筒の中
に水を入れたようなものを逆向きに伏せておいて、その茶筒をぱっと取り除いたと
きに、液体がつぶれて移動していきますが、そ
れを実験したもの」(P2証人四八回一二九~一三二頁、添付図面⑥の1~2)で
ある。しかし、外容器の直径は四四センチメートル、茶筒の大きさは直径一一セン
チメートルであり、実際の炉心と比較してあまりにも小さく、又沸騰している混合
物の液体を常温水で模擬するのであり、とても全炉心プールの揺動を模擬できる実
験ではないと考えられる。セオファネスが「この実験が揺動運動の本質をとらえて
いるかということには強い疑問をもっている」と述べている通りである。他の実験
としては、P2証人は「二ミリメートル程度の大きさの円筒状の粒子をいれておき
まして、粒子が混ざっていることによって液体の揺動がどのように影響されるかと
いうことを調べた実験が行われ、固体の粒子が混ざることによって、液体の運動が
かなり抵抗を受けて大規模なスロッシングが抑えられていたと、そういう結果でし
た」と述べる(P2証人四九回一〇~一二頁)程度である。
 その他の実験としては、半径四六センチメートル高さ九五センチメートルのドラ
ム缶に水を入れて下から気泡を入れてその挙動を調べたりしているが、実際の炉心
と比較してあまりにも小さすぎ、又、実際に炉心崩壊事故が起こった場合には燃料
や構造材が溶融混合し、温度も二五〇〇℃程度と非常に高温になって、しかも、反
応度が大きくなったり小さくなったりしながら、核分裂数が増えたり減ったりして
いる複雑状態であると思われるから、実験としては妥当ではない。
6 燃料の沸騰実験は直径六センチメートルのるつぼで行われたのみ
 P2証人は、燃料を溶融させて沸騰させる実験は実際に行っていると主張する
が、SCARABEEにおける実験は、直径六センチメートル高さが二〇センチメ
ートル程度のるつぼに燃料をいれ、中性子を照射して溶融沸騰することを調べたも
のであって液体の上面が上下することがわかる程度であり、揺動(スロッシング)
を調べたものではない(P2証人四九回一八~二八頁、添付図面⑨~⑪)。
7 実験は僅少で、しかも今後行われる状況ではない
 一九八九年には被告動燃大洗工学センター安全工学部高速炉安全工学室の研究者
は、実験がまだまだ僅少であると嘆いている(甲イ三七三号証七六頁、八三頁、八
六~八七頁、九一頁)が、その後の実験に関して暗い見通しを持っていた(同六八
頁)とおり、ドイツ、フランスも高速増殖炉から撤退した現在では国際会議でも高
速増殖炉
の研究発表は極めて少なくしかも日本からのみであるから、もはや実験的検証は行
われていないと言っても過言ではない。
 もともと高速増殖炉の炉心内部の核的特性についてはわからない部分が多い。わ
ずかの実験をやったからといってそれで全てがわかるわけではない。日本原子力研
究所のP20が「例えば液体金属冷却高速炉のように、動特性挙動に未知な要素が
多い炉は、一つや二つの破壊実験を行ってみる価値は十分にある」と言った上で、
「しかしこの実験結果は、必ずしもその原子炉を代表する反応度事故であるとはい
えない」と述べている(甲イ三七八号証四〇頁)通りである。
六 もんじゅ原子炉が炉心崩壊事故に耐えられるとしたのは重大な誤り
1 安全審査時のモデル-約三八〇MJの爆発エネルギー算定の根拠は不明
(一) 許可申請書の「技術的には起こるとは考えられない事象」には、次の五つ
の事象が挙げられている。
(1) 局所的燃料破損事象
a 燃料要素の局所的過熱事象(燃料要素の中にプルトニウムが高い割合で含まれ
たペレットが誤って入った事象)
b 集合体内流路閉塞事象(異物が入り込んで燃料集合体の中のナトリウムの流れ
が停止した事象)
(2) 一次主冷却系配管大口径破損事象
 (一次主冷却系配管がギロチン破断し冷却材が流出した事象)
(3) 反応度抑制機能喪失事象
a 一次冷却材流量減少時反応度抑制機能喪失事象
(一次系のポンプがトリップして流れが減少したときに原子炉停止機構働かない事
象)
b 制御棒異常引抜時反応度抑制機能喪失事象
(制御棒を誤って引き抜いたときに原子炉停止機構が働かない事象)
 しかし、原子炉にとって厳しい事故を考えたといっても、1aと1bと2では、
原子炉停止機構は働くと仮定されているので結果はそれほど厳しくはならない。例
えば2のように、一次主冷却系配管がギロチン破断したときに原子炉停止系が働か
なかったら、それこそ炉心からはナトリウムが無くなって、燃料棒がむきだしにな
ったのに制御棒は挿入されずに燃料は燃えっぱなしと言うのだから、燃料はすぐに
溶融爆発すると思われるが、被告動燃は、そのような過酷な事故は考えていない。
解析では、ナトリウムの温度が上がったことを検出して制御棒が挿入されて事故は
収束するとしているのである。従って、1aと1bと2の三つは流量喪失時緊急停
止失敗事故(UL〇F)でも過出力時緊急停止失敗事故(UT〇P)でもな
いことになる。そうすると、厳しい結論になるケースは、3aのUL〇Fであり、
また3bのUT〇Pということになる。許可申請書では3aの方が厳しい結論が出
されているのでそれを見てみると、原子炉の内部では次のようなことが起こると仮
定されているようである。
(二) まず、定常運転をしているときに、何らかの原因(例えば落雷)で外部電
源がなくなって常用二母線の電源も喪失し、一次系と二次系の主冷却系循環ポンプ
が全数(それぞれ三系統あるがその全部)同時に止まってしまった。当然ナトリウ
ムの流れは減少するので冷却能力が減り、ナトリウムの温度は上昇する。本来であ
れば、ナトリウムの温度上昇を検出して制御棒が急速に自動的に降りてくるはずだ
が、それも何らかの原因(例えばブレーカーの固着)で降りてこず、原子炉の緊急
停止に失敗する。ナトリウムは沸騰し、燃料は高温となって自分も溶けるとともに
被覆管などの構造材も溶かしてしまう。溶けた燃料はスランピングして下方に寄り
集まり、被覆管なども下の方に移動する。反応度が加わって即発臨界に達する。そ
の時の反応度挿入速度は、反応度を「ドル」という単位で表して、毎秒約三五ドル
となる。一ドルが即発臨界の反応度であるから、非常に大きな反応度だといえよ
う。
 原子炉容器の中の燃料は急激に高温になり気化して炉心は大きく破壊される。高
温高圧になった炉心は激しく膨張し、原子炉容器を破壊しようとする。その爆発エ
ネルギーは約三八〇MJ(TNT火薬約八六キログラム分)と計算されている。
 原子炉容器等の構造物については五〇〇MJ(TNT火薬約一一三キログラム
分)の圧力加重がかかってもゆがみを生ずるだけで破壊されないものとされている
ので、ナトリウムは漏れず、従ってプルトニウムなどの原子炉の外に出ないので安
全だと評価されているが、具体的な爆発の経過は申請書の記載からは読みとれな
い。
 ただ、三八〇MJであるとの結論がだされているだけである。
2 「九九二MJの爆発エネルギー」となったモデルは非科学的ではない
(一) 問題は、被告動燃が計算した「約三八〇MJ」が、考えられる最大の機械
的エネルギーかどうかである。これよりも大きなエネルギーが発生するような事故
が起これば、原子炉容器は爆発力に耐えきれずに破壊され、内蔵したナトリウムは
おろかプルトニウムも飛び散り、悲惨な結果に結びつくからである。
 被告動燃は、許可申請書中では約三八〇MJは最大の値であり、原子炉容器の設
計値は五〇〇MJまで耐えられるとしているが、実は被告動燃自身が「最大エネル
ギーのケースでは九九二MJ」とする計算を行っていた(「高速増殖原型炉もんじ
ゅHCDA解析-SIMMER2コードによる炉心崩壊後の膨張過程予備解析」一
九八二年三月、甲イ第三〇八号証三八頁)。被告動燃はこの報告書を「開示制限」
として限られた関係者だけに配布し、複製・転載・引用などを絶対に行わないよう
厳重に管理することを求め、この報告書の存在をひた隠しに隠してきたのである。
原告等が入手したこの報告書には、許可申請書と同じ方法による計算では、「最も
大きい放出エネルギーのケースは九九二MJ(TNT火薬約二二五キログラム相
当)である」とされている。これは許可申請書に記載された約三八〇MJと比べて
はるかに大きく、被告国も認めた原子炉構造物の最大圧力荷重五〇〇MJの二倍近
くになるので、とても容認できない値である。
(二) 被告動燃はこの計算について、「燃料の破損口を三〇センチメートルにし
た計算」であり、単にパラメータ研究をしたに過ぎず、三〇センチメートルという
仮定は非科学的で採用しがたいと主張する。しかし、この主張は間違っている。
 まず、実験データの捉え方が間違っている。前述した実験結果によれば、燃料棒
がわずかに破損してその直後に破損の長さが一気に拡大したケースも存在する。三
〇センチメートルの破損口を想定することが非科学的であるとはとても言えない。
被告動燃は、燃料棒が棒の中心で破損する仮定は非科学的であるとして、何等の根
拠も挙げないまま、棒の中心で破損したデータを取り上げようとしないが、自己に
都合の良い実験データのみ採用して他を捨てることは「あまりにも恣意的かつ非科
学的」である。
 わが国の安全審査における炉心崩壊事故の解析では保守的な条件が要求されてい
ない。もんじゅの行政庁審査の際に科学技術庁の技術顧問として参加したP8証人
は「多重性を有する安全系の不作動を仮定する、つまりロフ(L〇F)でやってア
ンプロテクティブ、もう制御棒が入らないと言う極めて保守的な過程を想定してい
るのだから、解析条件に保守性を取り込むと、事象の推移が実態とかけはなれたも
のになる」と主張するが、炉心崩壊事故の仮定と計算上の仮定を混同していると言
わざるをえない。P10証人が述べるよう
に「設計基準事故を超えるような事故のストーリーを立てる話と、そのストーリー
に基づいて具体的な計算を行うという話をご汚やごちやにしていると、混同してい
ると思います。つまり今回の炉、心崩壊事故の計算のように、その実際の計算の場
で、保守的な計算条件をおかなければ結果は何倍にも変わるわけですから、たとえ
ストーリーのときにいくら仮定をおいても計算のしようによっては、極めて結果を
小さくおさえることは可能になる」(P10証人四六回六〇~六二頁)のであっ
て、恣意的な結論を出そうと思えば出せることになる。
 実験データとして燃料棒の破損口が一気に拡大したデータを安全側の解析として
採用すべきである。
3 被告動燃の「一一〇MJ」計算は安全側でない仮定の結果である
(一) 被告動燃は、もんじゅでは起因過程においては機械的炉心崩壊過程に進展
せず、遷移過程に移行し、遷移過程で最も保守的に想定したケースでは再臨界にな
るがエネルギーは一一〇MJであるので、もんじゅの安全審査時の解析は保守的で
あるとする。しかし、遷移過程で炉心周囲が固化してボトルのようになり、その中
に封じ込められた燃料やラッパ管等の溶融物質が、チューニング及び揺動(スロッ
シング)を起こして、何回かの揺動の後に再臨界を起こして激しく爆発する可能性
を否定できないのに、被告動燃は、燃料が半径(水平)方向に逃げ出したり、制御
棒案内管を通ってボトルの外に出ていくことを大きく見積もった結果、右の数値を
導き出している。この数値が最大の数値であるとの保証は全く存在しない。
4 パラメータを変えればもっと大きなエネルギーが出る
(一) パラメータを変えれば幾らでも結果を変えられる。最高エネルギーとして
九九二MJという数字が出ている計算についてP8証人は、「ええ、九九二という
のは聞いたことはございません」とした上で、「これは、先ほど申し上げましたよ
うに、いろんなパラメータ計算をやれば、幾らでも大きな数字が出てくるわけでご
ざいます」と述べ、原告代理人の「結局これは紙の上の計算なんですね.現実に
は」との質問に対して「そうですね」と同意している(P8証人二〇回二二~二六
丁)。
(二) 計算コードは、わずかにパラメータを変えれば結果が大きく変化するとい
う特質を持っている。そもそも計算コードに不適切な部分があることは、P2証人
もドンデラーの計算に関して「このコードのプログ
ラミングの一部に不適切な部分があって、それがたまたまドンデラー氏の行った計
算において表面化、顕在化したと言うことだと理解しております」と述べ(P2証
人四八回八三頁)、コードが不安定であることを認めている。また、初期条件を少
し変えれば結果は大きく変わり、「台風の道筋を計算するよう」に予測しにくいと
されている(甲イ第三九〇号証)。
(三) 計算コードの実験的検証がなされておらず、計算コードの妥当性を判断す
る材料がない。前述したように、起因過程に関しては熱中性子を用いた燃料破損実
験などが小規模で行われているが、遷移過程については実験的検証はほとんど行わ
れていない。それにも係わらず、計算コードによる膨大な計算結果が大手をふって
まかり通ろうとしている。P10証人が「日本の高速増殖炉の研究はあまりにも計
算偏重であり、特に遷移過程のように複雑な過程の計算は非常に不確実性が多いの
で本当にどれが正しいのかは実験で示されなくてはならないにもかかわらず、実験
を計算の単なる補助として不当に低い地位に置かれてきた」(P10証人四六回四
五~四八頁)のであり、研究開発段階の原子炉の研究方法としては、極めて問題が
多いところである。
(四) 計算に使用する反応度の値も実験で検証されていない。反応度係数の代表
的なものはドップラー係数で、これは事故時燃料温度が上昇することによって自動
的にブレーキがかかる現象である。ドップラー係数に保守側の値を用いるか、ノミ
ナル値(平均的な値)を用いるかは、炉心崩壊事故の事象推移にとって「非常に大
きな影響がある」とP2証人は証言し(P2証人四八回二二頁)、その証拠として
ノミナル値を使用した乙イ第一六号証と保守側の値を用いた乙イ第一七号証が提出
されている。保守側の値としては、「データのばらつきを最大限に見込んで」(同
二〇頁)ノミナル値の○・七倍に減らし使用した(同二二頁)としている。しかし
ここで言われているデータもそのばらつきも、一五〇〇℃までの実験によるものに
すぎない。炉心崩壊事故時の燃料温度は四〇〇〇℃近い高温になる(乙イ第一八号
証六九頁)が、高温でのドップラー効果の実験は存在せず(甲イ第三七三号証三五
頁)、したがって計算に用いたデータには実験的裏付けは全く存在しない。ドップ
ラー係数は高温になるほど小さくなることが知られているので、一五〇〇℃までの
低温時のでデータを使えば事
故の影響を過小評価する恐れが極めて大きい。
(五) しかも、計算コードは非公開である。被告動燃は、このコードを公開せ
ず、ドイツの研究者にも引き渡そうとはしなかった(甲イ四〇六~四〇七号証)。
計算コードは様々な角度から使用して初めて内部に潜んだ問題点が明らかになる。
被告動燃はコードを独占・秘匿しているのであり、これでは被告動燃の計算が妥当
であると考えることは困難である。
5 被告らは「三八〇MJ」が最大放出エネルギーであることを証明できなかった
 要するに、「三八〇MJ」は一つの計算に過ぎない。被告動燃も被告国も、これ
が最大放出エネルギーであることを証明できなかった。従って、原子炉が爆発エネ
ルギーに耐えられることも証明できなかった。これは明白かつ重大な違法性であ
り、もんじゅの危険性を示すものである。
七 安全審査には明白かつ重大な違法性があり、運転は差し止められるべきである
1 炉心崩壊事故の発生確率は低くない
(一) 炉心崩壊事故は「設計基準事故よりも発生確率が低い」とされているが、
地震や落雷、電気系統の故障などを考えると決して発生確率が低いとは言えない。
(二) 地震については、第三で詳述したところではあるが、地震による機器の同
時多発的故障も無視できない。「原発にとって大地震が恐ろしいのは、強烈な地震
動による個別的な損傷もさることながら、平常時の事故と違って、無数の故障の可
能性のいくつもが同時多発することだろう。とくに、ある事故とそのバックアップ
機能の事故の同時多発、たとえば外部電源が止まり、ディーゼル発電機が動かず、
バッテリーも機能しないと言うような事態が起こりかねない。・・・一番の問題
は、配管・弁・ポンプ類や原子炉そのもの、制御棒とECCS(注・緊急炉心冷却
装置、軽水炉では水の注入が考えられているが、もんじゅには存在しない)などだ
ろう。・・・原子炉が自動停止するというが、制御棒を下から押し込むBWR(沸
騰水型軽水炉)では大地震時に挿入出来ないかも知れず・・・」と地震研究者も具
体的な事故経過を述べてシビアアクシデント発生の危険性について警鐘を鳴らして
いる(甲イ三九八、P10証人四六回二四~二五頁)。
(三) 落雷による機器の故障や停電も無視できない(甲イ第一三五号証)。
(四) 電気系統の故障は頻発している。
 被告動燃は「停電した場合には制御棒は重力で挿入される」とするが、再循環
ポンプが二台同時に停止したのに制御系の電源が途中で故障していたために原子炉
の緊急停止が出来なかったという事故が一九八八年に中部電力浜岡発電所で起きて
いる(P10証人四七回三七~三八頁)。一個のリレーの故障によって再循環ポン
プと制御棒の両方にまたがる共通要因故障が発生したのである(甲イ一三号証)。
 さらに、一九八三年には、アメリカのセイラム一号炉(加圧水型軽水炉)で、原
子炉保護系から原子炉に自動停止信号が入力されたにもかかわらず、停止に失敗す
るという事故が発生した(P10証人四七回三九頁、甲イ一三九号証)。停止の失
敗は冗長性を持たせてある二つの原子炉トリップ・ブレーカーがトリップ・アタッ
チメントの結合部の固着の為に両方とも自動開動作をしないという共通要因故障で
あった。制御棒が挿入されていないことに気づいた運転員が手動で制御棒を挿入し
たために大事に至らなかったが、共通要因故障であり、スクラム失敗のために事故
に至る恐れがあるとして原子力規制委員会(NRC)が重視した。
 また、日本でも一九九二年に、大飯原発二号炉で、原子炉を緊急に止める二系統
の遮断器のうちの一系統で電気信号を出しても働かない故障が発生した(甲イ第一
三八号証)。
 たしかに、もんじゅにおいては制御棒は磁石で上部に保持されており停電になっ
た場合には電気が切れて自動的に落下するとされているが、セイラム原発のように
信号が発せられたのに制御棒が落下しない可能性は否定できない。電気系統の故障
は随分多いのが現状である。
(五) 制御棒固着の恐れがある
 もんじゅでは制御棒を引き上げる力が一定値以上になると警報がでることになっ
ているが、三本の駆動装置で、九二年、九四年、九五年と警報が出ていたことが明
らかとなった(甲イ四一六号証)。制御棒の円筒型の駆動装置の内部の隙間にナト
リウムが入り込んだ後冷えて固まり、駆動軸の作動に影響を与え、放置すれば制御
棒の上げ下げが困難になる恐れがあるので分解調査するに至った。ナトリウムが駆
動装置の内部に入り込んで固まることは予想外だったようだが、制御棒は、燃料集
合体の隙間にスムーズに入らなくてはならない。従ってナトリウムの固化によって
固着する可能性があることは重大な問題である。
2 もんじゅは出力暴走事故が起こりやすい。
 もんじゅにおいては、①炉心が反応度が最も高い状態にないので、一旦未臨界に
なっても燃
料が溶けて寄り集まったりして炉心の配置が変われば再び臨界になる(再臨界)こ
とが起こりうる、②炉心の出力密度が高く、燃料棒間隔が狭く、冷却材通過が困難
になりやすい、③ボイド反応度が正であって、出力が上昇しやすい、④原子炉停止
系は制御棒のみであり、軽水炉がボロン水注入のような原理が異なる停止系を持っ
ているのと比較して同じ機構の停止系しかない。
 従って、出力暴走事故ひいては炉心崩壊事故が軽水炉より起こりやすい。
3 高速増殖炉の炉心崩壊事故は、恐るべき被害をもたらす
 炉心崩壊事故はシビアアクシデントの典型である。発生した場合には、原子炉容
器が破壊されることによって原子炉内の核燃料や核分裂生成物(死の灰)や放射化
したナトリウムが炉外に放出される。建屋から外部に放出されるプルトニウムを初
めとする放射性物質は、第五章で詳述したように、P13やP14の災害評価によ
れば、風下地域は壊滅的打撃をうけて人が住めなくなり、多数のガン死者が発生す
ることになる。
 被告動燃も被告国も、炉心崩壊事故による放出エネルギーが最大三八〇MJであ
ることの証明に失敗した。原子炉の被害の甚大性を考えると、炉心崩壊事故が発生
する可能性のあるもんじゅが運転されてはならず、設置を是とした安全審査には明
白かつ重大な違法性があることは明らかである。
第七章被告動燃に技術的能力があるとした本件安全審査の明白かつ重大な違法
一 はじめに
 原子炉等規制法二四条一項三号は、原子炉設置の許可要件として、原子炉設置者
に「原子炉を設置するために必要な技術的能力」と「原子炉の運転を適確に遂行す
るに足りる必要な技術的能力」とが備わっていることを要求している。
 被告国は、被告動燃に全部門の技術者の確保が十分であると認められること、も
んじゅの建設、運転を行うに当たっては、建設に必要な組織、技術者等で組織され
るもんじゅ建設所を設置し、また運転開始後はもんじゅ発電所の運転を適確に遂行
する組織体制を設けること、「高速増殖炉もんじゅ発電所施設品質保証計画書」を
新たに定めるなどして、運転段階を含む品質保証活動を期すこと、技術者の養成に
ついては、高速実験炉「常陽」及び新型転換炉ふげん発電所の運転・保守の実務経
験を通じて技術者の養成を行うとともに、原子力関係機関への研修派遣及び新たに
設置されることとなっているもんじゅ発電所用のシュミレータでの訓練等を通じて

術者の養成訓練を行うことをいずれも確認したとして、被告動燃にもんじゅを設置
するために必要な技術的能力並びに運転を適確に遂行するに足りる技術的能力があ
るものと判断している(乙第一三号証の三、原子力安全委員会月報、甲イ第三五一
号証)。
 被告国は、右のとおり書類上だけの極めて形式的な審査を済ませたのみで、被告
動燃に前記技術的能力が備わっているとして本件許可処分をなしているが、本件ナ
トリウム漏えい火災事故によって、被告動燃にかかる技術的能力がいずれも備わっ
ていないことは一目瞭然であり、右許可処分に明白かつ重大な違法がある。
二 被告国も認めている被告動燃の体質(安全文化の欠如)
 被告国は準備書面において、本件ナトリウム漏えい事故により、原子炉の設置・
運転に不可欠な「安全性確保を最優先にする姿勢」が被告動燃に欠けていたと自白
している。
 原子力安全委員会第二次報告書(乙イ第一四号証、二一頁)も高いセイフティカ
ルチュア(安全文化)を育成し事故の発生防止と影響緩和のために管理体制の確立
に努めることが重要と警告している。
 被告国は被告動燃がかかる体質を改善しようとしていると主張しているが、「安
全文化」はあらゆる文化と同様に一朝一夕に備わるものではない。被告動燃の都甲
泰正理事長も記者会見において次のように発言して、被告動燃の「安全文化の欠
如」を指摘している。すなわち、「被告動燃には安全確保を最優先にする姿勢が不
足していた。意識改革については前理事長も先頭に立って取り組んできたが、一朝
一夕にはできない。早道もなく、日々の積み重ねを見てもらうほかはない」と発言
している(甲イ第四四六号.一九九八・七・三〇福井新聞)。
 しかし、被告動燃の独善性に根ざした安全性軽視の体質は、被告動燃発足以来培
われてきたものであり、その体質は一夜にして改善できるものではなく、現時点に
おいても「安全文化」が欠如した体質は基本的に変わらない。
三 被告動燃には原子炉を設置するために必要な技術的能力がない。
1 温度計さや管の設計のチェックがなされていない。
 一九九五年一二月に発生したナトリウム漏洩火災事故は温度計さや管が破損し、
その結果、ナトリウムが大量に漏えいしたものである。
 温度計破損の原因は、配管内を流れるナトリウムの流体力によってさや管の細管
部に高サイクル疲労が生じたことにあり、温度計の設計に問題があったことは被告
動燃及び被告国が認めているところである。
 すなわち、さや管が徐々に細くなる形状のテーパ状ではなく、段付き構造のさや
管を設置したために高サイクル疲労による破損を招いたのである。
 メーカーはさや管の設計について米国機械学会(ASME)の基準を参考にして
流体に起因する振動は発生しないと判断したと弁解している。しかし、ASMEの
基準はテーパ状の温度計さや管の健全性評価に限定して定められたもので、段付き
構造のそれには妥当しないものであった。にもかかわらず、メーカーはこれを誤っ
て段付き構造のさや管を設置し、被告動燃はその初歩的誤りをチェックできなかっ
た(乙イ第一三号証七頁)。
 原子力安全委員会は「温度計の設計ミスが見過ごされたと言うことから、もんじ
ゅの他の機器について問題が潜んでいないことを言いきれない」として被告動燃の
品質保証活動に重要な疑念を投げかけている(乙イ第一二号証一四頁)。
 また、原子力安全委員会はもんじゅにおいて、何故常陽(実験炉)と異なった設
計の温度計を採用し、またその構造上の欠陥を見過ごしたのかという問題につき、
品質保証の観点でも技術の継承の観点でも問題であると指摘している(乙イ第一二
号証二二頁)。
 更に、フランススーパーフェニックスでは、一九八五年に本件事故と同様、流力
振動に起因して、二次系の温度計と管台との溶接部からのナトリウムが漏えいする
事故を起こしているが、右事故後においても被告動燃はこれを教訓にして温度計の
耐久性の再検討を怠った(乙第一二号証一四頁、原子力安全委員会報告)のであっ
て、技術的能力以前に被告動燃に原子炉設置及び運転をする適格性があるのかとい
う深刻な問題が問われている。
2 配管の設計ミス(配管の変形、プローブのひっかかり)
 一九九一年六月、もんじゅで総合機能試験の準備として予熱用の電気ヒーターで
二次主冷却系配管を加熱していった際に、配管が熱膨張により設計とは全く逆方向
に変形することが判明した。その後の検査によって、定格運転時の温度である摂氏
三二五度まで上昇させた場合には、配管と中間熱交換器の接続部分に過大な応力が
かかり、ABCの三系統とも接続部が耐えられないことが判明し、大幅な改造を余
儀なくされた。
 さらに同年七月には同じ総合機能試験において蒸気発生器細管の溶接箇所に定期
検査用のプローブがひっかかり、プローブの方を削らざるを得なくなるという
事件が発生した。蒸気発生器細管の溶接箇所にたれ込みがあると腐食や振動・応力
集中の原因となる可能性があることとなるが、もんじゅの施工にあたっては被告動
燃も科学技術庁も誰も検査していない。被告動燃の品質保証活動が不充分であるこ
とが露呈されたばかりか、安全審査に過誤があることが明らかになった。さらに、
重要なことは、これら重大事実が内部告発によってしか明らかにされなかったこと
である。被告動燃はこれら重大な瑕疵、故障をひた隠しにし、被告国及び国民に対
し、自らの技術的能力の欠敏を覆い隠していたのであって、その責任は重大である
(甲イ第七九号乃至第八二号証、P9証人、第二三回六五丁)。
3 ナトリウム燃焼温度、ライナー健全性の検証の誤り
 ナトリウム漏えい火災事故では、被告動燃はナトリウムの燃焼温度の想定を誤
り、床ライナの損傷防止対策についても有効な解決策を打ち出すことができず、事
故から三年を経た現在においても運転再開のめどが立っていない。
 このように被告動燃の技術的能力の欠如は明白かつ深刻である。四 被告動燃に
は原子炉を適確に運転遂行する技術的能力がない。1 マニュアルの矛盾と運転員
の判断ミス右ナトリウム漏えい火災事故では、異常時運転手順書(事故対応マニュ
アル)に相互矛盾があり、そのために運転員が判断を誤り、原子炉の緊急停止.が
事故発生から実に一時三〇分後まで遅れ、換気空調システムは事故発生から三時間
二七分後まで作動したまま放置されていた。原子炉の緊急停止の遅れはナトリウム
火災を継続させる結果をもたらし、換気空調システムの遅れは、ナトリウム火災の
拡大及びナトリウム・エアロゾルの環境への拡散につながるものであり、いずれも
看過し得ない重大なミスである。
 被告は事故に対応するマニュアルを「概要」「フローチャート」「細目」という
三種類の文書で構成していたが、その内容は互いに矛盾しており、そのために運転
員が誤った判断を犯す原因となったのであるが、事故対応マニユアルの矛盾を事前
にチェックできないことは、被告動燃に原子炉を適確に運転遂行する技術的能力が
欠如していることを意味するものである。
 原子力安全委員会は、本件事故が「拡大」したのは漏洩規模の「不適切な異常時
運転手順書」があり、これらが、「事故時の不適切な対応を引き起こしたと指摘し
ている。さらに、同委員会はその背景には「教育・訓練の問題」、「運
転体制、技術支援の問題」があるとして、被告動燃の技術的能力の欠如を認めてい
る(乙イ第一二号証九頁)。
2 再処理工場の爆発事故に見られる技術的能力の欠如
 一九九七年三月一一日、被告動燃の東海再処理工場の放射性廃棄物アスファルト
固化工程で、火災と爆発事故が発生した。この工程は低レベル放射性廃棄物をアス
ファルトと混ぜてドラム缶に充填していく工程である。
 当日午前一〇時六分頃、アスファルト充填室の中で火災が発生していることが確
認された。当初の被告動燃の発表によれば、午前一〇時二二分頃消火を確認したと
されていた。しかしその後、当日二〇時四分頃アスファルト充填室またはエクスト
ルーダ室で爆発が発生した(甲イ第三〇九号、第三一〇号証)。
 この爆発の結果、施設の内部はめちゃくちゃに破壊され、入口シャッターがニカ
所で破れ、ほとんどの窓ガラスが割れてしまった。四月八日に施設内部を視察した
通産省工業技術院物質工学工業技術研究所の田中克己氏の爆発規模の想定では、T
NT火薬に換算して数十キログラム程度と推定される大規模なものであった。この
ような破壊によって、施設は放射能の閉じこめ機能を失い、管理区域と外界が直接
つながるという前代未聞の状況を生みだした。同年、五月七日に公表された科学技
術庁の中間報告によれば、運転条件を変更し、エクストルーダーに供給する廃液の
速度を二割遅くしたため、アスファルトの温度が異常に上昇し化学反応が進んだと
されている。このような運転条件の変更は現場サイドだけで決められ、被告動燃の
技術者の検討すら経ていなかったとされ、被告動燃に安全確保を最優先にする姿勢
が認められず、原子炉を適確に運転遂行する能力が欠如していたことは明白であ
る。
五 露呈した事故情報の秘匿体質
1 被告動燃は政府出資が九六、一%を占める資本金一兆○、二一七億円の特殊法
人であり、極めて公共性の高い研究機関である。しかしながら、被告動燃の研究成
果を記述した報告のほとんど大半は「表紙に「開示制限」と表示してマル秘扱いに
し、外部の研究者にさえ、秘匿し続けて来た。
2 かかる被告動燃の情報隠しは、本件ナトリウム漏えい火災事故以降に高まって
きた情報公開の世論に押されてようやく重い腰を上げて約一万六〇〇〇件に及ぶ秘
匿研究資料を公開する作業の中で「開示制限」の文書が公開されて、明らかとなっ
た(甲イ第四〇九号証、第六回検討結果報告
書五頁)。
 しかし、甲イ第三七三号証の貴重な報告書は配布限定とされて、未だに公開され
ていないように、なお多くの研究資料が秘匿されている(甲イ第三七三号、四四四
号証一一、一二頁)。右文書は原告代理人が独自のルートで幸運に手に入れたもの
に過ぎない。
3 科学技術の進展にとって、研究成果の公表は真理探究のため不可欠である。
 研究成果の発表によって、外部の研究者からの厳しい批判を受け、研究にとって
命取りとなる独善性を回避することが可能となるからである。
 情報の秘匿によって研究の独善に陥り、その生命を失ったために本件ナトリウム
漏えい事故を招き、事態を悪化させた真の原因となったことは他の章で明らかであ
る。
4 被告動燃は本件ナトリウム漏えい事故において、徹底的に事故情報を隠匿しよ
うとした。すなわち、被告動燃は本件事故後一二月九日二時過ぎ、漏えい現場に立
入る入域調査を実施し、八分間のビデオ撮影をしたうえ、さらに同日一六時第二回
目の入域調査を実施し、二台のビデオカメラで四分間と一一分間の撮影を行ってい
た。しかし、被告動燃は二回目に撮影したビデオから一分間に編集し直した事故現
場のビデオを公開し、その後追求されて四分間に編集し直したものを再度公開した
が、これ以外に映像はないと断言した。その後さらに追求を重ねられたために、よ
うやく一二月二〇日になって被告動燃は先に公開したビデオは事故の核心部分を隠
す目的で編集したものにすぎず、他にオリジナルテープが存在することを自白せざ
るを得なくなった(甲イ第二五六号~第二五八号証)。
 また右事故において、被告動燃は虚偽報告まで犯し、原子炉等規正法違反によ
り、被告動燃が罰金二〇万円、被告動燃の職員二人が各一〇万円の罰金を科せられ
る刑事処分まで受けている(甲イ第三四一号証、三四二号証)。すなわち、被告動
燃は一二月一八日原子炉等規制法六七条に基づいて科技庁長官に右事故を報告する
にあたり、配管室への初期入域調査が一二月九日午前二時であるにもかかわらず、
右事実をことさら秘匿したうえ、同日午前一〇時に行ったと虚偽の事実を報告し
た。このように火災直後のビデオを隠し、オリジナルテープから事故を過小なもの
に仮装するため、ダビングテープの編集を行うなど一連の「事故隠し」の経緯から
見ると、右虚偽報告は個人的な些細なミスではなく、被告動燃の組織的な行為であ
ることは明白である。
5 
また、一九九七年三月一一日に発生した東海村再処理工場の火災及び爆発事故で
も、被告動燃は事故情報を隠匿し、虚偽報告を行ったことで刑事処分を受けている
(甲イ第三一七号、三一八号、三二三号証)。
 すなわち、被告動燃は当初、火災発生後午前一〇時二二分に消火を確認したと発
表し、国に報告していたが、一ヶ月後の四月八日、右消火確認が全くなされていな
かったことが判明した。この虚偽が発覚したのは、科学技術庁の事故調査委員会の
メンバーから発覚したのではなく、通産省工業技術院物質工学工業技術研究所の田
中克己氏が現地調査で作業員から直接事情聴取を行ったことを契機に判明したとい
う経緯があり、科学技術庁の影響力のあるメンバーだけに事故調査を委ねていれ
ば、永久に被告動燃の虚偽が発覚しなかった可能性が強い(甲イ第三一四号証)。
しかも火災発生直後、爆発前に撮影された写真やネガは、被告動燃職員がシュレッ
ダーにかけ、破棄され、極めて貴重な事故調査の資料が失われている。
 右虚偽報告は、動燃東海事務所の環境施設部長,同部技術課長、同部処理一課長
など管理職六名が部下及び下請の従業員らに働きかけて口裏を合わせたうえで虚偽
の報告がなされるに至ったことが判明している。さらに、科学技術庁の火災・爆発
事故調査委員会の事情聴取にあたり、前記管理職が真実を言わざるを得ないと主張
した下請の作業員に嘘をつくように説得しただけでなく、作業員を「交代勤務で連
絡が取れない」と嘘を重ねて、業員を事情聴取に欠席させ、事故調査を妨害した
(甲イ第三一三号、三一四号証)。
 このように、被告動燃の組織をあげての事故隠し体質は明白である。
六 核燃料サイクル機構に名称変更されても中味は変わらない。
 被告動燃は、一九九八年一〇月一日、動燃という名称から核燃料サイクル機構に
名称を変更した。被告動燃の準備書面(一六)によれば、右サイクル機構では、
「業務を純化し、効率化を図るとの観点から、動燃の中心的業務であった高速増殖
炉の開発及びこれに必要な研究は最も重要な業務として継続される」とのことであ
る。
 要するに、人員と組織をそのまま維持して業務を縮小したにすぎない今回の名称
変更は「事故続きの動燃」「ビデオ隠しの動燃」などという過去の悪名を払拭する
ために看板だけを付け替えたに過ぎないものである。
 また、被告動燃が開発を進めてきた新型転換炉「ふげんは廃炉が決定され
、ウラン原石の採鉱は中途にして断念し、使用済み核燃料物質の再処理工場は重大
な爆発事故を惹起するなどいずれも開発に失敗し、成功しているものは皆無であ
る。本件もんじゅの開発においても数々に誤りが露呈されたほか、本件ナトリウム
漏洩火災事故で高速増殖炉の開発は完全に暗礁に乗り上げ、事故から三年を経過し
た現在においても、運転の再開はおろか、解決の糸口すら見出せない状況であり、
今回の名称変更は過去の失敗の歴史と技術的能力の欠如を覆い隠す目的もある。
 このように、被告動燃が新しい法人名に変更するという苦肉の策を取ったとして
も、技術的能力の欠如と事故隠しの危険な体質と、さらには「安全性確保を最優先
する姿勢」が欠けてるという中味は全く変わらない。
七 本件許可の明白かつ重大な違法は明らか
 前述のとおり、被告動燃には原子炉等規制法二四条一項三号で要求されている
「原子炉を設置するために必要な技術的能力」及び「原子炉の運転を適確に遂行す
るに足りる技術的能力」のいずれもが備わっておらず、かえって技術的能力の欠如
を覆い隠すための情報隠し、事故隠し体質が認められる。
 よって、かかる重大な許可要件を欠いた本件許可処分に明白かつ重大な違法があ
ることは明らかである。
第八章許可処分における明白かつ重大な違法性
第一 明確となりつつある脱原発の流れと世界で否定されたプルトニウム利用
一 アメリカ
1 原子力発電所の新規発注なし
 一九七九年三月ペンシルベニア州のスリー・マイル・アイルランド原発二号炉が
炉心溶融事故を起こし大量の放射能が周辺地域に放出された。この事故以前である
一九七八年以来新規の原発発注は一基もなく、毎年多数の計画がキャンセルされ、
原子力産業は完全に斜陽化したといわれている。運転中であったカリフォルニア
州、ランチョセコ原発は一九八九年六月の住民投票の結果、廃棄に追い込まれた。
現在では、原子力産業への投資は冷え切っており、政府のバック・アップがあった
としても息を吹き返すことは困難と考えられている。
2 研究開発まで停止した高速増殖炉開発
 高速増殖炉については、一九八三年一〇月に原型炉のCRBR炉(クリンチリバ
ー高速増殖炉)の予算が否決され、一六億ドルの政府資金を投じて七割が完成した
段階で、開発は中止された。一九八三年一二月にバーンウェル再処理工場の建設が
中断されていたのを正式に閉鎖を決定している。現在、軍
事プルトニウムを軽水炉で燃焼させる計画は検討されているが、高速増殖炉、再処
理の現実的な計画は存在しない。その後もしばらくは長期的な研究開発は続行する
とされていた。新型液体金属冷却炉(LMR)として、SAFR、PRISMの概
念設計が行なわれ、一九八八年七月比較検討の結果PRISMが選定された。しか
し、このLMRについての研究開発も現在は予算もつかず、停止された状態にあ
る。
 またD〇E(米国エネルギー省)は、九〇年一月二九日、唯一運転中であった実
験炉FFTFを議会の承認を条件に、九〇年四月に停止すると発表し、一九九二年
度予算要求においてもFFTFの永久閉鎖を求めていた。
最近の高速増殖炉に関するアメリカの唯一の動きは一九九七年一二月にこの停止し
ていたFFTFを核兵器用のトリチウム生産炉として再開することの是非が検討さ
れていると報道されたことである。これも高速炉という技術の流用によって核兵器
の材料を生産しようというものであり、高速増殖炉技術はアメリカでは完全に死に
絶えたといっていい。
(甲イ四一九号証 日本弁護士連合会「孤立する日本の原子力政策」一四三頁)
二 ドイツ
1 ドイツのエネルギー構成、エネルギー政策
 ドイツの電力エネルギーの構成は一九九五年の時点で褐炭二九パーセント、水力
五パーセント太陽光、バイオスなど○・六パーセント、風力○・五パーセント、原
子力三三パーセント、黒炭二六パーセント、天然ガス五パーセントとなっている。
 ドイツ国内で運転中の原子力発電所は一九基、合計出力は二二〇六万キロワット
であり、必要電力量の約三割、一次エネルギーの約一割をまかなっている。
 ドイツ政府のエネルギー計画ではエネルギー需要は横ばいを想定し、今後褐炭・
石油エネルギーは削減、天然ガスと再生可能エネルギーは拡大していくこととされ
ている。
 ドイツでは電気事業は大手電気事業者が八社あり、旧西ドイツ地域の発電電力量
の約八割を占めている。その他にも地域電力会社が約九〇〇社存在している。
2 ドイツ原子力法と安全審査手続の概要
 ドイツの原子力発電に関する基本的な法律は「核エネルギーの平和利用およびそ
の危険の防護に関する法律(原子力法)」である。この法律に基づく規制の仕組み
は日本の原子炉等規制法のそれとよく似ており原発の設置運転には許可を必要と
し、その許可の要件は「災害に対し科学技術の水準から必要とされる対策
が行なわれていること」とされており、原子炉等規制法の「災害の防止上支障がな
いこと」とほぼ同様の規制となっていた。ただし、許可は一招してなされるのでは
なく、段階ごとに第一次部分許可、第二次、第三次と許可が積み重ねられるやり方
になっている。
 安全審査の特徴は連邦政府から州政府に対して規制の権限が大幅に委譲されてい
ることである。州政府が原子力発電に批判的な政策を取っている場合には原子炉の
新規立地は困難となっており、現在新規の原子炉の立地計画は絶無である。
 許可手続は原子力法手続令で定められており、許可の事前手続として、地域住民
の記録の閲覧の権利、異議申し立ての権利、聴聞手続について定めている。
 ドイツでは「原子力発電所の許可は裁判所の確認を要する」とまでいわれるほ
ど、多くの原発の許可に対する行政訴訟の提起が一般化してきた。そして、原子炉
の設置許可に批判的な決定・判決も数多く出されており、これらの決定・判決も一
つのきっかけとなって計画自体が撤回された例がすくなくない。
3 再処理工場とプルトニウム利用の放棄
 既に西ドイツ政府は一九八九年六月バイエルン州バツカースドルフに計画されて
いた再処理工場プロジェクトの放棄を決定した。
 一九九一年三月カルカーに建設されていた高速増殖炉SNR―三〇〇の閉鎖がド
イツ政府とジーメンス社などによって決定された。この原子炉は、オランダ・ベル
ギーとの共同プロジェクトとして進められてきたものであるが、建設が完成した後
も、SPDが政権をとるノルトライン・ウェストファーレン州政府当局が運転の許
可を発給しないため、全く運転ができないまま廃炉となったのである。既に七〇億
マルク(約六千億円)もの建設費用が投じられながら、廃止されたのである。
 この原子炉はその後オランダの遊園地業者に買い取られ、現在は遊園地となって
いる。
4 再生可能エネルギーの買取の義務付け法
 一九九〇年一〇月五日ドイツ連邦議会は「再生可能エネルギー発電の電気事業者
系統への供給法」を可決した。この法律は、電気事業者にその供給区域内で発電さ
れる再生可能エネルギーによる電気(水力、風力、太陽エネルギー、バイオ・ガ
ス、農林業からの生産品、生物上の残余物質や廃棄物などから生産される電気)を
買取り、これに一定水準の補償を行うことを定めたものである。この補償の水準は
太陽エネルギーと風力については電気の最終需要
家への平均販売単価の九〇パーセントを、五〇〇キロワットまでの水力、バイオ・
ガス発電所からの電気についてはおなじく七五パーセント、五〇〇キロワットを超
える同発電所からの電気については同じく六五パーセントを最低料金として規定し
ている。この法律は、再生可能エネルギーの利用を促進する目的で立法化されたも
のであるが、電気事業者は経済的な観点から、この法律の成立に強く反対してい
た。この法律は、一九九一年一月一日から施行されている。
5 原子力の「推進」を放棄
 現在は一九九四年に原子力法が改正され、法から原子力の振興の目的が削除さ
れ、原発の新設にあたってはどんな事故の場合にも放射能の影響が敷地も外に及ん
ではならないとした。この規制をクリアーすることはきわめて困難であり、今後新
しい原発の許可を取得することはほぼ困難となったと評価されている。又、これま
では使用済み燃料の再処理が義務づけられてきたが、この規定が削除され、再処理
をしないで使用済み燃料を直接処分することが公式に認められるに至った。この法
改正により、ドイツの電力事業者はフランス、イギリスとの再処理契約の解約のた
めの検討をはじめた。
 一九九八年には再度原子力法が改正され、連邦政府の安全検査機関により、枠組
み許可(第一次部分許可)ができるとされた。この改正は原子力発電所の許可の発
給に慎重な州政府から許可権限の一部を連邦政府に移すことにより、新規原発の認
可の促進を計ったものである。同時に、放射性廃棄物の最終処分事業を民営化する
ことも決定された。但し、前者の改正は後述のように、社民党と緑の党の連立政権
の発足により撤回された。
6 ミュルハイムケリヒ原発裁判の第一ラウンド
 このような中でも原子炉の建設が終わり、運転をはじめていたにもかかわらず裁
判所の判決で運転が停止された例がこれから説明しようとするミュルハイムケリヒ
原発問題である。
 ミュルハイムケリヒ原発はドイツのラインラント・プファルツ州に電力会社RW
E社によって設置された加圧水型の原子炉である。この原発はアメリカのバブコッ
ク・アンド・ウィルコックス社製の出力一三〇万キロワットの原子炉である。一九
七二年に許可申請がなされ、一九七五年一月に第一次部分許可が出された。
 一九七七年二月コブレンツの州行政裁判所は周辺の市を含む原告らの訴えを認め
て建設の停止を命じた。しかし、同年の五月コブレンツ
の上級行政裁判所はこの決定を覆した。その後この原発は約七〇億マルクをかけて
完成され、一九八六年九月には試運転が、一九八七年一〇月に商業運転が開始され
た。
 ところが、商業運転開始後間もない一九八八年九月九日同原発について連邦行政
最高裁判所は第一次部分許可を取り消す判決を下した。この裁判はコブレンツ市の
郊外に住む年金生活者P21さんが訴えていたもので、一三年間の裁判闘争で地
裁、高裁と敗北を続け、他の訴訟グループか次々に脱落していく中で一人で続けて
いた訴訟で勝訴したのである。
 裁判の争点は炉心予定地に断層があり、炉心を七〇メートル移動したにもかかわ
らずこの点についての安全審査を受けなかったというもので、この連邦行政裁判所
は全面的に原告の主張を認めた。
 この判決により、RWE社はこの原発を停止させなければならなかった。
7 新しい第一次部分許可を巡る裁判の経過
 その後同州は一九九〇年七月、RWE社に対して新しい第一次部分許可が出され
た。しかし、州行政裁判所はこの新しい第一次部分許可を無効とし、さらに同社の
控訴の権利も否定する判決を下した。
 一九九二年三月連邦行政最高裁判所は同社のこの判決に対するアピールを受けて
控訴の権利を認める判決を下した。その後同社は不許可となったことによる損害賠
償を州政府に要求するなどこの原発を巡る問題は法的紛争として継続されてきた。
 一九九五年一一月コブレンツの州上級行政裁判所は再びこの新しい第一次部分許
可を無効という判断を下した。
 そして、一九九八年一月一四日ベルリンの連邦行政最高裁判所は一九九五年の判
決を支持し「規制当局は原子炉によってもたらされる地震のリスクを十分に評価し
ていない」との理由で、この新しい第二次部分許可を無効とする判決を下した。
 判決は許可申請における地震による被害の検討が一七五六年に付近で発生した歴
史的な地震に基づく影響しか考慮されておらず、さらに広範で厳格な地震学的地質
調査がなされておらず、不十分で、規制当局自らの定立した基準を満たしていない
としている。
 この判決によって新しい第一次部分許可の無効性は確定し、RWE社には三たび
新しい第一次部分許可をとる方法によるしか、この原発を再度稼働させる道はなく
なった。しかし、前述したように、一九九四年に改訂された新しい原子力法は、今
後の新しい原発の許可にあたっては、事故時にも敷地外に一切の
放射能の影響を与えてはならないとしており、安全審査においてこのような厳しい
基準をクリアーすることは絶望的であり、この原発の閉鎖は確定的とみられてい
る。残された問題はこの原発の建設に要した費用のうち州規制当局が負担すべき部
分があるか、あるとすればその割合をどのように決定するかという補償問題となっ
ている。
8 ドイツの裁判所の真剣で厳密な原子力安全に対する姿勢
 このようなドイツの司法制度のもとにおける裁判の経過は日本の原子力裁判に何
を提起しているのだろうか。ドイツは地質学的にもプレート内部に位置し、ほとん
ど地震被害のない国であり、地震による人身被害はきわめてまれである。プレート
境界に位置しきわめて深刻な地震被害を繰り返してきたわが国とは比べ物にならな
いくらい地震には安全な国である。このような国で、一度ならず、二度に渡ってや
り直しされた州政府規制当局による原発の安全審査に基づく許可が、連邦の行政最
高裁判所によっていずれも無効とされ、その無効性が確定したのである。そして、
その理由が地震による危険性についての十分な検討がなされていないという理由に
よるものであるということは世界有数の地震国であり、最近においても地下鉄や新
幹線、高速道路、高層ビルなど耐震設計がなされているはずの施設が破壊されると
いう阪神大地震を経験したわが国にとって衝撃的なことである。
 七〇億マルクもの巨額の費用を投じて建設された原発をたった一人の原告の訴え
をもとに無効とすることはドイツの裁判官にとっても大変な勇気を必要とすること
は明らかである。裁判官の独立が完全に保障された国でなければこのような判決が
下されることは困難である。
 日本の行政制度や行政事件訴訟制度はドイツを手本にした部分が多い。原子力法
制も同様である。日本にドイツと同様に独立した裁判官が存在すれば、周辺地域に
現実に地震の被害が深刻に発生しており、敷地内や、敷地周辺、海域の直近に明ら
かな断層(しかもその多くは活断層)が発見され、国内でも有数の地震危険地帯で
ある敦賀に立地されている本件原子炉の許可を無効とすることに何もためらう必要
はない。
 権力分立の制度のもとで行政の国民の生命・安全にとって危険な判断に歯止めを
掛けることは裁判官にとって、もっとも基本的な職務である。原子力安全委員会を
含めた原子力規制当局が通産省・科学技術庁と言う原子力推進の行政機関の中に
取り込まれ、推進当局から独立した、厳格な判断が期待できない状況のもとでは、
司法当局、裁判官の勇気だけが日本国民を大規模地震による壊滅的な原子力災害か
ら守ることができるのである。海を越えたドイツ連邦行政最高裁判所が示すことの
できた良識を日本の福井地方裁判所の裁判官にも心から期待したい。(以上ドイツ
の状況については甲イ四一九号証日本弁護士連合会「孤立する日本の原子力政
策」、甲イ四三九号証日本弁護士連合会「孤立する日本のエネルギー政策」、甲イ
四三五号証「原子力年鑑九八/九九年」、甲イ四三六、四三七、四三九、甲イ四四
〇号証「核燃料サイクルの黄昏」一〇五ないし一一七ページ)
9 脱原子力政策の全面的な展開へ
 一九九八年九月ドイツの連邦総選挙で社会民主党と緑の党の連立政権が誕生し
た。この連立政権の連立合意においては、次のようなエネルギー政策が合意され
た。
 その内容は、
 「第一段階として政権発足後一〇〇日以内に、原子力法を改正し、
(1) (原子力)推進の目的を削除する。
(2) 事業者に対して一年以内に、安全性の総点検を義務づける。
(3) 危険性の疑いに関する立証責任を明確化する。
(4) 廃棄物処分は直接最終処分に制限し、再処理を禁止する。(5) EU規
則の導入に関するものは例外として九八年の原子力法改正(州政府の持つ許認可権
の一部を連邦政府に移管する)を廃止する。
(6) (原子力災害の)賠償準備金を増額する。
 第二段階として
 連立政権は新しいエネルギー政策や原子力終結の方法、廃棄物問題に関するコン
センサス形成のために、エネルギー供給企業が対話の席につくように促す。これに
は、政権発足後一年以内の期限を設ける。
 第三段階として
 連立政権は損害賠償を伴わない原子力利用からの離脱を規定した法案を提出す
る。企業の脱原発への同意については時間的な制限を設ける。
 (廃棄物処分については省略)」
 ドイツの今後の現実の推移がどのようなものとなるかは、確定的なことは言えな
いが、脱原発の方向性ははっきりと決まったと言える。そして、再処理が禁止され
る方向がはっきりしたことにより、プルトニウム利用は完全に否定されたと言え
る。
(甲イ四三六、四三七、四四〇号証)
三 フランス
1 原子力大国フランスの新たな動き
 フランスは電力供給の七割以上を原子力に依存する世界一の原子力大国である。
しかし、この原子力大国においても
新たな動きが認められる。現在のフランス政府は社会党と緑の党の連立政権であ
り、原子力安全に関する管轄権も持つ環境大臣のポストには緑の党のボワネ党首が
就いている。エネルギー政策においても、原子力偏重から再生可能エネルギー天然
ガスを重視する政策が打ち出されてきている。このようなエネルギー・原子力政策
の変化の一つの端的な表れが高速増殖炉実証炉スーパーフェニックスの廃炉であ
り、もう一つが再処理政策についての見直しの動きである。
2 スーパーフェニックスの閉鎖へ
 一九八六年に臨界に達したフランスの高速増殖炉実証炉スーパーフェニックスは
一九八七年三月ナトリウムの漏洩事故によって運転が停止された。一九八九年一月
運転再開許可が出されたが、一九八九年九月同炉の運転主体NERSAはプルトニ
ウム生産にメリットがないという経済的な理由からスーパーフェニックスでのプル
トニウムの増殖をおこなわないことを決定していた。
 その後一九九〇年七月には、ナトリウムヘの空気の大量流入によるナトリウムの
酸化事故が発生して、再度運転を停止した。このような状況のもとで一九九〇年八
月にはフランスのマスコミが一斉に「スーパーフェニックスは永久停止へ」との報
道を始めた。産業エネルギー大臣のドミニク・シュトラウス・カーンは、一九九一
年六月フランスは高速増殖炉開発を放棄しつつあると議会で発言し、その後「決定
はまだ下されていない。」として撤回されている。さらに、フランス最高行政裁判
所は一九九一年五月前記の運転再開許可は運転条件を指定しておらず無効であると
の判断を示している。
 一九九六年には同炉は一時運転を再開したものの、同年末には運転を停止し、こ
れが同炉の最後の運転となった。結局運転開始以来、同炉が運転したのはわずか一
〇カ月、設備利用率は六パーセントであった。
 一九九七年六月にはジョスパン首相は「巨額な投資額に比べて、その成果は極め
て疑わしい」として、閉鎖の方針を表明した(甲イ三九一、三九二、三九三、三九
四、三九五号証)。一九九八年二月には同炉の閉鎖は関係閣僚会議で、正式に了承
された。EDF(フランス電力庁)によれば、同炉の廃炉に伴う費用は一六五億フ
ランに達する見込みである(甲イ四三五号証「九八・九九年版原子力年鑑」甲イ四
四〇号証「核燃料サイクルの黄昏」一一八ないし二三ページ)。
3 重大事故相次ぐフェニックス原型炉
 一九七三年
に運転を開始したフェニックス原型炉では一九八九年八月に反応度の異常低下事故
を引き起こした。フェニックス炉では気泡が炉心を通過した場合は反応度の異常増
加が起こるが、ブランケット部分を通過すると逆に反応度が異常に低下する性質を
持っている。このような性質はもんじゅも共通である。
 一九八九年一二月から運転を再開して一九九〇年九月九日再度大規模な反応度の
異常を起こした。一九九〇年の反応度低下は、一九八九年のそれと、発生周期はほ
ぼ同じであるが、振幅ははるかに大きく、このような反応度の変動を発生させるた
めには、一九八九年に想定された五〇リッター規模ではなく、数百リッターのアル
ゴン気泡としないと説明がつかないといわれていた。最近では、この出力異常は炉
心の運動によるものとの説明もなされているが、原因の詳細は解明されていない
(甲イ一九一号証一一〇ないし一一三頁)。
 同炉は高速増殖炉としてではなく、目的を超ウラン元素の消滅処理研究の目的に
変えて、いったん運転を再開したものの、一九九五年から三年間に渡って運転を停
止した。このように運転の停止が永く続いた理由は規制当局であるDSINが事故
時の炉心支持の性能とプラントの耐震構造に懸念を示していたためである。フェニ
ックス炉ではシビアアクシデントの際に支持構造物が原子炉容器の底に落下し、容
器を貫通する可能性があることが懸念されたのである。また、耐震構造について
も、最近の新しい研究に基づいて設定された新しい耐震設計基準を満たすことが求
められた。結局、一九九八年一月にはDSINは運転の許可を行なった。しかし、
その際には第五〇サイクル運転の停止後に炉心構造部の溶接部の検査、土木構造物
の耐震性の改善を行うことが求められていた(甲イ四三五号証「九八・九九年原子
力年鑑」一五九頁)。フェニックスでも耐震設計の問題が重大な問題となってきて
いたのである。
 ところが、一九九八年五月に同炉の運転を開始し、同年一一月に五〇サイクル運
転における水・蒸気系の給水系タンクの点検のための原子炉停止中に約六トンの二
次系ナトリウムが中間熱交換器から炉容器内に流出していることが判明した。原因
の詳細は発表されていない(甲イ四三四号証被告動燃作成のレポート)。
 このように、フェニックス炉においても重大トラブルが続発しており、又その安
全性について規制当局から深刻な問題が提起されている状態にあ
る。
4 全量再処理の見直しの動き
 又、フランスでも、すべての使用済み燃料を再処理するという方針が見直されて
いる。議会の科学技術評価局が一九九八年に公表したレポートでは、すべての使用
済み燃料を再処理しないで直接処分する選択肢を含めて、さまざまなシナリオに基
づいてその利害得失が分析されている(甲イ四四五号証原子力資料情報室通信)。
四 イギリス
1 民営化できなかった原子力発電
 イギリスではサッチャー政権の民営化政策の一環として電気事業の民営化を計画
し、一九八九年七月には法案が国会で成立し、一九九〇年四月電気事業は民営化さ
れた。ところが、この民営化法案の審議の過程で原子力発電の経済性とりわけ廃棄
物処理に要する費用が莫大なものになることが明らかにされ、株式の売却が困難と
考えられたため、原子力発電部門は民営化から外され、国営のまま残されることと
なった。このような原子力発電の経済性にたいする疑問から、計画中であった加圧
水型原子炉四基の開発は凍結され、急速に脱原子力政策への転換が行われた。現
在、イギリスでは新規原発の立地計画はなく、既存の原発の多くが老朽化してきて
いるため、電力供給における原子力の比重は急速に減少する予定である。
2 運転停止した原型炉
 イギリスでは、高速増殖炉原型炉PFRが一九七六年から運転中であったが、一
九八七年に蒸気発生器における細管の大量破断事故を起こし、一九九四年には運転
を停止した。一九八八年七月イギリス政府は、今後高速増殖炉の商業化は、三〇な
いし四〇年は必要ないとの認識のもとに、その予算措置を大幅に削減している。一
九九〇年七月二五日、イギリスの下院エネルギー特別委員会が高速増殖炉の開発政
策について報告書を発表した。
(1) 二〇二〇年ごろに至っても商業炉―発注の必要が生ずる見通しは暗い。
(2) 一九八八年の決定は妥当である。
(3) EFRについても一九九三、一九九七年に再検討を行ないその時点で、必
然性が認められなければ、一九九七年に撤退をはかるべきである
としていた。もともとの実証炉の計画CDFRは計画として撤回された。イギリス
では、日本からの再処理委託を主たる業務とするセラフィールド再処理工場のソー
プが稼働中であるが、国内でのプルトニウムリサイクル計画は放棄されている。イ
ギリスの高速増殖炉の閉鎖はサッチャー首相の鶴の一声で決まったと言われている
(甲イ四一九号
証日本弁護士連合会「孤立する日本の原子力政策」甲イ四四〇号証「核燃料サイク
ルの黄昏」九二ないし一〇四ページ)。
五 ヨーロッパ高速炉計画について
1 ヨーロッパ高速炉計画とは
 スーパー・フェニックス炉に続く次期ヨーロッパ高速炉計画EFRについては、
フランス、イギリス、旧西ドイツ、イタリア、ベルギーの五か国で協議が行なわれ
ていたが、イタリア、ベルギーは共同開発から離脱し、フランス、イギリス、旧西
ドイツの三国が、一九八九年二月、次期ヨーロッパ高速炉計画について協定を締結
した。
2 立ち消えとなったヨーロッパ高速炉の開発
 その後イギリス、旧西ドイツの二国については、高速炉開発の路線自体が国内的
にも否定され、その実現性は、不透明なものとなってきており、イギリスの下院エ
ネルギー特別委員会は、一九九〇年七月「高速炉が、二〇二〇年―二〇三〇年まで
に利用可能になりそうだという新しい証拠がないかぎり、」遅くとも一九九七年ま
でにEFR計画から手をひくよう勧告していた。一九九二年一一月にはイギリス政
府は議会において、ヨーロッパ高速炉に対する出資を一九九三年三月三一日で打ち
切るとの声明を発表した。フランスは一九八九年一〇月に公表された、原子力政策
において、頼りにならないイギリス、旧西ドイツにかわって、アメリカ、日本との
協力を強めるべきであるとしていた。しかし、そのフランスでスーパー・フェニッ
クスが閉鎖されることが確定したことにより、ヨーロッパ高速炉計画が実現される
可能性はほぼ完全になくなったと見られている。最新版の日本原子力産業会議編集
の九八・九九年版原子力年鑑にはEFRについては全く記載がない(甲イ四三五、
甲イ四四〇一二一、一二二ページ)。
六 結論
 以上のとおり、高速増殖炉の開発については、日本に先行して開発をすすめてき
たアメリカ、ドイツ、フランス、イギリスの各国では、紅余曲折はあったものの、
すべての国で停止され、現在の閉鎖されていないのはフランスのフェニックス炉だ
けである。しかも、このフェニックス炉も事故で停止中なのである。
 現在、高速増殖炉の開発をすすめている国は、ロシアとインド、中国などに限ら
れている。これらの国々の特徴は核保有国であり、最近まで核実験を行っていた国
々であると言うことである。ロシアの高速増殖炉は高速中性子を使っている点を除
けば、西欧とは全く違う形式の原子炉であり、またトラ
ブル続きである。インドは小型の実験段階、中国は計画段階にすぎない。高速増殖
炉の開発は既に世界的に否定されており、その主要な理由は安全性の欠如と経済性
の欠如である。
第二 もんじゅ訴訟における重大かつ明白な違法性の存在の判断の基準について
一 不必要な施設、公益性のなくなった施設については重大な違法性の判断の基準
は低くなる。
 許可の無効性の判断の基準である「重大かつ明白な違法」は相対的な概念であ
り、その許可により得られる公益との相関で判断すべきである。すなわち、公益性
の高い行政処分については、違法性の重大・明白性は高い水準のものが要求される
が、公益性がないか、あったとしても公益性が低下している行政処分にあっては、
違法性の重大明白性は相対的に低くても、許可の無効の判断をなすべきである。
 けだし、行政処分の無効確認訴訟において、請求を認容するため、違法性の重大
かつ明白であることを要求する趣旨は、公益性の高い、行政処分が形式的な許可手
続きの瑕疵などによって、取り消されることは行政処分の法的な安定性を害するも
のと考えられたからに外ならない。
 高速増殖炉技術は既に世界的に否定された技術であり、本件もんじゅは不要な施
設である。一九九七年五月に開催された第五回原子力工学国際会議では、高速増殖
炉関連の研究の大部分は日本のものであり、欧米からは一編だけであったと報告さ
れている。ヨーロッパとアメリカについては高速増殖炉の開発・研究は今や完全に
停止したのである(甲イ三九七号証)。
 このような、世界の流れは日本にもいやおうなく及んできている。一九九七年五
月二六日政府与党の財政構造改革会議は(議長橋本龍太郎)その企画委員会報告で
もんじゅについて撤退・大幅な縮減を含めた全面的な見直しが盛り込まれた。その
後、原子力産業界による猛烈な巻き返しにより、結果的には六月三日に発表された
最終報告書「財政構造改革の推進方策」では、もんじゅの見直しという表現に訂正
され、「撤退・大幅な縮減を含めた」という文言は削除された(甲イ四三五号証 
一九九八年一九九九年原子力年鑑一五四頁)。いずれにしても、政府与党内にもも
んじゅの開発続行に対する深刻な疑問が提起されていることは明らかである。
 また、総務庁行政監察局は、財務内容等を中心とした特殊法人に関する調査を行
ってきたが、平成一一年五月、被告動燃に関する「調査結果報告書」を公
表した。
 それによれば、被告国から被告動燃に支出された出資金の累計は約二兆四〇〇〇
億円に及んでおり、「高速増殖炉開発」には平成八年度までに約一兆五〇〇億円が
投入されている。建設コストは出力単位当たりの単純比較で、軽水炉の約六倍であ
り、運転経費は平成六年度で二〇六億円となっている。高速増殖炉とそれに関連す
る核燃料サイクル技術の研究開発には、平成八年度までに投入された出資金の六割
強に当たる約一兆六〇〇〇億円の資金が投入されているのである。
 報告書は、「イギリス、アメリカ、ドイツにおいては、原型炉を閉鎖ないし建設
を中止し、フランス、ロシアにおいては、原型炉による研究開発は継続しているも
のの実証炉を放棄しないしは建設を中断しているなど、研究開発は停滞状況にあ
る」と明記し、「事業の継続には今後ともかなりの経費の投入が必要であり、長期
の懐妊期間を要し、克服すべき技術的課題も多い」と否定的側面も率直に指摘す
る。報告書は、費用対効果を情報公開した上で、研究の妥当性の議論や事業の幅広
い見直しの必要性をかかげている。
 我が国は転換期にある。社会的経済的政治的なあらゆる面で、過去に一旦決めた
公共事業を見直すべき時期にある。行政監察局が、財務的な観点から、被告動燃の
高速増殖炉開発に疑問を呈した意義は極めて大きい。もんじゅには経済性も必要性
もないことが明らかになったからである。
 このように、不必要な施設、公益性のなくなった施設については重大かつ明白な
違法性の判断の基準は低くなることは当然である。
二 研究開発段階の原子炉の危険性は厳格に判断しなければならないことは原子力
安全委員会の見解である。
1 研究開発段階の原子炉としてのもんじゅ
 もんじゅは研究開発段階の原子炉である。軽水炉の場合は、一定の設計標準が既
に確立しており、その安全性についてもかなり長時間の運転経験がある。高速増殖
炉の場合は、各国の原子炉の基数自体が限定されており、設計も標準化されていな
い。そして、原子炉の数は少ないにもかかわらず、事故続きで十分な運転の経験も
ない。
 このような研究開発段階の原子炉の特性、そして、高速増殖炉技術が本質的に持
っている大きな潜在的な危険性に照らして、もんじゅ原子炉の安全性の判断は厳格
に行う必要があり、被告国には高い水準での安全性が確立していることの立証責任
がある。
2 研究開発段階の原子力施設の安全確保対
策についての原子力安全委員会決定
 原子力安全委員会は本件安全審査の当時はこのような問題意識に乏しかったが、
本件ナトリウム漏洩火災事故の経験を踏まえて、「研究開発段階の原子力施設の安
全確保対策について」(平成一〇年四月一六日決定甲イ四三一)を策定した。この
文書は本件の許可処分の適否を判断する際に極めて重大な意義を有する文書であ
る。以下に煩をいとわず、主要部分を引用しつつ、説明を加えたい。
「この意見聴取では、研究開発段階の原子力施設の安全確保対策においては、①適
用技術やシステムの新規性が高いので、経験則に頼れない部分があり、想定外のト
ラブルや未経験の事故が起こる可能性がある、②そのようなトラブルや事故の経験
を施設の設計や運転に適切にフィールドバックしていくことが重要である、③施設
の安全性に関係する新たな技術的知見が、原子力の分野に限らず、原子力以外の分
野からも得られる可能性がある、④施設の設置を計画してから設置のための安全審
査を行うまで、相当期間の研究開発が必要であり、その際に安全性に十分配慮した
研究開発を行い、その成果を適切に設計に反映させることが重要である、⑤計画か
ら運転までの期間が長く、関係する研究者・技術者の数が多いことから、組織内で
の技術の蓄積と継承が重要であるなど指摘された。」
 このような指摘は、言い換えれば
(1) もんじゅで想定外・未経験の事故が発生する可能性があること、
(2) トラブルと事故の経験が適切にフィードバックされていないこと、
(3) 新たに得られた技術的な知見が適切に設計に反映されていないこと、
(4) 組織内の技術の蓄積と継承が十分になされていないこと
を示しているのである。
3 被告動燃など設置者と科学技術庁に求められる対応
 このような認識にたって原子力安全委員会は被告動燃等の設置者と科学技術庁な
どに対して以下の対応を求めている。
 「(1)設置者は、自らが第一次的な安全確保の責任(設置者責任)を有するこ
とを再認識し、研究開発、設計、製作、建設及び運転の各段階における安全確保に
最大限の注意を払う。特に、研究開発の初期段階から安全確保に十分配慮した研究
を行い、広く外部の専門家の評価を求めた上で、その成果を適切に施設の設計ない
し運転に反映する。
 また、技術の蓄積と継承を確実に行う。この観点から、運転の初期段階において
は、研究開発や設計に携わった研究者・
技術者との情報交換を密に行うなどの措置をとる。
 一方、研究開発段階の原子力施設では、事故・トラブルを含めた運転経験が研究
開発のための貴重な知見となり得るため、それを施設の安全確保対策に積極的に反
映させる。事故・トラブルの発生防止に万全を期すことは当然のこととして、事
故・トラブルの発生に迅速かつ適切に対処できる組織体制・運転管理体制を構築す
る。また、事故・トラブルが発生した場合には、その内容を迅速かつ適切に公開
し、外部の研究機関、専門家等との情報の共有化を図り、再発防止及び技術の進歩
に役立てる。
 設置許可後において新たな技術的知見が得られた場合には、先ず、設置者自らが
それを施設の設計ないし運転に反映すべきかどうかの検討を速やかに行い、その結
果を科学技術庁に報告するとともに、必要に応じ、適切な対策をとる。
 また、当委員会が新しい安全審査指針類を策定した場合(既存の安全審査指針類
を改定した場合を含む。)には、当委員会が示す考え方に基づいて、施設の設計の
妥当性を新しい安全審査指針類に照らしつつ速やかに検討し、その結果を科学技術
庁に報告するとともに、必要に応じ、適切な対策をとる。
 (2)科学技術庁は、所管する研究開発段階の原子力施設の設置許可後に得られ
た新たな技術的知見や新たな安全審査指針類(改定された安全審査指針類を含
む。)に基づいて、先ず、所管の施設の設計ないし運転に反映すべき点があるかど
うかを速やかに検討する。次に、その検討結果に基づいて、必要に応じ、その施設
の設計及び工事の方法の認可で対象とする機器の範囲、保安規定の具体的な内容等
の科学技術庁が行う安全規則の内容を見直すとともに、関係規定類への反映につい
ても検討する。
 科学技術庁は上記の結果を当委員会に報告する。」
4 迫られる原子力安全委員会自らの反省
 さらに、委員会は自らの反省も踏まえて次のように述べる。
 「当委員会は、研究開発段階の原子力施設に関する安全審査指針類について不断
の見直しを行い、新たな技術的知見を迅速かつ適切にそれらの安全審査指針類に反
映させるなどにより、今後の安全確保に万全を期することとする。
 また、安全審査において確認した安全確保のための要件が設置許可後の安全規則
において確実に実現されていることを確認する観点から、随時、設置許可後の安全
規制の状況について科学技術庁から報告を求めることとする。
 更に、国内外の技術的知見の収集・蓄積に努め、技術的知見のデータベース化等
の措置を講じるとともに、原子力以外の分野の専門家との交流を強化していくこと
とする。」
 そして、とりわけ、もんじゅについて次のように述べている。
 「もんじゅについては、科学技術庁の総点検チームが安全性の総点検を行ってき
たが、三月三〇日に報告書がまとめられ、四月二日に当委員会にも報告された。ま
た、当委員会のワーキンググループにおいて、床ライナの腐食抑制対策等の改善方
針の妥当性が検討されたところである。
 これらの結果及び本決定を受け、動力炉・核燃料開発事業団が具体的にもんじゅ
の改善措置を講ずるに当たっては、当委員会は、その改善措置について厳重な安全
審査を行い、安全確保に万全を期することとする。
 更に、もんじゅ事故に関し、当委員会が累次の委員会決定等で指摘した事項に対
し動力炉・核燃料事業団及び科学技術庁が適切に対応しているかどうかを確認する
ため、ワーキンググループの検討が終了した後においても当分の間、専門家からな
る組織を当委員会の下に設置し、もんじゅの安全性の確認に継続的に取り組んでい
くこととする。」
三 原子力安全委員会決定は被告動燃の技術能力の欠如と安全審査の限界と問題点
を自白している
 この原子力安全委員会決定はもんじゅナトリウム漏洩火災事故と再処理工場の火
災爆発事故をきっかけとして出されたものである。この決定では一般論として書か
れている諸点が、実はもんじゅ事故と再処理工場事故の教訓として挙げられている
ものであることは、当時原子力安全委員であったP1証人もこれを認めたところで
ある。
 もんじゅには想定もできなかったような未経験の事故が起こる可能性が秘められ
ていること、被告動燃には得られた科学的知見を研究者の間で共有するという意識
が全くないこと、従って、海外で得られた知見や自らの実験によって得られた知見
も秘密裏に隠され、科学者相互の批判と検討の対象とされない、被告動燃内部です
ら、情報が共有化されないなどの弊害を生み出しているのである。
 P1証人は動燃の行なう試験結果に原子力研究所など他の原子力研究機関の研究
者ですらアクセスできない例があり、強い不満の声が聞かれたことを認めている
(P1証人二七回一三九ないし一四五頁)。
 P10証人が本件における証言でしばしば指摘したことを原子力安全委員長が自
ら認めたのである
四 P
1原子力安全委員長の証言の持つ意味
 P1委員長は現在の科学的知見のもとでは、もんじゅの既存の設計の許可はおり
ないと明言した(前記証言 一三三頁)。すなわち、「十分な説明がなければいつ
までたっても許可がおりない」と証言している。
 そして、設置変更の許可の申請があれば、文字通りゼロからすべての機器の安全
性を審査すると述べた(前記証言一五九頁)。すなわち、許可は白紙に戻すべきで
はないかという問いにそこまでやるつもりはないとしながら、「中身においては、
正に同様なことをやるつもりでございます。」と答えているのである。
 このような一連の証言は本件訴訟に決定的な意味を持つものである。原子力安全
委員長は、本件許可処分が無効であるということは認めなかったかもしれない。し
かし、それは、委員長が法律家ではなく、科学技術者であり、許可処分の有効性は
許可当時の科学的知見に基づいて判断されるものと誤解していたふしがある。
 原子力裁判で行政裁量について司法が積極的に審査することをためらってきたの
は、それが「将来起こるかもしれない事故の予測」という不確定なものについて判
断しなければならなかったためであろう。しかし、本件もんじゅ訴訟においてはそ
のような悩みはない。もんじゅで発生したナトリウム火災事故、その後の床ライナ
ーに穴の開いたナトリウム漏洩実験の結果、現実に実機で伝熱管の大量高温ラプチ
ャを起こしたPFR事故と隠されていた動燃蒸気発生器伝熱管大量破断の結果を招
いたSWAT実験、複数の断層が次々に活動し、新幹線や高速道路までが破壊され
る地震災害を引き起こした阪神淡路大地震など、既に発生している事態を基に判断
することが可能なのである。
 原子力安全委員長はこのような客観的な事実を前にして、前記の証言を通じても
んじゅ設置許可が事実上有名無実のものとなっていること、現在の科学的知見に照
らして全面的な見直しが必要であることを認めたのである。このことは、伊方原発
最高裁判決の枠組みを前提として、法的見解として表現すれば、現在の科学的知見
のもとで設置許可の違法性が重大かつ明白となったということに外ならない。本件
設置許可は無効である。
第三 結論
 原告はこの最終準備書面の中で、もし、事故の再現実験や、解析が十分に行われ
ていないと繰り返し述べてきた。しかし、実は前述したような世界的な高速増殖炉
の開発停止の動かし難い事実を
見れば、このような実験や解析の作業を継続すること自体の経済的、政策的合理性
も問われていると言わなければならない。この原子炉を安全に運転しようとすれば
(それがもし可能としても)ナトリウム漏洩についても、炉心崩壊事故(HCD
A)についても、蒸気発生器についても、地震、耐震設計についても膨大な費用を
掛けて再度基礎的な研究からやり直さなくてはならないことが明らかとなったとい
える。
 去る二月二二日に札幌地方裁判所で言い渡された泊原発差し止訴訟事件における
判決は、原告の請求を棄却したものの、その結論部分で、「原子力発電は絶対に安
全かと問われたとき、これを肯定するだけの能力を持たない。」「原子力発電所が
どれだけ安全確保対策を充実させたとしても、事故の可能性を完全に払拭すること
はできないのであり、抽象的な危険は常に存在しているからである。」「国民の間
でも原子力発電の安全性に対する不安が払拭されているとはいえない。」(高レベ
ル放射性廃棄物の)「中間貯蔵施設や最終処分場が準備できるのかなど、問題は未
解決なままである。」「二一世紀へ、そして人類の未来へ目を向けたとき、原子力
発電がどのような意義を持つのかが、真剣に議論されるべき時期に差し掛かってい
る。」「多少の不便を我慢して電力消費を削減し、放射性廃棄物を生み出す原子力
発電は中止しようという選択肢もあってよい。自分の子供に何を残すのか。多方面
から、英知を集めて、賢明な選択をしなければならない。」という異例の判示を行
った。これは世界中で今も利用されている軽水炉についての判示である。高速増殖
炉技術は危険過ぎるし経済的な合理性もない。世界の原子力界が軽157水炉はと
もかく、すくなくとも高速増殖炉の開発をほぼ完全にやめているのである。
 もし、この日本でも裁判所が勇気を持ってこの原子炉設置の許可の無効を確認
し、差し止めを決定すれば、この原子炉を今後どのように取り扱うべきか、真に真
剣な国民的議論が開始されるだろう。裁判官には今一度橋本前首相を議長とする財
政構造改革会議が一度はもんじゅについて「撤退もしくは大幅縮小を含めた見直
し」を決めていたことを思い起こしていただきたい。もんじゅ原子炉を廃止するこ
ととなっても、その結論には被告動燃以外は誰も反対しないであろう。
 以上のとおりであり、もんじゅには数多くの決定的な安全性の欠如しているポイ
ントが存在し、また
、高速増殖炉開発は世界的に停止していること、この原子炉は研究開発段階の炉で
あり、その安全性には厳格な立場で判断する必要があることを考慮すれば、もんじ
ゅの許可処分には明白かつ重大な違法性があり、許可処分は無効である。
 裁判所はためらうことなくこの原子炉設置許可の無効を確認する判決を下すべき
である。

戻る



採用情報


弁護士 求人 採用
弁護士募集(経験者 司法修習生)
激動の時代に
今後の弁護士業界はどうなっていくのでしょうか。 もはや、東京では弁護士が過剰であり、すでに仕事がない弁護士が多数います。
ベテランで優秀な弁護士も、営業が苦手な先生は食べていけない、そういう時代が既に到来しています。
「コツコツ真面目に仕事をすれば、お客が来る。」といった考え方は残念ながら通用しません。
仕事がない弁護士は無力です。
弁護士は仕事がなければ経験もできず、能力も発揮できないからです。
ではどうしたらよいのでしょうか。
答えは、弁護士業もサービス業であるという原点に立ち返ることです。
我々は、クライアントの信頼に応えることが最重要と考え、そのために努力していきたいと思います。 弁護士数の増加、市民のニーズの多様化に応えるべく、従来の法律事務所と違ったアプローチを模索しております。
今まで培ったノウハウを共有し、さらなる発展をともに目指したいと思います。
興味がおありの弁護士の方、司法修習生の方、お気軽にご連絡下さい。 事務所を見学頂き、ゆっくりお話ししましょう。

応募資格
司法修習生
すでに経験を有する弁護士
なお、地方での勤務を希望する先生も歓迎します。
また、勤務弁護士ではなく、経費共同も可能です。

学歴、年齢、性別、成績等で評価はしません。
従いまして、司法試験での成績、司法研修所での成績等の書類は不要です。

詳細は、面談の上、決定させてください。

独立支援
独立を考えている弁護士を支援します。
条件は以下のとおりです。
お気軽にお問い合わせ下さい。
◎1年目の経費無料(場所代、コピー代、ファックス代等)
◎秘書等の支援可能
◎事務所の名称は自由に選択可能
◎業務に関する質問等可能
◎事務所事件の共同受任可

応募方法
メールまたはお電話でご連絡ください。
残り応募人数(2019年5月1日現在)
採用は2名
独立支援は3名

連絡先
〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
ITJ法律事務所 採用担当宛
email:[email protected]

71期修習生 72期修習生 求人
修習生の事務所訪問歓迎しております。

ITJではアルバイトを募集しております。
職種 事務職
時給 当社規定による
勤務地 〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
その他 明るく楽しい職場です。
シフトは週40時間以上
ロースクール生歓迎
経験不問です。

応募方法
写真付きの履歴書を以下の住所までお送り下さい。
履歴書の返送はいたしませんのであしからずご了承下さい。
〒108-0023 東京都港区芝浦4-16-23アクアシティ芝浦9階
ITJ法律事務所
[email protected]
採用担当宛